磁控溅射法

磁控溅射法
磁控溅射法

溅射法是薄膜物理气相沉积的一种方法,他利用带有电荷的离子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的靶电极。在离子能量合适的情况下,入射的离子将在与靶表面的原子碰撞过程中使后者溅射出来。这些被溅射出来的原子将带有一定的动能,并且会沿着一定的方向射向衬底,从而实现在衬底上薄膜的沉积。

物质的磁控溅射现象:溅射是一个离子轰击物质表面,并在碰撞过程中发生能量能动量的转换,从而最终将物质表面原子激发出来的复杂过程。它与入射离子能量,入射离子种类和被溅射物质种类以及离子入射角度有关。一般来说,只有当入射离子的能量超过一定的阀值以后,才会出现被溅射物质的溅射。大部分的金属的溅射阀值在10~40ev之间,每种物质的溅射阀值与入射离子的种类关系不大,但与被溅射物质的升华热有一定的比例关系。随着入射离子能量的增加,溅射出来的原子数与入射离子之比(溅射产额)先是提高,其后在离子能量达到10kev左右的时候趋于平缓。当离子能量继续增加时,溅射产额反而下降。

在一定加速电压和一定离子入射情况下,各种元素的溅射产额随元素外层d电子数的增加而增加,因而Cu,Ag,Au等元素的溅射产额明显高于Ti,Zr,Nb,Mo,W等元素的溅射产额。使用惰性气体作为入射离子时,溅射产额较高。由于经济性上的原因,在大多数情况下,均采用Ar离子作为溅射沉积时的入射离子。

磁控溅射:溅射法使用的靶材可根据材质分为纯金属,合金及各种化合物。主要溅射方法有直流溅射、射频溅射、磁控溅射、反应溅射。这里主要介绍磁控溅射方法。

速度为v的电子在电场E和磁感应强度为B的磁场中将受到洛伦兹的作用:F=-q(E+v*B)其中q为电子电量。

当电场与磁场同时存在的时候,若E,B,v三者互相平行,则电子的轨迹仍是一条直线:但若v具有与B垂直的分量的话,电子的运动轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了他参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉寂的速率。靶材与磁场的布置形式如上图所示。这种设置特点是在靶材的部分表面上方是磁场与电场方向垂直,从而进一步将电子的轨迹到靶面附近,提高电子碰撞和电离的效率,从而不让它去轰击阳极的衬底。实际的做法可将永久磁体和电磁线圈放置在靶的后方,从而造成磁力线先穿出靶面,然后变成与电场方向垂直,最终返回靶面的分布,即如图所示的磁力线方向那样。

在溅射过程中,由阴极发射出来的电子在电场的作用下具有像阳极运动的趋势。但是,在垂直磁场的作用下,它的运动轨迹被其弯曲而重新返回靶面。即在相互垂直的电磁场空间中,电子在E*B的方向上做漂移运动。而且这种漂移运动形成无终端的闭合轨迹,由此来维持放电。从而,在图中画出的靶面上将出现一条电子密度和原子电离极高,同时离子溅射几率极高的溅射带。

薄膜制备:下图是JGP450型多靶磁控溅射仪器装置示意图

1,将半导体或绝缘体靶放在永磁靶位或将磁性金属靶放在电磁靶位上。将清洗后的石英或单晶硅基片放在样品架上,根据实验要求调整基片温度。

2,开分子泵和电源水龙头;启动机械泵预抽真空,当真空度<10pa时,开分子泵抽高真空。

3,当真空室的真空达到10*-5后,开充气阀v1,和v3(或v4)如上图所示,向真空室中冲入溅射气体(如:Ar,O2或N2等),如用两种气体溅射,须经v3和v4把两种气体充入混气室混合后,再经v1充入到真空室中。通过流量计调节流量,调节工作压强,一般不超过10pa。

4,打开溅射电源;进行溅射。当靶材是绝缘体或半导体时用射频溅射,当靶材是金属或其它导体时用直流或射频溅射时都可以。

5,溅射结束后,关溅射电源和溅射系统总电源;关分子泵和分子泵总电源。

6,向真空室中充入空气至一个大气压。打开真空室盖,取出薄膜样品

结语:目前,磁控溅射是应用最广泛的一种溅射沉积方法,其主要原因是这种发方法的沉积速率可以比其它溅射方法高出一个数量级。这个方面要归结于在磁场中电子的电离效率提高,另一方面还因为在较低气压条件下溅射原子被散射的几率减小。另外,由于磁场有效地提高了电子与气体分子的碰撞几率,因而工作气压可以明显降低,即可由1pa降至0.1pa 这一方面降低了薄膜污染的倾向,另一方面也提高了入射到衬底表面原子的能量,因而将可以在很大程度上改善薄膜的质量。

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

磁控溅射技术进展及应用

摘要:近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:磁控管溅射率非平衡磁控溅射闭合场非平衡磁控溅射自溅射 引言 磁控溅射技术作为一种十分有效的薄膜沉积方法,被普遍和成功地应用于许多方面 1~8,特别是在微电子、光学薄膜和材料表面处理领域中,用于薄膜沉积和表面覆盖层制备。1852年Grove首次描述溅射这种物理现象,20世纪40年代溅射技术作为一种沉积镀膜方法开始得到应用和发展。60年代后随着半导体工业的迅速崛起,这种技术在集成电路生产工艺中,用于沉积集成电路中晶体管的金属电极层,才真正得以普及和广泛的应用。磁控溅射技术出现和发展,以及80年代用于制作CD的反射层之后,磁控溅射技术应用的领域得到极大地扩展,逐步成为制造许多产品的一种常用手段,并在最近十几年,发展出一系列新的溅射技术。 一、磁控溅射镀膜原理及其特点 1.1、磁控溅射沉积镀膜机理磁控溅射系统是在基本的二极溅射系统发展而来,解决二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应明显的问题。磁控溅射系统在阴极靶材的背后放置100~1000Gauss强力磁铁,真空室充入011~10Pa压力的惰性气体(Ar),作为气体放电的载体。在高压作用下Ar原子电离成为Ar+离子和电子,产生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域内,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的结构的溅射相比,离化率迅速增加10~100倍,因此该区域内等离子体密度很高。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶源阳极上。而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材表面的原子吸收Ar+离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的表面飞向基片,并在基片上沉积形成薄膜。溅射系统沉积镀膜粒子能量通常为1~10eV,溅射镀膜理论密度可达98%。比较蒸镀011~

镀膜问题总汇

真空镀膜工艺问题汇总 1.Al2O3打底已增加粘贴性,怎样镀Al2O3溅射镀怎么镀?请问旋转靶磁场加在哪里? 2.一.多弧离子镀做TiAIN膜1.靶材,材质?尺寸?2.偏压,—脉冲,直流对膜有无影响?二.高建钢材质刀具,1.立铣刀的锋利与镀膜前的酸洗工艺存在矛盾。三.多弧炉中结合了磁控柱靶在TiAIN膜制作过程中,可采用或利用其磁控靶的优点进行,四.用高偏压加氢气的辉光放电,是否用对硬膜的形成不利,会影响其硬度吗?是否用离子轰由(加热)来取代此工艺吗?五.靶材中Ti的纯度,对膜质(硬度,外观,粗糙毒等)有无关系?Ti是否对工具镀膜来说是否足够? 六.《真空》杂志中有文章介绍,多弧离子镀中用部分铬靶使TiN膜层中含有铬成分,有助于提高膜的硬度和外观的光亮度等那么能否采用钛铬合金靶,达到其效果?七.TiAl拔能否使其合金化,是否合金化后,在蒸发靶材时,清除或减少熔滴的产生?使其多弧离子镀,并产出的TiAIN膜质光亮,致密。 3.相对来说磁控溅射技术比较深奥些,听的不是太懂之前中设接触过磁控技术书面知识比较理论看不透彻,因为专业知识有限喜欢听笼统一点通俗易懂的。 4.1.如何防止靶的电弧放电问题 2.Si靶Ti靶的氧气是否一定要用压电阀来控制吗? 3.做高反射钳时Si靶Ti 靶的氩气,氧气的比例是多少?4.靶的电弧放电与亮孔是否有联系?5.在同样的工艺条件下,为什么有些会出现膜脱落,有时会出现SiTi膜脱落。 5.镀铝制镜,基片两头打弧,为什么?怎么解决?镀过铝后如何保护? 6.1.由于重复使用的玻璃进行了多次镀膜以后在玻璃表面残存物沉积且由于多次清洗造成玻璃表面划痕增加,最终造成散射光增加反射率降低,如何在不抛光的情况下,改善(提高)反射率?在镀膜工艺上有何可行性的解决方案等!为了增加铅膜和玻璃的粘合度,一般采用什么方法?如果镀一层介质膜,可采用什么材料,不影响反射率?

磁控溅射沉积系统技术参数

磁控溅射沉积系统技术参数 一、功能及基本要求 设备能够用于沉积纳米级的单层及多层功能膜和复合膜。要求可镀金属、合金、化合物、半导体、陶瓷膜、介质复合膜和其它化学反应膜等。要求设备工作的稳定性高、实验重复性好、多次实验结果误差小,从大气抽至工作真空度时间短,设备自动化程度高,操作简便,占地面积小,真空泵工作时噪音小。 二、技术指标 1 工作条件: 1.1 正常室温(10℃-40℃)下,室内操作 1.2 电源:220V,50Hz 1.3 相对湿度:10—75% 主要技术指标 2 磁控靶 2.1 至少有2套永磁共焦磁控溅射靶 2.2 溅射靶角度连续可调 2.3 各溅射靶可独立/顺次/共同工作 2.4 磁控靶能够通水冷却以维持在较低温度 2.5 磁控靶RF、DC、MF兼容以满足不同种类的溅射需求 2.6 至少有一个靶位可以溅射磁性材料 2.7 磁控靶与基片的距离可调,以满足不同种类的溅射需求 3 真空条件 3.1 极限真空度≤6*10-5Pa(经烘烤除气后) 3.2 有负载情况下从大气抽至工作真空度时间小于等于35分钟 3.3 系统停泵关机12小时后真空度≤5Pa 4 样品台 4.1 样品台可放置样品的尺寸≥4英寸 4.1 样品台具有旋转功能,转速0-30rpm(或以上)可调 4.2 样品台具有加热功能,加热温度室温-500℃(或以上)可控可调 5 气路 系统至少配备有两路进气系统,包含惰性气体和反应气体,且带有流量控制计

6 镀膜均匀性 对样品镀膜的不均匀度≤±4.5% 7 反溅清洗 要求设备能够施加负方向的偏压,在开始沉积之前能够对基片进行清洗 三、技术服务和培训 卖方须到买方提供的现场免费安装、调试设备,进行操作试验,直至运行正常,为仪器操作人员提供免费的操作及维护培训。 四、质量保证 测试验收合格后至少1年的整机质保。

磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例(薄膜物理大作业论文) 班级:1035101班 学号:1101900508 姓名:孙静

一、前言 镀膜玻璃是一种在玻璃表面上镀一层或多层金属氧化物薄膜,使其具有一种或多种功能的玻璃深加工产品。自七十年代开始,在世界发达国家和地区,传统的单一采光材料—普通建气琳璃,已逐步为具有节能、控光、调温、改变墙体结构以及具有艺术装饰效果的多功能玻璃新产品所替代,如茶色玻璃、中空玻璃、镀膜玻璃等,其中又以镀膜玻璃尤汐引人注目,发展也颇为迅速,如欧洲共同体国家在1985年建筑玻璃总量的三分之二用的是镀膜玻璃,美国镀膜玻璃的市场在八十年代就已达5000万平方米/年,在香港、新加坡、台湾等经济崛起的东南亚国家和地区,镀膜玻璃的使用也日渐盛行。镀膜玻璃作为一种新型的建筑装饰材料已得到了人们普遍的肯定和喜爱。 目前生产镀膜玻璃所采用的方法大体上可分为浸渍法、化学气相沉积法、真空蒸发法、磁控溅射法以及在线镀膜等五种方法。 浸渍法是将玻璃浸人盛有金属有机化合物溶液的槽中,取出后送人炉中加热,去除有机物,从而形成了金属氧化物膜层。由于浸渍法使玻璃两边涂膜,且低边部膜层较厚,同时可供水解盐类不多,因而在国内未得到很好推广。 化学气相沉积法是将金属化合物加热成蒸汽状,然后涂到加热后的玻璃表面上。这种方法由于受到所镀物质的限制,且在大板上也难 真空蒸发法是在真空条件下,通过电加热使镀膜材料蒸发,由固相转化为气相,从而沉积在玻璃表面上,形成稳定的薄膜。此法的不足之处是所镀膜层不太均匀、有疵点、易脱落。只能生产单层金属镀膜玻璃,颜色也难以控制。 磁控溅射法是在真空条件下电离惰性气休,气体离子在电场的作用下,轰击金属靶材使金属原子沉积到玻璃表面上。 在线镀膜一般是在浮法玻璃生产线上进行,如电浮法、热喷涂等方法,目前我国较少使用。 在这些方法中,磁控溅射镀膜法是七十年代末期发展起来的一种先进的工艺方法,它的膜层由多层金属或金属氧化层组成,允许任意调节能量通过率、能量反射率,具有良好的外观美学效果,它克服了其它几种生产方法存在的一些缺点,因而目前国际上广泛采用这一方法。磁控溅射镀膜玻璃已越来越多地被运用于现代建筑并逐渐在民用住宅、汽车、电子等域使用,具有广阔的发展前景。 二、磁控溅射镀膜工艺 (一)工艺原理及特点 磁控溅射是一种新型的高速、低温溅射镀膜方法,它是在专门的真空设备中,借助于高压直线溅射装置进行的。磁控溅射镀膜工艺的原理是:将玻璃送人设有磁控阴极和溅射气体(氮气、氮气或氧气)的真空室内,阴极加负电压,在真空室内辉光放电,产生等离子体,由于金属靶材带负电,等离子体中带正电的气体离子被加速,并以相当于靶极位降U的能量撞击靶面,将金属靶的原子轰出来,使之沉淀在玻璃表面上而形成金属膜。工艺原理如下图所示:

磁控溅射设备构造及其沉积薄膜原理

磁控溅射设备构造及其沉积薄膜原理 1. 实验目的: 了解磁控溅射设备的构造,熟悉磁控溅射沉积薄膜的基本原理。 2. 实验内容: 2.1 了解磁控溅射设备的构造 总体来讲,磁控溅射薄膜沉积系统包括:气路、真空系统、循环水冷却系统、控制系统。其中 (1) 气路系统:与PECVD系统类似,磁控溅射系统应包括一套完整的气路系统。但是,与PECVD系统不同的是,PECVD系统中,气路中为反应气体的通道。而磁控溅射系统气路中一般为Ar、N2等气体。这些气体并不参与成膜,而是通过发生辉光放电现象将靶材原子轰击下来,使靶材原子获得能量沉积到衬底上成膜。 (2) 真空系统:与PECVD系统类似,磁控溅射沉积薄膜前需要将真空腔室抽至高真空。因此,其真空系统也包括机械泵、分子泵这一高真空系统。 (3) 循环水冷却系统:工作过程中,一些易发热部件(如分子泵)需要使用循环水带走热量进行冷却,以防止部件损坏。 (4) 控制系统:综合控制PECVD系统各部分协调运转完成薄膜沉积,一般集成与控制柜。 2.2 磁控溅射沉积薄膜原理 在阳极(除去靶材外的整个真空室)和阴极溅射靶材(需要沉积的材料)之间加上一定的电压,形成足够强度的静电场。然后再在真空室内通入较易离子化的惰性Ar气体,在静电场E的作用下产生气体离子化辉光放电。Ar气电离并产生高能的Ar+离子和二次电子e。高能的Ar+阳离子由于电场E的作用会加速飞向阴极溅射靶表面,并以高能量轰击靶表面,使靶材表面发生溅射作用。被溅射出的靶原子(或分子)沉积在基片上形成薄膜。 由于磁场B的作用,一方面在阴极靶的周围,形成一个高密度的辉光等离子区,在该区域电离出大量的Ar+离子来轰击靶的表面,溅射出大量的靶材粒子向工件表面沉积;另一方面,二次电子在加速飞离靶表面的同时,受到磁场的洛伦兹力作用,以摆线和螺旋线的复合形式在靶表面作圆周运动。随着碰撞次数的

磁控溅射

磁控溅射 1、磁控溅射 磁控溅射是一个磁控运行模式的二极溅射。它与二~四极溅射的主要不同点:一是,在溅射的阴极靶后面设置了永久磁钢或电磁铁。在靶面上产生水平分量的磁场或垂直分量的磁场(例如对向靶),由气体放电产生的电子被束缚在靶面附近的等离子区内的特定轨道内运转;受电场力和磁场力的复合作用,沿一定的跑道作旋轮转圈。靶面磁场对荷电粒子具有约束作用,磁场愈强束缚的愈紧。由于电磁场对电子的束缚和加速,电子在到达基片和阳极前,其运动的路径也大为延长,使局部Ar气的碰撞电离几率大大增加,氩离子Ar+在电场作用下加速,轰击作为阴极的靶材。把靶材表面的分子、原子及离子及电子等溅射出来,提高了靶材的飞溅脱离率。被溅射出来的粒子带有一定的动能,沿着一定的方向射向基体,最后沉积在基体上成膜。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶电源阳极上。 工作气体电离几率的增加和靶材离化率的提高,使真空气体放电时内阻减小,故磁控靶发生溅射沉积时的工作电压较低(多数在4-600V之间),有的工作电压略高(例如>700V),有的工作电压较低(例如300V左右)。磁控溅射发生时,其溅射工作电压主要降落在磁控靶的阴极位降区上。 由于磁控溅射沉积的膜层均匀、致密、针孔少,纯度高,附着力强,可以在低温、低损伤的条件下实现高速沉积各种材料薄膜,已经成为当今真空镀膜中的一种成熟技术与工业化的生产方式。磁控溅射技术在科学研究与各行业工业化生产中得到了迅速发展和广泛应用。

总之,磁控溅射技术就是利用电磁场来控制真空腔体内气体“异常辉光放电”中离子、电子的运动轨迹及分布状况的溅射镀膜的工艺过程。 2、产生磁控溅射的三个条件 磁控气体放电进而引起溅射,必须满足三个必要而充分的条件: (1)第一,具有合适的放电气体压强P:直流或脉冲中频磁控放电,大约在0. 1 Pa~10Pa 左右),典型值为5×10-1Pa;射频磁控放电大约在10-1~10-2Pa。 (2)第二,磁控靶面具有一定的水平(或等效水平)磁场强度B(大约10mT~100mT),典型值为30~50mT,最低也要达到10~20 mT(100~200高斯)。 (3)第三,真空腔体内,具有与磁场正交(或等效正交)的电场V,典型值500~700V。 我们通称以上三条为P-B-V条件。 3、磁控溅射离子镀 (1)在基体和工件上是否施加(直流或脉冲)负偏压,利用负偏压对离子的吸引和加速作用,是离子镀与其它镀膜类型的一个主要区别。蒸发镀时基体和工件上加有负偏压就是蒸发离子镀;多弧镀时基体和工件上加有负偏压就是多弧离子镀;磁控溅射时基体和工件上加有负偏压就是磁控溅射离子镀,这是磁控溅射离子镀技术的一个重要特点。 (2)磁控溅射离子镀是把磁控溅射和离子镀结合起来的技术。在同一个真空腔体内既可实现氩离子对磁控靶材的稳定溅射,又实现了高能靶材离子在基片负偏压作用下到达基片进

磁控溅射玻璃镀膜电源

磁控溅射玻璃镀膜电源 Dr. Dirk Ochs HüTTINGER Elektronik GmbH + Co KG, Freiburg, Germany 黄新盈 深圳市微普真空系统集成有限公司 介绍: 近年来,建筑玻璃市场对Low‐e镀膜玻璃产生了巨大的需求。特别是经济快速增长的中国,印度和东欧地区。目前高档Low‐e主要采用磁控溅射方式镀膜,关于镀膜设备,Low‐E 制造商们关注的是溅射速率,薄膜质量和生产成本。在Low‐E生产中,连续镀膜系统常用的是30‐200KW的直流和中频磁控溅射电源[1,2,3,4]。 对于建筑玻璃镀膜所使用的电源,则要求高精度的过程控制能力,配备强大的打弧管理系统,并提供可调整的参数。能使生产过程中的干扰最大程度的减少,获得最优化的膜层。为了保证溅射速率和产量,生产过程中对电源的打弧管理提出了很高的要求。比如反应溅射低熔点材料,打弧非常容易在靶面上造成孔洞。快速先进的打弧管理,能预防靶面产生的缺陷并且获得更高的功率,意味着安全可靠的获得更高的溅射速率。 应用: 建筑玻璃的主要应用是阳光控制膜,低辐射膜和减反膜。图1是典型的阳光控制膜系。玻璃基板首先沉积了一层厚度在10‐100nm的SnO2。膜厚从10nm从增加到100nm时,颜色则从银色渐变为青铜色,最后是蓝色。在SnO2上还需要沉积CrNx和SnO2膜。一个典型的低辐射膜系图2,开始也是先在玻璃基板上沉积SnO2,起到减反的作用。然后是反射红外线的银层,再沉积阻挡层NiCrOx,和减反层SnO2。

减反的膜系(图3)由一个高折射系数材料和一个低折射系数的材料交替组合而成。常用的高折射系数的材料有ZrO2,Ta2O5和TiO2。低折射系数材料如MgF2,SiO2,或Al2O3。 金属膜通常是用直流电源驱动单个磁控靶溅射。而氧化物和氮化物膜层则使用中频电源,配合孪生磁控靶进行反应溅射。磁控溅射原理如图4所示 首先是工艺气体通入到已经抽空的腔体中。在靶材上施加几百伏的负高压后,在靶面前方产生辉光放电的(起辉)等离子体,工艺气体的离子(通常是氩气)被靶的负高压吸引而撞向靶材,碰撞后将靶材溅射出来。溅射出的材料则沉积在与靶相对的基板上。而对于介质材料的镀膜,如氧化物或氮化物则需要对等离子体额外通入氧气或氮气。孪生靶的两个阴极各自连接到电源的一极。这样的话,当其中一个阴极处于负压溅射状态时,另一个处于正压可以看作是阳极。以一定频率(中频)交替互为阴阳极 。 对于所有的镀膜过程而言,都要对打弧现象进行控制尤其是在高功率密度下,以增加溅

磁控溅射

磁控反应溅射。就是用金属靶,加入氩气和反应气体如氮气或氧气。当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。若磁铁静止,其磁场特性决定一般靶材利用率小于30%。为增大靶材利用率,可采用旋转磁场。但旋转磁场需要旋转机构,同时溅射速率要减小。冷却水管。 旋转磁场多用于大型或贵重靶。如半导体膜溅射。用磁控靶源溅射金属和合金很容易,点火和溅射很方便。这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。但若溅射绝缘体如陶瓷则回路断了。于是人们采用高频电源,回路中加入很强的电容。这样在绝缘回路中靶材成了一个电容。但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。为解决此问题,发明了 磁控溅射 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于 一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

磁控溅射镀膜简介

磁控溅射镀膜简介 溅射薄膜靶材按其不同的功能和应用可大致分为机械功能膜相物理功能膜两大类。前者包括耐摩、减摩、耐热、抗蚀等表面强化薄膜材料、固体润滑薄膜材料, 后者包括电、磁、声、光等功能薄膜材料靶材等, 具体应用在玻璃涂层(各种建筑玻璃、ITO透明导电玻璃、家电玻璃、高反射后视镜及亚克力镀膜), 工艺品装饰镀膜, 高速钢刀具镀膜, 切削刀具镀膜, 太阳能反光材料镀膜, 光电、半导体、光磁储存媒体、被动组件、平面显示器、微机电、光学组件、及各类机械耐磨、润滑、生物医学, 各种新型功能镀膜(如硬质膜、金属膜、半导体膜、介质膜、碳膜、铁磁膜和磁性薄膜等) 采用Cr,Cr-CrN等合金靶材或镶嵌靶材,在N2,CH4等气氛中进行反应溅射镀膜,可以在各种工件上镀Cr,CrC,CrN等镀层。纯Cr的显微硬度为425~840HV,CrN为1000~350OHV,不仅硬度高且摩擦系数小,可代替水溶液电镀铬。电镀会使钢发生氢脆、速率慢,而且会产生环境污染问题。 用TiN,TiC等超硬镀层涂覆刀具、模具等表面,摩擦系数小,化学稳定性好,具有优良的耐热、耐磨、抗氧化、耐冲击等性能,既可以提高刀具、模具等的工作特性,又可以提高使用寿命,一般可使刀具寿命提高3~10倍。 TiN,TiC,Al2O3等膜层化学性能稳定,在许多介质中具有良好的耐蚀性,可以作为基体材料保护膜。溅射镀膜法和液体急冷法都能制取非晶态合金,其成分几乎相同,腐蚀特性和电化学特性也没有什么差别,只是溅射法得到的非晶态膜阳极电流和氧化速率略大。

在高温、低温、超高真空、射线辐照等特殊条件下工作的机械部件不能用润滑油,只有用软金属或层状物质等固体润滑剂。常用的固体润滑剂有软金属(Au,Ag,Pb,Sn等),层状物质(MoS2,WS2,石墨,CaF2,云母等),高分子材料(尼龙、聚四氟乙烯等)等。其中溅射法制取MoS2膜及聚四氟乙烯膜十分有效。虽然MoS2膜可用化学反应镀膜法制作,但是溅射镀膜法得到的MoS2膜致密性好,附着性优良。MoS2溅射膜的摩擦系数很低,在0.02~0.05范围内。MoS2在实际应用时有两个问题:一是对有些基体材料如Ag,Cu,Be等目前还不能涂覆;二是随湿度增加,MoS2膜的附着性变差。在大气中使用要添加Sb2O3等防氧化剂,以便在MoS2表面形成一种保护膜。 溅射法可以制取聚四氟乙烯膜。试验表明,这种高分子材料薄膜的润滑特性不受环境湿度的影响,可长期在大气环境中使用,是一种很有发展前途的固体润滑剂。其使用温度上限为5OoC,低于-260oC时才失去润滑性。 MoS2、聚四氟乙烯等溅射膜,在长时间放置后性能变化不大,这对长时间备用、突然使用又要求可靠的设备如防震、报警、防火、保险装置等是较为理想的固体润滑剂。 内容来源:宝钢代理商https://www.360docs.net/doc/ec10979268.html, 欢迎多多交流!!!

光伏材料

光伏材料——硫化锌 邱德鹏 ZnS是II-VI族化合物,为直接带隙半导体材料,室温下带隙约为3.7eV,具有较高的激子束缚能(40meV)[1]。ZnS的研究历史比较长,自从1866年法国化学家Theodore Sidot发现荧光ZnS材料以来,对ZnS的研究已有140多年的历史,但早期的研究主要侧重于ZnS发光及稀磁特性上,对ZnS的制备、掺杂以及将其应用到太阳电池的研究都较少[2]。近年来由于II-VI族二元和三元化合物半导体在太阳电池方面的应用,特别是随着CdS/CdTe薄膜太阳电池转换效率的迅速提高,ZnS薄膜吸引了人们极大的注意,研究人员围绕ZnS薄膜的制备和掺杂开始进行大量的研究工作,并希望能将其集成到太阳电池中,形成新的光电转换器件或是提高现有太阳电池的光电特性[3]。 硫化锌具有两种变形体:高温变体α-ZnS和低温变体β-ZnS,其相变温度为1020℃。α-ZnS为纤锌矿结构,六方晶系,晶格常数为a=0.384nm,c0=0.5180nm,z=2;β-ZnS是闪锌矿结构,面心立方,晶格常数为a=0.546nm,z=4,如图1所示。在自然界中稳定存在的是β-ZnS,常温下很难找到α-ZnS[4]。 图1:硫化锌的两种晶格结构 ZnS的密度为4.30g/cm3,熔点为1050℃,无毒无害,对环境十分友好,其组成元素Zn与S在地球上的储量都较为丰富,开采合成成本低,ZnS具有大规模工业化生产的优势。ZnS作为一种重要的化合物半导体材料,其光电性能优良,禁带宽度较大,使其在短波长半导体激光器、紫外光电探测器等短波处光电器件领域具有巨大的潜在应用价值,被广泛地应用于各种光学和光电器件中,如平板显示器、红外光学窗口材料、发光二极管及太阳电池等领域[5]。 实现ZnS材料n型和p型的高效稳定掺杂,是其在短波长光电器件领域应用的关键。然而,ZnS是一种极性较强的宽禁带半导体,容易产生比较多的施主性本征缺陷(如空位S)。从能带结构看,ZnS的价带顶较低,通常受主能级较深,加上本征施主性缺陷的补偿,高效稳定的p型掺杂不易实现。此外,ZnS的导带底比较高,通常施主能级也偏深,实现低阻n型ZnS掺杂也比较困难。正是由于宽禁带半导体掺杂的这种不对称性和强烈的自补偿效应,使得低阻n型和p型ZnS掺杂非常困难,强烈制约了ZnS在短波长光电器件领域的应用,目前仍没有很好的解决方案[6]。 在太阳电池领域,ZnS主要应用在铜铟镓硒(CIGS)薄膜太阳电池中。近年来,国内外研究人员发现,ZnS可以替代CdS,在CIGS薄膜电池中充当缓冲层,且更有助于提高电池的光电转换效率和太阳电池寿命[7]。Cd、Zn同属IIB 族元素,其化学性质相似,导致其S化物ZnS和CdS的性质也极为相似,但是它们之间性质最明显的不同在于ZnS的光学带隙为3.7eV,高于CdS的2.4eV;从能带匹配的角度说,CdS无疑更具优势,但由于ZnS的禁带宽度更高,因此以ZnS为缓冲层的薄膜在厚度相同的情况下,将比CdS薄膜具有更高的光学透

磁控溅射问题及解决

磁控溅射镀膜工艺六大常见问题点及改善对策: 1.膜层灰暗及发黑 (1)真空度低于0.67Pa。应将真空度提高到0.13-0.4Pa。 (2)氩气纯度低于99.9%。应换用纯度为99.99%的氩气。 (3)充气系统漏气。应检查充气系统,排除漏气现象。 (4)底漆未充分固化。应适当延长底漆的固化时间。 (5)镀件放气量太大。应进行干燥和封孔处理 2.膜层表面光泽暗淡 (1)底漆固化不良或变质。应适当延长底漆的固化时间或更换底漆。 (2)溅射时间太长。应适当缩短。 (3)溅射成膜速度太快。应适当降低溅射电流或电压 3.膜层色泽不均 (1)底漆喷涂得不均匀。应改进底漆的施涂方法。 (2)膜层太薄。应适当提高溅射速度或延长溅射时间。 (3)夹具设计不合理。应改进夹具设计。 (4)镀件的几何形状太复杂。应适当提高镀件的旋转速度 4.膜层发皱、龟裂 (1)底漆喷涂得太厚。应控制在7—lOtan厚度范围内。 (2)涂料的粘度太高。应适当降低。 (3)蒸发速度太快。应适当减慢。 (4)膜层太厚。应适当缩短溅射时间。 (5)镀件温度太高。应适当缩短对镀件的加温时间 5.膜层表面有水迹、指纹及灰粒 (1)镀件清洗后未充分干燥。应加强镀前处理。

(2)镀件表面溅上水珠或唾液。应加强文明生产,操作者应带口罩。 (3)涂底漆后手接触过镀件,表面留下指纹。应严禁用手接触镀件表面。 (4)涂料中有颗粒物。应过滤涂料或更换涂料。 (5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。应更换除尘器,并保持工作环境的清洁 6.膜层附着力不良 (1)镀件除油脱脂不彻底。应加强镀前处理。 (2)真空室内不清洁。应清洗真空室。值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。 (3)夹具不清洁。应清洗夹具。 (4)底涂料选用不当。应更换涂料。 (5)溅射工艺条件控制不当。应改进溅射镀工艺条件

JGP磁控溅射仪操作步骤

JGP –650型双室超高真空多功能磁控溅射系统操作步骤 一、开机前的准备工作: 1、开动水阀,接通冷水,检查水压是否足够大,水压控制器是否起作用,保证水路畅通。 2、检查总供电电源配线是否完好,地线是否接好,所有仪表电源开关是否处于关闭状态。 3、检查分子泵、机械泵油是否到标注线。 4、检查系统所有的阀门是否全部处于关闭状态,确定磁控溅射室完全处在抽真空前封闭状态。 二、换样品过程: 1、先打开真空显示仪,检查溅射室是否处于真空状态,若处于真空状态,首先要放气,室内的大气压与外界的大气压平衡,打开溅射室内的照明灯,看看机械手是否放在靶档板下面,定位锁是否已经抽出时(拔起),才能决定把屏蔽罩升起。 2、按动进步电机升开关,让屏蔽罩缓缓升起,到合适位置为止,当屏蔽罩升到最高位置时,进步电机升开关将不起作用。 3、换样品(靶材)时:松动螺丝,用清洗干净的镊子小心取出靶材,把靶材放到干净的容器内,以防污染;用纱布沾高纯酒精把溅射室清洗干净;放靶材时,一定要让靶材和靶面接触(即靶材必须是一平面,不平者勿用),把靶材放在中心(与靶的边界相距2-3mm.一定要用万用表来测量靶材(正极与靶外壁(负极)要断开,否则将要烧坏;然后把基片放在上面的样品架上(松动螺丝,把基片放在样品架上,然后上紧螺丝)。把样品架卡在转盘上。 4、按动进步电机降开关,让屏蔽罩缓缓下降,当下降到接近溅射室时,一定要把定位仪贴在屏蔽罩壁上,可以用左手按进步电机降开关,右手推动屏蔽罩使其安全降下来,注意千万不要使溅射室上真空圈损坏,一旦真空圈损坏,整个溅射室就无法抽真空,仪器不能正常工作。 三、抽真空过程 1、换好样品后,磁控溅射室、进样室、和分子泵都处于大气状态,插板阀G2

射频磁控溅射详细操作流程与真空系统

磁控溅射操作流程 1、开循环水(总阀、分子泵),放气(两个小金属片打开;旁抽阀;V6)放完气后关闭; 2、开总电源,开腔装样品,开机械泵,抽到10pa以下; 3、开电磁阀,抽到10pa以下,开分子泵(按下绿色start按钮,分子泵加速,显示为400) 时,关旁抽阀,再打开高阀;开溅射室烘烤,将电压调节至75V,烘烤时间为1h; 4、抽到1·10-4pa后,抽管道(缓慢打开V1截止阀,V2阀);打开质量流量计电源,待示 数稳定后,将阀开关拨至“阀控”位置,再将设定旋钮向右调节至最大,待示数变为“0” 时,将阀门开关拨至“关闭”,同时将设定旋钮设定为0; 5、开气瓶(一定要确定阀开关处于“关闭”位置,调节分压阀数值约为0.1mp;待质量流 量计示数稳定后,将阀开关拨至“阀控”位置,调节到所需设定值,如20sccm; 6、开A靶、水冷盘、其他靶的循环水; 7、慢慢讲高阀回调,调节气压至1~3pa,起辉(开总控制电源、A靶射频电源、A靶),调 节功率至60w,(A靶处的tune、load先处于WN状态,要进行调节时,应调节至Auto),调节tune为50%,Load值为10%~20之间(调节后需调回WN状态);再按R.F起辉; 8、将高阀门调至最外,待气压稳定之后预溅射15分钟,在此期间要对齿轮挡板进行定位(先 将小刚圈上提右转放下,然后向外旋转“马达”旁边的齿轮,直到听到“啪”的一声,最后左转上提小刚圈); 9、打开电脑后面右边的三个电源开关,开电脑; 10、实验。调节好实验所需压强、功率、气体等,设置“样品位置”,“样品编号”,“挡板位 置”(样品位置以A靶为标准,样品编号即为此时位于A靶上方样品的编号,挡靶位置在装挡板时就已位于B靶处,所以挡板默认为B靶所在位置,所有参数、位置设定好后即可开始镀膜; 11、每次镀膜完,要对其参数进行设定—应用—运行,待齿轮旋转不动时,用机械手推动挡 板至B靶所在位置(上中下三孔对齐),—确定—两个360°—样品放在E靶—挡板放在B靶—开始。 12、镀膜结束。先关闭电脑,然后关闭R.F,将功率调节至0,依次关闭三个电源(最后关 总溅射电源),关闭气瓶总阀,调节气体质量流量计至最大,待其示数变小为零;关闭分压阀,待流量计示数变为零,关闭质量流量计,依次关闭V2、V1阀,随后关闭高阀,按分子泵Stop键,待其示数降为零,再关闭分子泵电源; 13、依次关闭电磁阀、溅射室机械泵、设备总电源,关闭所有循环水。

磁控溅射技术研究进展

磁控溅射技术研究进展 薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。 1 磁控溅射技术原理 溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。图1所示为平面圆形靶磁控溅射原理。 磁控溅射技术得以广泛的应用是由该技术的特点所决定的。可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。随着磁控溅射技术的发展,发展起了反应磁控

磁控溅射操作流程及注意事项

磁控溅射操作流程及注意事项 一、打开冷却水箱电源()注:水箱电源是设备的总电源。,水压控制器是否起作 用。0.1MPa)检查水压是否足够大(二、放气 2.1 确认磁控溅射室内部温度已经冷却到室温; 2.2 检查所有阀门是否全部处于关闭状态; 2.3 磁控溅射室的放气阀是V2,放气时旋钮缓慢打开,这可以保证进入气流不会太大; 2.4 放气完毕将气阀关紧。 三、装卸试样与靶材 3.1 打开B柜总电源(在B9面板上),电源三相指示灯全亮为正常。 3.2 提升或降落(B4“升”或“降“)样品台要注意点动操作,不要连续操作。 3.3 装卸试样与靶材要戴一次性薄膜手套,避免油污、灰尘等污染。 3.4 磁控靶屏蔽罩与阴极间距为2-3毫米,屏蔽罩与阴极应该为断路状态。 3.5 装载试样要注意试验所用样品座位置与档板上溅射孔的对应,并记录样品座的编号及目前所对应的靶位。 3.6 降落样品台时要注意样品台与溅射室的吻合,并用工业酒精擦洗干净样品台与溅射室的配合面。 四、抽真空 4.1 确认D面板“热电偶测量选择”指示“Ⅰ”时; 4.2 确认闸板阀G2、G4已经关闭; 4.3 打开B4上“机械泵Ⅰ”,再打开气阀V1,开始抽低真空。 4.4 打开B3面板的电源开关,同时关闭“复合”键。可以从B3-1处观察低真空度。(低真空测量下限为0.1Pa)。当真空度小于5Pa可以开始抽高真空。 4.5 关闭气阀V1,打开B4上“电磁阀Ⅰ”(确认听到响声表示电磁阀已开) 4.6 打开B8面板的磁控室分子泵电源,按下“START”键,按下FUNC/DA TA键,数字开始逐步上升,等大于H100.0后打开闸板阀G1,随后分子泵速上升并稳定到H400.0。 4.7 磁控室的高真空度在B2面板显示,不要一直开着高真空的测量,也不要频繁开关, 通常每隔1-2小时可打开观察一次,等示数稳定后再关闭(一般不超过3分钟)。 五、充气 5.1确认高真空度达到了-4、-5的数量级,在充气之前必须关闭高真空计; 5.2 打开A1面板上MFC电源,预热3分钟; 5.3 稍关闭闸板阀G1到一定程度,但不要完全关紧 5.4 打开V4、V6(若是二路进气,V5应和V6同时打开)阀门 5.5 将控制阀扳到“阀控“位置 5.6 打开气瓶阀门,稍旋紧减压阀至压力示数为0.1MPa即可; 5.7 调节MFC阀控的设定(一般在30左右),再进一步关紧闸板阀使得低真空(B3-1)读数接近所需的溅射压强,然后通过微调MFC阀控得到所需的溅射压强。

反应磁控溅射技术的发展情况及趋势

书山有路勤为径,学海无涯苦作舟 反应磁控溅射技术的发展情况及趋势 综述了反应磁控溅射技术的发展情况。分析了模拟反应磁控溅射的Berg 经典模型;详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理及过程;分析了消除迟滞效应和打火现象的各种方法并提出个人的观点;展望了反应磁控溅射技术的发展趋势。 反应磁控溅射是具有一定能量的离子(Ar+)溅射金属或合金靶表面,被溅射出的金属原子和反应气体发生化学反应在基体上形成化合物薄膜。反应磁控溅射技术是目前科研和生产中制备化合物薄膜最常用的方法,能沉积不同种类的化合物,如:氧化物、氮化物、碳化物、氟化物和砷化物等。反应磁控溅射技术的优点是:借助精密的监控设备能快速沉积所需化学配比的化合物薄膜;金靶容易提纯和加工,因此靶材的成本低且所得薄膜的纯度高;金属靶具有良好的热传导性,因此靶的冷却效果较好,即靶能承受较高功率的溅射;反应磁控溅射沉积薄膜时,基体的温度较低(小于3e)。理想的反应溅射应该是在基体上沉积化合物,但是在实际溅射过程中,不仅在基体上沉积了化合物薄膜,同时靶材表面也会和反应气体发生化合反应形成化合物覆盖层,即所说的靶中毒。如反应溅射过程中的不稳定性是较复杂的非线性关系,为了预知和减少前期工艺优化的工作量,于1987 年由Berg 带头的课题组提出了一个依反应气体平衡为依据的模拟反应溅射过程的模型。该模型简单可靠,后来Berg 课题组还有其他国家的研究人员对该模型进行了深入的研究和发展,使模拟结果更趋近于实际的溅射过程。本文详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理,分析了消除迟滞效应和打火现象的各种方法并提出个人的观点,分析了Berg 模型,展望了反应磁控溅射技术的发展趋势。

磁控溅射操作规程

磁控溅射设备操作规程 开机过程 1.开电柜A水阀(注意有两水路,阀门上标签为电柜左(A),电柜右(B)). 2.开电柜A总控制电源. 3.开机械泵,打开旁抽阀V 1 ,开低真空计电源,用机械泵抽至机械泵抽压极限(或5Pa 以下). 4.关闭旁抽阀V 1.开闸板阀G,开前级阀(电磁阀DF 1 ) 5.观察低压真空计示数是否稳定(稳定时即为系统不漏气),待稳定后开分子泵(KYKY) 总电源. 6.观察分子泵显示窗口为闪动的450Hz时,按下分子泵启动按钮,分子泵加速. 7.当分子泵转速稳定,窗口显示为450Hz后,按下高真空计DL-7电源按钮,观察真 空室真空度,等待达到溅射所需的本底真空度(一般为10-4Pa). 溅射过程 1.关闭高真空计DL-7(!进气之前一定要关闭,否则高真空计会被损坏),然后打开充 气阀V2,再打开截止阀V5. 2.开氩气瓶总阀,开减压阀,观察其指示小于1.5格(三个大气压)即可. 3.开质量流量计电源,将MFC1打到阀控位 4.关小闸板阀G,此调节过程配合旋动旋钮调节气体流量,使低压真空计示数(直 流溅射一般为2~5Pa之间,射频一般在5-8Pa之间). 5.开电柜B水阀,开电柜B总控制电源. (1).直流溅射:开电柜B中相对应靶位直流溅射电源,调节功率使使靶上方氩气电离启辉.旋转功率调节旋钮,使溅射功率达到所需要的数值.待板压和板流稳定后,转动挡板和转盘,转动挡板和转盘到相应的靶上,开始溅射并计时.溅射完毕后,将功率调节旋钮逆时针调到最小,按下停止按钮.然后关闭电柜B的总控制电源. (2).射频溅射:按下电柜B中射频功率源的Uf按钮,电子管预热5-10分钟.按下Ua的开始按钮,通过Ua粗调和细调增大板压,使靶上方氩气电离启辉.调节SP-II 型射频匹配器的C1,C2(调节一个时,另一个不动),使反射功率最小,驻波比小于1.5.增大Ua,调节匹配器的电容使反射功率始终最小,如此反复调节使溅射功率达到所需要的数值.预溅射几分钟后,转动挡板和转盘到相应的靶上,即可开始溅射. (3).溅射完毕后,将Ua调到最小,按下Ua的停止按钮.等待几分钟后按下Uf按钮.然后关闭电柜B的总控制电源. (如果需要给衬底加热,方法同退火过程的5,6步骤). 靶挡板和转盘的转动:可通过电脑上的控制软件或手动转动.注意转盘和样品挡板同时转动前一定要检查定位插销,不能使转盘被卡住;只对样品进行转动操作前,需要将样品挡板卡住;为了不使加热电缆缠绕,不能大角度转动转盘. 6.溅射完毕后,关闭氩气的过程:先关气瓶总阀,后关减压阀,再将MFC1打到关闭, 待流量计显示为0后关闭流量计电源.先关V5后关V2,开大闸板阀G,让分子泵将真空室抽至高真空.

等离子增强磁控溅射技术介绍

第二章等离子增强磁控溅射沉积技术 等离子增强磁控溅射(Plasma Enhanced Magnetron Sputtering)沉积技术,简写为PEMS,是物理气相沉积(PVD)技术的一种。它与传统磁控溅射(Conventional Magnetron Sputtering,简写为CMS)的区别在于其运用独立的电子发射源达到等离子体增强的效果,制备出涂层的致密度、硬度和韧性等均有显著提高。运用PEMS技术可以制备传统磁控溅射技术的所有涂层,如TiN,CrN,TiAlN,TiCN 等[]。 2.1 PEMS技术的原理 PEMS技术结合传统磁控溅射技术的优点,在其基础上做了改良,图2.1为PEMS技术的原理图和实际镀膜工作时的图片。如图2.1(a)所示,PEMS真空室的尺寸为700×700×700mm3,左右两边分别有一个圆柱形金属靶,尺寸为1.5cm ×φ170mm。在真空室的中央,有一个旋转的工作台便于悬挂工件,工作台旋转的速度为10~20rpm,钨丝的长度为20cm。 图2.1 (a)PEMS技术的工作原理图(b)实际镀膜工作图 PEMS技术应用了一个电子发射源来产生更多的电子,一般选用加热的钨丝或者空心阴极管作为电子发射源。从实际工作图2.1(b)的下方可以隐约看见耀眼的光线,即钨丝在加热状态发出的光线。当真空室内气压到达几个毫托,在钨丝和真空壁之间施加直流放电电压(DC Discharge Power Supply),即:真空壁接地,钨丝上为恒定负偏压(~-100V)。同时,在钨丝上加载交流电(电压20~30V,电流40~45A),钨丝被加热后向真空室内释放电子,在放电电压的作用下,电子被加速向真空壁飞去,由于真空室内存在大量的气体分子(Ar,TMS,N2等),电子与中性气体分子(原子)发生碰撞,导致气体电离,并最终使真空室内产生等离

相关文档
最新文档