A陶子-数学模型--食品安全的抽检问题论文2

A陶子-数学模型--食品安全的抽检问题论文2
A陶子-数学模型--食品安全的抽检问题论文2

食品安全的抽检问题

摘要

食品的质量和卫生问题是关系到民生的大问题,因此,对食品的检查显得非常重要。本文结合实际,应用AHP方法、分层抽样和线性目标规化方法,建立了集时间、费用和效果为一体的数学模型,具体如下。

对于问题一,我们首先将主要食品进行分类,然后将影响食品安全的因素主要分为生物性污染、化学性污染、物理性污染三大类,并将这三类污染所造成的主要危害归纳为七类,接着采用AHP法对问题进行定量分析,最后通过一致性检验并得出其危害性的大小,得到结果细菌危害最严重,食品添加剂导致的危害次之等。

对于问题二,针对部分主要产品,我们先采用了分层抽样的方法对不同品牌不同批次的产品进行抽检,建立了样本分配率、样本方差、总体抽样率、分层抽样率等函数方程,然后对上一步所抽到的批次利用线性目标规划的方法,建立了集时间较短、成本费用较低和抽样效果较好的抽检模型——线性目标规划模型,并利用统计学原理对检测误差进行分析。最后,我们根据模型针对乳制品中的酸奶进行模拟检验,检验的结果误差百分比为4.24%<5%,可靠性较高。

对于问题三,我们利用问题二所建立的模型制订了一种较为合理的抽检方案(根据假设总共抽检79个批次,每个批次抽检2个项目)。然后,我们进行了可靠性分析,抽检的误差百分比为1.15%<5%,可靠性较高。

对于问题四,它实际是在问题三的基础上,对面粉进行多次跟踪抽检。我们对问题二所建立的模型进行了改进,引入新的变量建立函数关系,并运用MATLAB 优化工具箱进行求解,得出了最佳的抽检策略和抽检数量(结果为跟踪抽检3次,共抽检113个批次),所得结果可靠性较高、成本较低,且工时比较少,用计算机进行模拟检验时效果比较乐观。

最后,我们对模型的优缺点进行了评价,讨论了其推广应用的价值,并主管部门写了一份报告,提出了一些解决问题的可行性建议,可为主管部门和市民提供一些参考。

关键词:AHP法,分层抽样,目标规划、统计分析、可靠性

一问题的重述

改革开放三十年来,我国人民生活水平在不断地提高,食品安全和卫生问题越来越受到人们的关注。近几年来,先后出现了苏丹红、瘦肉精、三聚氰胺等事件,以及各种不利于健康的食品添加剂、强化剂问题的出现,食品安全和卫生的检测已成为全社会,乃至政府有关部门重点关注的问题之一。

食品的质量和卫生问题涉及到原材料的使用、生产加工、运输与贮存、流通与销售等环节,在每一个环节上出现差错,都会导致食品出现安全和卫生问题,食品质量和卫生的检测工作在实际显得非常重要。但是,由于食品的种类、品牌和批次繁多,从生产加工到销售食用中间环节复杂,质检部门不可能对所有食品做到全面的质量检测,一般只能做一定的抽检。当然,对食品进行抽检也需要一定人力、物力和财力(即成本费用),抽检的越多检测效果就越好,但需要的时间就越长,其成本费用也就越高。为此,应该如何抽检,既能保证较好的检测效果,又能节省时间和成本费用?请根据实际情况,建立数学模型分析研究下列问题:

(1)根据主要食品的分类,试分析影响各类食品安全的因素,对其可能的危害性做出定量的比较评估分析。

(2)针对部分主要食品,结合实际建立合理的抽检模型,给出检测误差(即检测的可靠性)分析的方法,并对模型进行模拟检验。

(3)面粉是我国中北部地区主要的主食原材料,不妨就已推广食用的“营养强化面粉”抽检问题进行讨论,“营养强化面粉”的配方标准如表1所示。假设某地区现有12个品牌的营养强化面粉产品,每个品牌每月将有不少于60个批次(即同一企业、同一条生产线、同一批投料、同一班次生产的产品为1个批次)的产品在市场上销售,质检部门要做一次全面的质量检查,请你帮助制订一种合理的抽检方案,并分析其检测的可靠性。所需要检验项目、标准、成本和工时如表2所示。

(4)针对问题(3),如果质检部门需要连续进行多次跟踪抽检,请你给出相应的抽检策略和最佳的抽检数量,使其检测可靠性尽量高、成本尽量低、工时尽量少,并用计算机进行模拟检验。

(5)请根据你们的研究,深入分析食品安全存在的隐患和根源,并提出有效可行的解决问题办法和建议,可供主管部门和市民参考。

二模型的假设

1、假设模型求解过程中所用的数据都是合理的;

2、假设同一类食品每次抽检的项目数相同;

3、假设不考虑抽检人数的限制;

4、假设每天抽检的最大时间为法定工作时间8小时,一个月工作22天;

5、假设抽检的最大费用有限制;

三符号约定

()

st

V-----总体均值L的估计量(st表示分层);

i

W------------层权(/i L L),i=1,2…N;

L-------------抽样系统中总的生产批次;

i

L------------第i层生产批次数;

i

L----------第i层的样本均值;

i

l-------------第i层抽取的样本量;

2

i

S------------第i层的方差;

i

f-------------第i层的抽样比(i l/i L);

α-------------为L在1-α置信水平下的绝对误差限;

u

α

------------标准整天分布的双侧分位数;

i

c-------------第i层每个样本单位的平均费用;

i

t-------------第i层每个样本单位的平均检验工时;

C-------------固定费用;

ξ-------------每个抽检批次的检查项目;

Max

T----------抽检的最长时间;

Max

P-----------抽检的最大费用;

Max

ξ-----------抽检的总项目数;

t------------每次每项抽检的平均时间;

p-----------每次每项抽检的平均费用;

四问题的分析与模型的建立

4.1对问题一的分析与模型建立

4.1.1问题一的分析

为了分析与比较影响食品安全因素所产生的危害程度,首先我们将主要食品分为:肉制品、乳制品、酿造食品和蛋白质含量较高食品等;接着分析确定影响食品安全的因素,我们从微生物污染、化学污染和物理污染三方面进行分析与确定;然后对于各因素影响食品产生的危害,其一是由微生物污染导致的细菌危害、病毒危害和寄生虫危害;其二是由化学污染引起的食品添加剂(如非食用添加剂)导致的危害、环境污染(如农药,包括灭鼠药和兽医用药)导致的化学危害和天然存在的化学危害;其三是由物理性污染引起的重金属中毒等危害。

因此,问题一就可以归结为各因素影响食品导致的危害对食品质量的影响权重问题。解决这类问题首先要统计分析各类影响指标的数值特征。然后再对其进行归一化处理,并利用层次分析法对其权重进行赋值。最终得到各因素对食品安全的影响排名。

4.1.2问题一的模型建立

(1)根据影响食品安全的各因素与危害间的关系,我们建立的不完全层次分析算法的基本结构图如下:

(2)根据对问题一的分析,我们建立了如下成对比较矩阵

假设要比较某一层的n个因素

n

c

c

c

2

1

,对上一个因素O的影响,取两个因素i

c和

j

c,用

ij

a表示

i

c和

j

c对o的影响之比,全部比较的结果可用成对比较矩阵:

?

????

???????=nn n n n n a a a a a a a a a A 2

1

22221

11211,ij ji

ij a a a 1,0=>

表示,并称以上矩阵为正互反矩阵。 (3)一致性检验及权重向量的确定

成对比较矩阵通常不是一致阵,为了能用它的最大特征根λ的特征向量作为被比较因素的权向量,其不一致程度需要控制在一定的范围内。计算方法如下:

定义:一致性指标1--=n n CI λ;一致性比率为RI

CI

CR =;本文中3=n ,对应的

58.0=RI .

当1.0

λ的特征向量),(21n w w w =ω即为相应的权重向量。

4.2问题二的分析与模型建立 4.2.1问题二的分析

从问题二的题设我们知道,为了建立合理的抽检模型,我们首先需要对现有的统计信息进行定量分析。由于问题二的求解几乎需要考虑文中提供的所有已知信息,所以为了简化数学模型的计算复杂度,我们可以在某些直观问题上进行简单的定性分析。例如,原文附录中给出了主要食品和主要抽检项目,为此我们可以主观上认为我们要考虑的部分食品就是附录1中的部分主要食品,要抽检的项目就是附录2中给的8个项目。

在基本确定主要食品和抽检项目后,首先我们利用分层抽样模型确定这些主要食品中每种品牌所要抽检的批次数的最优值,然后,我们利用法定的工作时间确定最大抽检时间和费用。最后计算出每种品牌中要抽的批次数及每个批次的药抽检的项目数,对其优劣进行综合评价。 4.2.2问题二的模型 (一)分层抽样

通过上述对问题二的分析,我们利用分层抽样法建立下列函数关系: 设整个抽样为一个系统L ,系统中含有i L 种品牌,每个品牌的生产批次数为i l ,

则总体均值-

st L 的估计量:2

2

11()()(1)N N

i i i i i st i i i

S V V W l W f l L ====-∑∑ (1)

第i 层的方差: 2

21

()/(1)i

L i

ij i i j S L L L ==--∑ (2)

由误差知识可得:

(3)

2)()(α

u

d

st V L =-

联立上述各式可得:

2

22

1

(1)()

N

i

i i

i i

S d

W f

l u

α

=

-=

∑(4)

调查费用函数:

1

()*

N

i i i

i

C C c t l

β

=

=++

∑(5)各层样本量的最优分配:

(6)由于每个样本的调查费用相同,故上式可以化为

1

*

i

i N

i i

i

S

f f

W S

=

=

(7)联立(4)和(7)可得,总体抽样率为

2

1

22

1

(*)

*()

N

i i

i

N

i i

i

W S

f

d

W S L

u

α

=

=

=

+

(8)也可得到分层抽样率为

1

22

1

*

*()

N

i i

i

i i N

i i

i

W S

f S

d

W S L

u

α

=

=

=

+

(9)(二)模型的建立——线性目标规化

在以上函数关系以及抽检费用有限制的条件下,模型以抽检项目数最多为目标函数所建立的模型如下:

1

*/

i

i i

i

l

l

W S

=

=

S.T. 1

11//0,0,,0n

i i i N

i i Max i N

i i Max i Max i i

Max Max Max MaxZ L f L f T t L f P p L f T P ξ

ξξξξξ====?≤???≤???

<≤??>??>????

∑∑∑ (10) (2)检测误差(即检测的可靠性)分析的方法

:

1

x x N

i

i X

N

μσμ==

=

=

∑ (11)

4.3问题三的分析

面粉是一种十分重要的原材料,因此对面份的抽检具有代表性。根据题目的要求,质检部门要做一次全面的质量调查,其抽检方案是问题二模型的具体应用。所以,我们只需将问题二建立的模型具体化,得出具体的抽检方案,并对检测的可靠性进行分析即可。

4.4问题四的分析与模型的建立 4.4.1问题四的分析

对于问题四,它其实是在问题三的基础上,对面粉的质量进行多次跟踪抽检,我们对问题二所建立的模型进行了改进,引入新的变量时间't ,建立新的函数关系,并运用MATLAB 优化工具箱进行求解,得出了最佳的抽检策略和抽检数量,使检测可靠性较高、成本较低,且工时比较少,用计算机进行模拟检验时效果比较乐观。

4.4.2问题四的模型建立

由多次跟踪抽检可知:抽检批次数与时间是成反相关的,故我们可以作L 与t 的函数:

1

()n L L t t

=

,分别使抽检的效果最好、费用最低、时间最少。目标函数为: '()MaxZ L t ξ=∑ '()MinP L t p ξ=∑

'

()

MinT L t tξ

=∑

五模型的求解

5.1模型一的求解

5.1.1确定准则层对目标层的权重向量

A=

135

1/313

1/51/31

??

??

??

??

??

,λ=3.0385,权重向量为w=(0.6370,0.2583,0.1047)

5.1.2确定方案层对准则层的权重向量

1

B=

135

1/313

1/51/31

??

??

??

??

??

,2

B=

137

1/315

1/71/51

??

??

??

??

??

,3

B=[1].

由上表中k

CR<0.1可知矩阵

1

B、

2

B、

3

B都通过了一致性检验。

5.1.3确定影响因素的权重向量

组合权重:

ω(i)=(0.6370*0.6370,0.2583*0.6370,0.1047*0.6370,0.6491*0.2583,0.2790 *0.2583,0.0719*0.2583,1*0.1047)=(0.405769,0.1645371,0.0666939,

0.16766253, 0.0720657, 0.01857177,0.1047)

=(0.4058,0.1645,0.0667,0.1677,0.0721,0.0186,0.1047)

CR=(0.01925*0.6370+0.03245*0.2583+0*0.1047)/(0.58*0.6370+0.58*0.2583+ 0*0.1047)=0.03976<0.1,通过了组合一致性检验。

5.1.4排名

(1)层次抽样模型:

主要食品包括肉制品、乳制品、酿造食品及高蛋白食品等,针对部分主要食品进行模拟抽检。首先针对部分主要食品——乳制品中的酸奶讨论,进行分层。第一层为:蒙牛、伊利、光明、百万庄园、三元、娃哈哈六个品牌的批次数,然后对每层随机抽样,得到样本。分层抽样图如下:

(2)部分参数的假设:

①各品牌生产批次序列为:()()

123456

,,,,,90,80,60,75,65,70

L L L L L L=

②置信度取95%,根据对其他参数的讨论,按照ISO质量管理体系和AQL抽样标准得到实际中抽检概率在8%~10%之间能够达到抽检效果,标准差h

S取值范围在0.037~0.042之间,并在此区间内等距选取六个数进行计算,六个数分别为

()() 123456

0.037,0.038,0.039,0.040,0.041,0.042

S S S S S S=

,,,,,

,d取0.01。

由标准正态分布表查表可知:uα=1.64。

其他参数的计算:

N =123456

L L L L L L

+++++

9080607565

=+++++

=440 (批)

所以由

i

i

L

W N

=

有:

1

909;

44044

W==

2

802;

44011

W==

3

603

44022

W==

4

7515;

44088

W==

5

6513;

44088

W==

6

707

44044

W==

(3)分层抽样率的计算

假设t=1.5,p=60,Pmax=6000,Tmax=176,

Max

ξ=11

项目数为2.5641≈3项。

误差:

1

x

x

N

i

i

X

N

μ

σ

μ=

=

=

=

1

N

i

i

X

N

μ=

=

=440/6=73.3

x

σ=

==

=10.8013

x

μ=

=1.6530

误差百分比:1.6530/39=4.24%<5%

权重

11335567199

11335567199

1/31/3115/35/327/31/333

1/31/3115/35/327/31/333

1/51/53/53/5116/57/51/59/59/5

1/51/53/53/5116/57/51/59/59/5

1/61/61/21/25/65/617/61/63/23/2

1/71/73/73/75/75/76/711/79/79/7

11335567199

1/91/91/31/35/95/92/37/91/911

1/91/91/31/35/95/92/37/91/911

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

1234567891011

(,,,,,,,,,,)

w w w w w w w w w w w=(0.2175,0.2175,0.0725,0.0725,0.0435,0.0435,0.0362,0.0311,0.2175,0.0242,0.0242)

排序:三聚氰胺,维生素A,维生素B11,维生素B1、维生素B2、铁、锌、维生

素B5、钙、水分、蛋白精、硫氰酸钠

随及抽检三个项目,前三项抽检概率最大,分别为三聚氰胺,维生素A,维生素B11..

5.3 问题三的求解与结果分析

5.3.1 问题三的求解

部分参数的假设:

各品牌生产批次序列为:

()() 123456789101112

,,,,,,,,,,,90,80,60,75,65,70,80,70,65,72,82,71 L L L L L L L L L L L L=

②置信度取95%,d取0.01。根据对其他参数的讨论,按照ISO质量管理体系和AQL抽样标准得到实际中抽检概率在8%~10%之间能够达到抽检效果,标准差h

S取值范围在0.0325~0.0365之间,并在此区间内选取12个数进行计算,12个

数分别为

()

() 123456789101112

,,,,,,,,,,,

0.0325,0.033,0.0335,0.034,0.034,0.0345,0.0345,0.035,0.035,0.355,0.036,0.0365

S S S S S S S S S S S S=

(5)其他参数的计算:

N =

123456789101112

L L L L L L L L L L L L

+++++++++++

908060756570807065728271

=+++++++++++

=880(批)

所以由i

i

L

W N

=有:

1

909;

88088

W==

2

801;

88011

W==

3

603

88044

W==;

4

7515;

880176

W==

5

6513;

880176

W==

6

707;

88088

W== 7

801;

88011

W==

8

707;

88088

W==

9

6513;

880176

W== 10

729;

880110

W==

11

8241;

880440

W==

12

7171;

880880

W==

用MATLAB对函数进行优化可得:

项目数为1.0127≈2项。

误差:

1

N

i

i

X

N

μ=

=

=880/12=73.3

x

σ=

=

=8.4782

x

μ=

=0.9106

误差百分比:0.9106/79=1.15%<5%

权重:

λ=10,CI=0,CR=0,通过了一致性检验(程序见附件6)

12345678910

(,,,,,,,,,)

w w w w w w w w w w=(0.2779,0.2779,0.0926,0.0926,0.0556,0.0556,0.0463,0.0397,0.0309,0.0309)

排序:三聚氰胺,维生素A,维生素B11,维生素B1、维生素B2、铁、锌、维生素

B5、过氧化苯甲酞、钙、水分

随及抽检三个项目,前三项抽检概率最大,分别为三聚氰胺,维生素A,维生素B11 5.3 问题四的求解与结果分析

用MA TLAB(程序见附件7)做出函数当n=1、n=2、n=3、n=4的图形,如图示:

由图形可得:

当取't=4时,即跟踪抽检四次时,

当取't=3时,即跟踪抽检三次时,

由表中内容可得:L与't的函数为'

2

1

()

L

L t

t

,共需跟踪抽检三次,共抽检113个批次。

0246810

0246810

02468100246810

六模型的评价

6.1 模型一的评价

模型一采用的AHP方法是一种定性与定量相结合的、系统的、层次化的分析方法,能够解决涉及到社会、经济、人文等因素的决策、评价、分析、预测等问题。但这种方法同样具有局限性,它只能从原有方案选优,不能生成新方案,且它的判断结果都是比较粗糙的,不适于精度要求很高的问题,另外模型中的成对比较矩阵人的主观因素的作用较大,可能有时难以为众人接受。

6.2 模型二的评价

模型二采用的是分层抽样的方法,它对不同品牌不同批次的产品进行抽检,建立了样本分配率、样本方差、总体抽样率、分层抽样率等函数方程,再次利用统计学原理对检测误差进行分析。这种抽样调查的方法适用性特别强,对任何特征分层来比较明显的系统均可以采用这种方法进行抽样。而且这种可靠性较高。

七模型的推广

本文中所建立的模型不仅对于解决题目中的问题具有很强的实用性,而且具有很好的推广性。例如,本文运用的AHP方法适用于其他类似一类选优排序问题、合理安排住房问题等都具有很强的适用性。本文针对问题二所建立的模型具有较强的普适性,能够对各类主要食品进行精确度比较搞的抽检,而且对批量生产的各种零件、衣服等的质量抽检提供了一种较为简单高效的方法,具有较强的研究意义。

八解决问题的可行办法和建议

近年来,我国食品工业始终保持持续快速的增长趋势。据有关资料介绍,我国食品安全状况得到有效改善和提高。具体表现在国家抽检结果显示,2008年上半年我国粮食加工品、副食调味品、肉制品、酒类、饮料饮品、休闲食品33类3288家企业生产的3813种食品抽样合格率为98.4%,同比提高4个百分点,比2006年提高近9个百分点。

但是,目前我国食品安全状况距离广大群众的要求还存在不小差距,主要存在五大问题:

一是菌落指数超标和农药残留超标;

二是存在违法滥用非食品用添加剂情况;

三是部分企业食品安全保障管理体系不完善,检测系统不健全,易发生质量事故;

四是食品流通领域经营秩序不规范,假冒伪劣食品屡禁不绝;

五是消费者食品安全知识和维权教育亟待加强。

经过分析,我们发现食品安全问题存在的原因主要有:

1 、生产经营者法制意识淡薄是产生食品安全问题的根源。如个别经营户

见利忘义,为一些劣质食品提供了可乘之机。比如食用油、饼干、糕点等到食品国家实行生产许可证制度,但粮油店特别是农村流动经营户大量经销大桶散装油,有的掺杂使假并游击作战,执法部门难以跟踪监管,消费者上当受骗的情况时有发生;

2 、食品安全法律体系结构不科学、有法难依。

3 、食品安全监督管理体制存在弊端,导致对食品安全问题监管不力。比如一些食品经销店,特别是农村小店大量购进小作坊“三无”产品,并销售霉变过期食品;

4 、食品安全标准和监测手段落后,不能适应监管要求。主要表现在食品安全标准技术指标落后,且交叉重叠,质监局制定质量标准,各行业主管部门制定行业标准,卫生部制定卫生标准,难免使食品标准政出多门,指标不统一。食品检测是保障食品安全的重要手段,检验设备、检测人员分散在卫生、质监、农业等部门,难以满足现有的食品安全监督综合执法的需要,如流通领域是食品安全监管的重要环节,执法部门检查食品,识别假冒伪劣商品,基本上是借助经验,依靠眼看手摸,看是否是“三无”产品,很难发现食品内在质量上的问题。近年来虽配备了食品快速检测设备,但检测的食品种类有限,不能适应食品市场监管要求,严重影响了工作效率。

通过查阅相关文献和资料,我们提出一些解决食品安全问题的对策和建议,希望可以为有关主管部门对食品的抽检和广大市民对食品安全问题的了解以及抵制存在安全问题的食品提供一些参考和帮助。

针对食品安全存在的问题,我们应做好以下几方面工作:

1、加强宣传教育,提高全民素质;

2、建立健全和完善食品安全管理法规体系和标准体系;

3、加大监督力度,坚决打击制假售假等违法行为。对一些严重违法违规生产、经营不合格食品的企业及责任人要从严从重予以查处,形成一种高压态势和震慑力量;

4、加强自律意识,充分发挥行为协会的作用;

5、加强部门协调配合,共筑食品安全防线。食品安全是关系到千家万户身体健康的基本民生问题,涉及多个监管部门,任务繁重,需用各部门配合协作,齐抓共管,为此,要树立部门协作意识,加强与各有关部门的沟通协调,通过制度与机制上的创新,达到长效监管的目标,共同推动工作的开展。因为只有这样,才能真正有效的避免食品安全问题对社会造成严重危害。

九参考文献

【1】刘卫国MATLAB程序设计教程,中国水利水电出版社,2006年3月第三版

【2】韩中庚数学建模方法及其应用,高等教育出版社,2005年6月第一版【3】食品安全体系的抽样理论研究,李兵,陈国华 ,杨涤尘 ,朱宁,湖南人文科技学院数学与应用数学系,湖南娄底 417000;2.桂林电子科技大学数学与计算科学学院 ,广西桂林 541004

【4】居民出行调查抽样率模型,石飞,陆建,王炜,葛宏伟(东南大学交通学院,江苏南京210096)

【5】朱德通,优化模型与实验,统计大学出版社,2003年4月第一版

【6】https://www.360docs.net/doc/ec16579205.html,/news/cjxw/200809/t1910903.htm

【7】https://www.360docs.net/doc/ec16579205.html,/question/90633763.html?si=1 【8】https://www.360docs.net/doc/ec16579205.html,/question/120634697.html?si=1 【9】https://www.360docs.net/doc/ec16579205.html,/E_ReadNews.asp?NewsID=277 【10】https://www.360docs.net/doc/ec16579205.html,/wiki/%E9%9A%8F%E6%9C%BA%E6%8A%BD%E6%A0%B7

附录

附件1:>> A=[1 3 5;1/3 1 3;1/5 1/3 1] A =

1.0000 3.0000 5.0000 0.3333 1.0000 3.0000 0.2000 0.3333 1.0000

>> [x,y]=eig(A) x =

0.9161 0.9161 0.9161 0.3715 -0.1857 + 0.3217i -0.1857 - 0.3217i 0.1506 -0.0753 - 0.1304i -0.0753 + 0.1304i y =

3.0385 0 0 0 -0.0193 + 0.3415i 0 0 0 -0.0193 - 0.3415i

>> w=x(:,1)/sum(x(:,1)) w =

0.6370 0.2583 0.1047

(λ=3.0385,权重向量为w=(0.6370,0.2583,0.1047))

1n

CI n λ-=

-=(3.0385-3)/(3-1)=0.01925

RI=0.58

CI

CR RI =

=0.01925/0.58=0.033<0.1,表明A 通过了一致性验证。

>> B1=[1 3 5;1/3 1 3;1/5 1/3 1] B1=

1.0000 3.0000 5.0000 0.3333 1.0000 3.0000 0.2000 0.3333 1.0000

>> [x,y]=eig(B1) x =

0.9161 0.9161 0.9161 0.3715 -0.1857 + 0.3217i -0.1857 - 0.3217i 0.1506 -0.0753 - 0.1304i -0.0753 + 0.1304i y =

3.0385 0 0 0 -0.0193 + 0.3415i 0 0 0 -0.0193 - 0.3415i

>> w=x(:,1)/sum(x(:,1)) w =

0.6370 0.2583 0.1047

(λ1=3.0385,权重向量w1=(0.6370,0.2583,0.1047))

>> B2=[1 3 7;1/3 1 5;1/7 1/5 1] B2 =

1.0000 3.0000 7.0000 0.3333 1.0000 5.0000 0.1429 0.2000 1.0000

>> [x,y]=eig(B2)

x =

0.9140 0.9140 0.9140

0.3928 -0.1964 + 0.3402i -0.1964 - 0.3402i

0.1013 -0.0506 - 0.0877i -0.0506 + 0.0877i

y =

3.0649 0 0

0 -0.0324 + 0.4448i 0

0 0 -0.0324 - 0.4448i

>> w2=x(:,1)/sum(x(:,1))

w2 =

0.6491

0.2790

0.0719

( 2=3.0649,权重向量w2=(0.6491,0.2790,0.0719))

附件2:

>>

f=0.037*(9/44*0.037+2/11*0.038+3/22*0.039+15/88*0.04+13/88*0.041+7/44*0.042)/((9/44*0.0 37^2+2/11*0.038^2+3/22*0.039^2+15/88*0.04^2+13/88*0.041^2+7/44*0.042^2)+440*(0.01/1.6 4)^2)

f =

0.0813

>>

f=0.038*(9/44*0.037+2/11*0.038+3/22*0.039+15/88*0.04+13/88*0.041+7/44*0.042)/((9/44*0.0 37^2+2/11*0.038^2+3/22*0.039^2+15/88*0.04^2+13/88*0.041^2+7/44*0.042^2)+440*(0.01/1.6 4)^2)

f =

0.0835

>>

f=0.039*(9/44*0.037+2/11*0.038+3/22*0.039+15/88*0.04+13/88*0.041+7/44*0.042)/((9/44*0.0 37^2+2/11*0.038^2+3/22*0.039^2+15/88*0.04^2+13/88*0.041^2+7/44*0.042^2)+440*(0.01/1.6 4)^2)

f =

0.0857

>>

f=0.04*(9/44*0.037+2/11*0.038+3/22*0.039+15/88*0.04+13/88*0.041+7/44*0.042)/((9/44*0.03 7^2+2/11*0.038^2+3/22*0.039^2+15/88*0.04^2+13/88*0.041^2+7/44*0.042^2)+440*(0.01/1.64 )^2)

f =

0.0879

>>

f=0.041*(9/44*0.037+2/11*0.038+3/22*0.039+15/88*0.04+13/88*0.041+7/44*0.042)/((9/44*0.0 37^2+2/11*0.038^2+3/22*0.039^2+15/88*0.04^2+13/88*0.041^2+7/44*0.042^2)+440*(0.01/1.6 4)^2)

f =

0.0901

>>

f=0.042*(9/44*0.037+2/11*0.038+3/22*0.039+15/88*0.04+13/88*0.041+7/44*0.042)/((9/44*0.0 37^2+2/11*0.038^2+3/22*0.039^2+15/88*0.04^2+13/88*0.041^2+7/44*0.042^2)+440*(0.01/1.6 4)^2)

f =

0.0923

()()123456,0.0813,0.0835,0.0857,0.0879,0.0901,0.0923f f f f f f =,,,,

90,80,60,75,65,70

7.317,6.68,5.142,6.5925,5.8565,6.461=38.327 n=8+7+5+7+6+6=39

假设t=1.5,p=60,Pmax=6000,Tmax=176,

Max ξ=11

附件3:

c=[-39]; A=[39;39;1]; b=[117.3;100;11]; Aeq=[]; beq=[]; vlb=[0;0;0]; vub=[];

[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

x =

2.5641

fval =

-100.0000

>> w=[1 1 3 3 5 5 6 7 1 9 9; 1 1 3 3 5 5 6 7 1 9 9;

1/3 1/3 1 1 5/3 5/3 2 7/3 1/3 3 3; 1/3 1/3 1 1 5/3 5/3 2 7/3 1/3 3 3;

1/5 1/5 3/5 3/5 1 1 6/5 7/5 1/5 9/5 9/5; 1/5 1/5 3/5 3/5 1 1 6/5 7/5 1/5 9/5 9/5; 1/6 1/6 1/2 1/2 5/6 5/6 1 7/6 1/6 3/2 3/2; 1/7 1/7 3/7 3/7 5/7 5/7 6/7 1 1/7 9/7 9/7; 1 1 3 3 5 5 6 7 1 9 9;

1/9 1/9 1/3 1/3 5/9 5/9 2/3 7/9 1/9 1 1; 1/9 1/9 1/3 1/3 5/9 5/9 2/3 7/9 1/9 1 1;] w =

1.0000 1.0000 3.0000 3.0000 5.0000 5.0000 6.0000 7.0000 1.0000 9.0000 9.0000

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

人口增长模型的确定

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。 关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 1.1 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 1.2 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。 17801800182018401860188019001920194019601980 050 100 150 200 250

图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0)起始年人口容纳量 N(t)t年后人口容纳量 t年份 r增长率 五、模型建立 5.1 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。 当考察一个国家或一个很大地区的人口时,N(t)是很大的整数。为了利用微积分这一数学工具,将N(t)视为连续、可微函数。记初始时刻(t=0)的人口为N(0),人口增长率为r,r是单位时间内N(t)的增量与N(t)的比例系数。根据r是常数的基本假设,于是N(t)满足如下的微分方程: dN(t)/dt=r*N(t) (5-1) 由这个线性常系数微分方程容易解出: N(t)=N(0)e rt(5-2) 表明人口将按指数规律无限增长(r>0)。将以t年为单位,上式表明,人口以e r为公

葡萄酒的评价_全国数学建模大赛优秀论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆工商大学 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

葡萄酒的评价 摘要 酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定的程度上反映葡萄酒和葡萄的质量。本论文主要研究葡萄酒的评价、酿酒葡萄的分级以及酿酒葡萄与葡萄酒的理化指标之间的相互关系问题。 对于问题一:我们从假设检验的角度出发分析,对两组的评分进行均值和方差运算,并在零假设成立的前提下通过使用Matlab 做T 检验,得出两组评酒员对于红葡萄酒的评价结果无显著性差异,而对于白葡萄酒的评价结果存在显著性差异的结果。再建立可信度模型 = H ,计算结果如下表, 对于问题二:根据葡萄酒质量的综合得分,将其划分为优、良、合格、不合格四个等级,并对酿酒葡萄的理化指标进行主成分分析,得出对葡萄影响较大的 到了它们的偏相关系矩阵。利用通径方法建立了数学模型,得出了它们之间的线性回归方程: 11231123=2.001x 0.0680.015x +........=0.0540.7580.753x ......... y x y x x ----+红红红红白白白白 对于问题四:在前面主成分分析和葡萄酒分级的基础上,建立Logistic 回归模型,并利用最大似然估计法求出线性回归方程的参数,得出线性回归方程。运用SPSS 软件,通过matlab 编程运算,求出受它们综合影响的线性回归方程。在验证时,随机从上面选取理化指标,将它们带入P 的计算式中,通过所求P 值判断此时葡萄酒质量所属级别,得出了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的结论。

2013全国数学建模大赛a题优秀论文

车道被占用对城市道路通行能力的影响 摘要 随着城市化进程加快,城市车辆数的增加,致使道路的占用现象日益严重,同时也导致了更多交通事故的发生。而交通事故发生过程中,路边停车、占道施工、交通流密增大等因素直接导致车道被占用,进而影响了城市道路的通行能力。本文在视频提供的背景下通过数据采集,利用数据插值拟合、差异对比、车流波动理论等对这一影响进行了分析,具体如下: 针对问题一,首先根据视频1中交通事故前后道路通行情况的变化过程运用物理观察测量类比法、数学控制变量法提取描述变量(如事故横断面处的车流量、车流速度以及车流密度)的数据,从而通过研究各变量的变化,来分析其对通行能力的影响。而视频1中有一些时间断层,我们可根据现有的数据先用统计回归对各变量数据插值后再进行拟合,拟合过程中利用残差计算值的大小来选择较好的模型来反应各变量与事故持续时间的关系,进而更好地说明事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。 针对问题二:沿用问题一中的方法,对视频2中影响通行能力的各个变量进行数据采集,同样使用matlab对时间断层处进行插值拟合处理,再将所得到的的变化图像与题一中各变量的变化趋势进行对比分析,其中考虑到两视频的时间段与两视频的事故时长不同,从而采用多种对比方式(如以事故发生前、中、后三时段比较差值、以事故相同持续时间进行对比、以整个事故时间段按比例分配时间进行对比)来更好地说明这一差异。由于小区口的位置不同、时间段是否处于车流高峰期以及1、2、3道车流比例不同等因素的影响,采用不同的数据采集方式使采集的变量数据的实用性更强,从而最后得到视频1中的道路被占用影响程度高于视频2中的影响程度,再者从差异图像的变化波动中得到验证,使其合理性更强。 针对问题三:运用问题1、2中三个变量与持续时间的关系作为纽带,再根据附件5中的信号相位确定出车流量的测量周期为一分钟,测量出上游车流量随时间的变化情况,而事故横断面实际通行能力与持续时间的关系已在1、2问中由拟合得到,所以再根据波动理论预测道路异常下车辆长度模型的结论,结合采集数据得到的函数关系建立数学模型,最后得出事故发生后,车辆排队长度与事故横断面实际通行能力、事故持续时间以及路段上游车流量这三者之间的关系式。 针对问题四:在问题3建立的模型下,利用问题4中提供的变量数据推导出其它相关变量值,然后代入模型,估算出时间长度,以此检验模型的操作性及可靠性。 关键词:通行能力车流波动理论车流量车流速度车流密度

数学建模人口模型

摘要 以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。13亿是一个忧虑的数字。13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、 中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。 人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。 我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表: 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。 长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

matlab曲线拟合人口增长模型及其数量预测

实验目的 [1] 学习由实际问题去建立数学模型的全过程; [2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解 其中的数学模型; [4] 提高论文写作、文字处理、排版等方面的能力; 通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。 应用实验(或综合实验) 一、实验内容 从1790—1980年间美国每隔10年的人口记录如表综2.1所示: 表综2.1 用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。 二、问题分析 1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程: ?????==0 )0(d d x x rx t x 2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人 口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程: ?? ???=-=0)0()1(d d x x x x rx t x m

SARS传播的数学模型 数学建模全国赛优秀论文

SARS传播的数学模型 (轩辕杨杰整理) 摘要 本文分析了题目所提供的早期SARS传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数L、K的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了SARS的传播机理后,把SARS的传播过程划分为:征兆期,爆发期,高峰期和衰退期4个阶段.将每个阶段影响SARS 传播的因素参数化,在传染病SIR模型的基础上,改进得到SARS传播模型.采用离散化的方法对本模型求数值解得到:北京SARS疫情的预测持续时间为106天,预测SARS患者累计2514人,与实际情况比较吻合. 应用SARS传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:“早发现,早隔离”能有效减少累计患病人数;“严格隔离”能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清SARS传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受SARS的影响,建立时间序列半参数回归模型进行了预测,估算出SARS会对北京入境旅游业造成23.22亿元人民币损失,并预计北京海外旅游人数在10月以前能恢复正常. 最后给当地报刊写了一篇短文,介绍了建立传染病数学模型的重要性.

1.问题的重述 SARS (严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作: (1) 对题目提供的一个早期模型,评价其合理性和实用性. (2) 建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后5天采取严格的隔离措施,估计对疫情传播的影响. (3) 根据题目提供的数据建立相应的数学模型,预测SARS 对社会经济的影响. (4) 给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价 题目要求建立SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确: 合理性定义 要求模型的建立有根据,预测结果切合实际. 实用性定义 要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足够的信息. 2.1早期模型简述 早期模型是一个SARS 疫情分析及疫情走势预测的模型, 该模型假定初始时刻的病例数为0N , 平均每病人每天可传染K 个人(K 一般为小数),K 代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关.整个模型的K 值从开始到高峰期间保持不变,高峰期后 10天的范围内K 值逐步被调整到比较小的值,然后又保持不变. 平均每个病人可以直接感染他人的时间为L 天.整个模型的L 一直被定为20.则在L 天之内,病例数目的增长随时间t (单位天)的关系是: t k N t N )1()(0+?= 考虑传染期限L 的作用后,变化将显著偏离指数律,增长速度会放慢.采用半模拟循环计算的办法,把到达L 天的病例从可以引发直接传染的基数中去掉. 2.2早期模型合理性评价 根据早期模型对北京疫情的分析与预测,其先将北京的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰,然后通过拟合起点和4月20日以后的数据定出高峰期以前的K =0.13913.高峰期后的K 值按香港情况变化,即10天范围内K 值逐步被调整到0.0273.L 恒为20.由此画出北京3月1日至5月7日疫情发展趋势拟合图像以及5月7日以后的疫情发展趋势预测图像,如图1.

数学建模练习小论文1

中国省、自治区城市规模结构分类 一、省、自治区的规模结构综合评价分类: (1)建立综合评价指标体系 省、自治区的综合城市规模结构是取决于多个相关因数综合评估的,综合因数特征主要体现在的相关方面.遵循可比性原则,从省、自治区的城市的多方面中选取5项评价指标,具体如图1. 图一、城市规模结构特征数据 (2)数据资料 指标的原始数据取自《中国统计年鉴,1999》到五项指标值见表1.其中:1x 为城市规模;2x 为城市首位度;3x 为城市指数;4x 为基尼系数;5x 为城市规模中位值 . (3)R 型聚类分析 定性考察反映省、自治区城市规模结构五项评价指标,可以看出,某些指标之间

可能存在较强的相关性.比如城市首位度与城市指数,城市规模和城市规模中位值.为了验证这种想法,运用MATLAB 软件计算五个指标之间的相关系数,相关系数矩阵如表3所示. 计算的MATLAB 程序如下: load gi.txt %把原始数据保存在纯文本文件gi.txt 中 r=corrcoef(gi)%计算相关系数矩阵 d=1-r; %进行数据变换,把相关系数转化为距离 d=tril(d); %取出矩阵d 的下三角元素 d=nonzeros(d); %取出非零元素 d=d'; %化成行向量 z=linkage(d,'average'); %按类平均法聚类 dendrogram(z); %画聚类图 T=cluster(z,'maxclust',4) %把变量划分成4类 for i=1:4 tm=find(T==i); %求第i 类的对象 tm=reshape(tm,1,length(tm)); %变成行向量 fprintf('第%d 类的有%s\n',i,int2str(tm)); %显示分类结果 end 2 3 4 1 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 图二 指标聚类树型图 图三 相关系数矩阵 1x 2x 3x 4x 5x 1x 1.0000 0.0239 0.3398 0.3654 0.4037 2x 0.0329 0.7038 1.0000 0.2127 -0.2261

美国大学生数学建模竞赛优秀论文翻译

优化和评价的收费亭的数量 景区简介 由於公路出来的第一千九百三十,至今发展十分迅速在全世界逐渐成为骨架的运输系统,以其高速度,承载能力大,运输成本低,具有吸引力的旅游方便,减少交通堵塞。以下的快速传播的公路,相应的管理收费站设置支付和公路条件的改善公路和收费广场。 然而,随着越来越多的人口密度和产业基地,公路如花园州公园大道的经验严重交通挤塞收费广场在高峰时间。事实上,这是共同经历长时间的延误甚至在非赶这两小时收费广场。 在进入收费广场的车流量,球迷的较大的收费亭的数量,而当离开收费广场,川流不息的车辆需挤缩到的车道数的数量相等的车道收费广场前。因此,当交通繁忙时,拥堵现象发生在从收费广场。当交通非常拥挤,阻塞也会在进入收费广场因为所需要的时间为每个车辆付通行费。 因此,这是可取的,以尽量减少车辆烦恼限制数额收费广场引起的交通混乱。良好的设计,这些系统可以产生重大影响的有效利用的基础设施,并有助于提高居民的生活水平。通常,一个更大的收费亭的数量提供的数量比进入收费广场的道路。 事实上,高速公路收费广场和停车场出入口广场构成了一个独特的类型的运输系统,需要具体分析时,试图了解他们的工作和他们之间的互动与其他巷道组成部分。一方面,这些设施是一个最有效的手段收集用户收费或者停车服务或对道路,桥梁,隧道。另一方面,收费广场产生不利影响的吞吐量或设施的服务能力。收费广场的不利影响是特别明显时,通常是重交通。 其目标模式是保证收费广场可以处理交通流没有任何问题。车辆安全通行费广场也是一个重要的问题,如无障碍的收费广场。封锁交通流应尽量避免。 模型的目标是确定最优的收费亭的数量的基础上进行合理的优化准则。 主要原因是拥挤的

数学建模小论文

阶梯电价的设置 摘要 本文讨论的阶梯电价的设置问题,在解决过程中,需要将实际问题进行合理化的假设,从而简化。 本文在问题一处理的过程中利用matlab中,分别统计出两个小区居民用电量处于第一档和第二档的百分比,并进行比较,从而得出A,B两个小区用电量均属于第一档水平,为基本用电水平。然后,可以利用excel进行排序,然后根据第一档80%,第二档95%的百分比进行划线,从而确定两个小区各自的阶梯电价实施标准。 本文在问题二处理的过程中,可以根据A,B两个小区居民用水、电量的统计表,利用excel处理,绘制出A、B两个小区每个季度关于用水量-用电量关系的散点图,拟合出用水量与用电量之间存在基本的线性关系。 本文在问题三处理的过程中,结合问题一,二的结论,建立模型,考虑并比较该节水设备节省下的水费和设备花费的开销总和。 关键词:excel matlab

一.问题重述 由于历史的原因,我国长期实行工业电价补贴居民电价的交叉补贴制度。从我国居民电力消费结构看,5%的高收入家庭消费了约24%的电量,这就意味着低电价政策的福利更多地由高收入群体享受。这既不利于社会公平,无形中也助长了电力资源的浪费。 2012年7月1日“阶梯电价”在全国范围内实施。阶梯式电价是阶梯式递增电价或阶梯式累进电价的简称,也称为阶梯电价,是指把户均用电量设置为若干个阶梯分段或分档次定价计算费用。 根据此前发改委公布的方案征求意见稿,阶梯电价拟分为三档,把居民每个月的用电分成基本用电、正常用电、高质量用电三档。在落实用电量层面,第一档基本用电,电量按照覆盖80%居民的用电量来确定,第二档正常用电量则按照覆盖至95%的居民用电量。通过划分一、二、三档电量,较大幅提高第三档电量电价水平,在促进社会公平的同时,也可以培养全民节约资源、保护环境的意识,逐步养成节能减排的习惯。 阶梯电费收取方法为: 1、当实际用电量在第一级电量基数范围内时,阶梯电费=基本电价×实际用电量; 2、当实际用电量在第二级电量基数范围之间时,阶梯电费=基本电价×第一级电量+二档电价×(实际用电量-第二级电量基数下限); 3、当实际用电量超过第二级电量基数上限时,阶梯电费=基本电价×第一级电量+二档电价×第二级电量基数区间范围+三档电价×(实际用电量-第二级电量基数上限)。 例如: 山东省阶梯电价标准如下: 第一档:电量每户每月210度及以下,执行现行电价,每度0.5469元; 第二档:电量每户每月210-400度之间,在现行电价基础上,每度加价0.05元,即每度0.5969元; 第三档:电量每户每月400度以上,在现行电价基础上,每度加价0.3元,即每度0.8469元。 附件1中是济南市两个小区居民用水、电量的统计表,请分析数据并建模回答下列问题: 问题一针对现行的阶梯电价标准,判断该小区用电量属于何种水平。从该小区用电量水平出发,请制定合适的阶梯电价实施标准。 问题二试分析居民用水与用电量之间是否有关系。 问题三现有一家用节水设备,能达到节水10%的目的。请从设备的安装成本、耗电量、维护费用及使用寿命几个角度出发,结合居民用水电量数据, 建立数学模型,给出该设备是否能够降低居民水电费的判别方法。

数学建模logistic人口增长模型

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测 表1 各年份全国总人口数(单位:千万) 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: )0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当 m x x =时人口不再增长,即增 长率 )(=m x r ,代入(2)式得 m x r s = ,于是(2)式为

)1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ???=-=0 )0() 1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

人口增长数学模型

软件学院 人口增长模型数学建模报告 专业:软件工程 班级:卓越131班 学号:201370044120 学生姓名:郭俊成 指导教师:于志云 2015 年11 月12 日 题目:计划生育政策调整对人口数量、结构及其影响的研究

摘要 本论文针对2007年国家人口发展战略研究课题组发布的《国家人口发展战略研究报告》中关于“计划生育实施以来,全国少生了4亿多人,使世界60亿人口日推迟4年”的论述做了研究。论文根据计划生育实施之前1949-1980年的人口普查数据,使用最小二乘法拟合并建立灰色预测模型,利用数学软件,预测出了如果未实行计划生育现今中国人口的数量,从而对研究报告中“少生4亿”的结论产生质疑。 同时,本论文针对2006年全国老龄工作委员会发布的《中国人口老龄化发展趋势预测研究报告》中关于“2051年,中国老年人口规模将达到峰值4.37亿,老龄化水平基本稳定在31%左右”的论述做了研究,根据近几年的人口老龄化程度、老龄人口比重、老龄人口数量、死亡率的变化等诸多因素,建立阻滞增长模型(Logistic模型),预测40年到70年的老龄人口数量和老龄化率,验证了报告中的关于老龄人口数目持续增加、数目庞大、老龄化严重的预测。 论文基于近期的计划生育调整、“单独二孩”政策的逐步实施、城镇化所导致的人口迁移等现象,结合江苏省的实际情况,利用差分方程模型、LESLIE矩阵,分析新政策对江苏人口数量的影响。论文从出生率着手,重点研究了新政策对江苏省14岁以下儿童、60岁以上老人的影响,分析了儿童和老人数量的变化对人口结构、教育改革、养老的直接影响作用。 关键字 单独二孩、人口老龄化、Logistic 模型、差分方程模型、LESLIE模型 一、问题描述

2011年全国数学建模大赛A题获奖论文

城市表层土壤重金属污染分析 摘要 本文旨在对城市土壤地质环境的重金属污染状况进行分析,建立模型对金属污染物的分布特点、污染程度、传播特征以及污染源的确定进行有效的描述、评价和定位。 对于重金属空间分布问题,首先基于克里金插值法,应用Surfer 8软件对各数据点的分布情况进行模拟,得到了直观的重金属污染空间分布图形;随后,分别用内梅罗综合污染指数以及模糊评价标准和模型对城区内不同区域重金属的污染程度进行了评判。 对于金属污染的主要原因分析问题,基于因子分析法、问题一的结果和对各个金属污染物的来源分析等因素,判断出金属污染的主要原因有:工业生产、汽车尾气排放、石油加工并推测该区域是镍矿富集区。随后讨论了污染源之间的相互关系和不同金属的污染贡献率。 针对污染源位置确定问题,我们建立了两个模型:模型一以流程图的形式出现,基于污染传播的一般规律建立模型,求取污染源范围,模型作用更倾向于确定污染源的位置;模型二基于最小二乘法原理,建立了拟合二次曲面方程,在有效确定污染源的同时也反映了其传播特征,模型更加清楚,理论性也更强。 在研究城市地质环境的演变模式问题中,我们对针对污染源位置确定问题所建模型的优缺点进行了评价,同时建立了考虑了时间,地域环境和传播媒介的污染物传播模型,从而反映了地质的演变。 综上所述,本文模型的特点是从简单的模型建立起,强更准确的数学模型发展,逐步达到目标期望。 关键词:重金属污染,克里金插值最小二乘法因子分析流程图

一、问题重述 1.1问题背景 随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。评价和研究城市土壤重金属污染程度,讨论土壤中重金属的空间分布,研究城市土壤重金属污染特征、污染来源以及在环境中迁移、转化机理,并对城市环境污染治理和城市进一步的发展规划提出科学建议,不仅有利于城市生态环境良性发展,有利于人类与自然和谐,也有利于人类社会 健康和城市可持续发展[1] 。按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,不同的区域环境受人类活动影响的程度不同。 现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS 记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。 1.2 目标任务 (1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。 (2) 通过数据分析,说明重金属污染的主要原因。 (3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。 (4) 分析所建立模型的优缺点,为更好地研究城市地质环境的演变模式,分析还应收集的信息,并进一步探索怎样利用收集的信息建立模型及解决问题。 二、 模型假设 1)忽略地下矿源对污染物浓度的影响; 2)认为海拔对污染物的分布较小,故只在少数模型中讨论其作用; 3)认为题目中的采样方式是科学的,能够客观反映污染源的分布。 三、 符号说明 3.1第一问中的符号说明 i p ——污染物i 的环境污染指数 i C ——污染物i 的实测值 i S ——污染物i 的背景值 m ax (/)i i C S ——土壤污染指数的最大值 (/)i i avg C S ——土壤污染指数的平均值

简单的数学建模小论文七年级

简单的数学建模小论文 七年级 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

合理分配 ---------数学建模论文 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情,生活中有许多地方都要用到数学来解决问题。“合理分配”系列的问题更是值得思考又有趣。合理分配包括:合理分配时间、钱及市场上购买不同种类如何分配等。我们现在来讨论一下这种问题,举些例子。 假如你是一名医生,你有三个病人甲乙丙。甲打针需要十分钟,乙配药要五分钟,丙要包扎纱布有需要八分钟,而这时,医务室里只有你这么一个医生,你该如何安排他们的治病次序,才能使三人留在医务室的时间总和最短?这个问题相对简单。 可以想象,最后一位病人用的时间一定是10+8+5=23分钟。如果要让时间尽可能短,就要把治疗用时较长的病人排在后面治,让较大数出现的次数尽量少,也就是让甲排在最后。以此类推,第二个是丙,需要5+8=13分钟;第一个是乙,用五分钟。最后算出的便是最短时间:41分钟。 再举一个复杂写的合理分配的例子。 假设你又是一个超市的老板,你的超市准备用一万元来买甲、乙鲜奶,甲为16元一箱,乙为20元一箱。有假设购进甲x箱、乙y箱。据市场调查,甲乙鲜奶保质期内销售量不能超过280箱,超市有多种进货方案。然后你又计划将甲乙分别加价百分之二十和百分之二十五销售,那么哪种进货方案可获最大利润。

首先用含x的代数式表示一下y:16x+20y=10000,y=(10000-16x)/20,y 就等于。那么x大于等于275.而后写出所有进货方案,因为x、y都为整数,所以: 当x=275时,y=280; 当x=276时,y=279; 当x=277时,y=278; 当x=278时,y=277; 1 当x=279时,y=276; 当x=280时,y=275. 而提价后,甲卖每箱元,乙卖每箱25元。甲每箱赚元,乙每箱赚5元。乙赚得较多,因此乙买的最多的方案就有最大利润,即乙买280箱,甲买275箱。这个时候有的同学会把所有方案的所得利润都算出来,在比较。 但其实没有这个必要,只要看谁赚得多,就多买谁就行了。 这个问题就比较复杂了,不运用数学知识解决不了。当然,生活中还有更多更复杂的合理分配等实际问题。由此可见,数学可以解决生活中各种各样的实际问题,帮助我们。因此我们要好好学习数学,并把学到的知识用到实际生活当中。

2014年数学建模国家一等奖优秀论文设计

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等) 与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或 其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文 引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违 反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3.

指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

leslie人口增长模型模型

l e s l i e人口增长模型 模型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

人口增长预测模型 摘要 本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。 模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为亿、亿、亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到亿人,在2020年达到亿人,在2023年达到峰值亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达亿人,比重达%;65岁以上老年人口达亿人,比重达%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。 关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件

相关文档
最新文档