全氟辛烷磺酰基化合物 pfos

全氟辛烷磺酰基化合物 pfos
全氟辛烷磺酰基化合物 pfos

UNEP/POPS/POPRC.1/10

第POPRC-1/7号决定:全氟辛烷磺酸

持久性有机污染物审查委员会,

审查了 作为《关于持久性有机污染物的斯德哥尔摩公约》缔约方的瑞典提交的、关于把全氟辛烷磺酸以及96种潜在的全氟辛烷磺酸前体物质列入《公约》的附件A的提案,并对之适用了《公约》附件D中具体规定的筛选标准,

注意到 没有为全氟辛烷磺酸的阴离子设置任何化学文摘社编号、而且此种化合物在环境中并非以一种阴离子形式出现,而在相关提案中所列出的全氟辛烷磺酸及其各种盐类则已有化学品文摘社编号如下:

(a)酸 1763-23-1

(b)钾+盐 2795-39-3

(c)锂盐 29457-72-5

(d)NH4+盐 29081-56-9

(e)二乙醇胺盐 70225-14-8

1.决定 依照《公约》第8条第4(a)款,认定根据列于本决定的附件中的评估结果,全氟辛烷磺酸已达到相关的筛选标准;

2.还决定 依照《公约》第8条第6款、以及斯德哥尔摩公约缔约方大会第SC-1/7号决定的第29段,设立一个特设工作组,负责进一步对此项提案进行审查,并依照《公约》附件E编制一份相应的风险简介草案;

3.进一步决定 在着手编制上述风险简介草案过程中,亦应处理有关把潜在的全氟辛烷磺酸前体物质一并列入的各项相关议题;

4.依照《公约》第8条第4(a)款,邀请各缔约方和观察员于2006年1月27日之前向秘书处提交附件E中具体规定的资料。

第POPRC-1/7号决定的附件

采用附件D所列标准评估全氟辛烷磺酸

A. 背景情况

1.用于编制此项评估报告的主要资料来源为列于该文件UNEP/POPS/POPRC.1/9中的、由瑞典提交的相关提案。

2.其他科学资料则源自那些由公认的权威机构编制的审查鉴定报告、以及经过同行审查的科学论文。

B. 评估

3.已按照附件D中对所涉化学品进行鉴别(第1(a)段)以及筛选标准(第

1

UNEP/POPS/POPRC.1/10

2 1(b)–(e)段)中所列各项相关要求对此项提案进行了如下评估:

(a) 化学品的鉴别:

(一) 提案中提供了论述此种酸性物质及某些盐类的充足资料;

(二) 提案中提供了钾盐的化学结构;

对全氟辛烷磺酸作了明确的化学鉴别。提案内容涵盖全氟辛烷磺酸、

所涉酸性物质及各种盐类物质;

(b) 持久性:

(一) 所进行的各种降解测试(水解、光解和生物降解)结果均未表

明全氟辛烷磺酸可在水或土壤系统中发生任何降解(注释1);

(二) 监测数据证实全氟辛烷磺酸在不同环境组分中具有持久性(注

释2);

现已有充足的证据表明,全氟辛烷磺酸已达到关于持久性的筛选标准;

(c) 生物蓄积性:

(一) 全氟辛烷磺酸的生物蓄积系数值要比相关筛选标准中所规定的

系数值为低(在稳定的状态下约为240-1,300;利用动力学估

算办法,则可达2,796) (注释1)。全氟辛烷磺酸是一种表面

活性物质,因此不宜对之进行辛烷与水的分离系数测定(注释

2)。生物蓄积系数值对于这一物质的生物蓄积性而言并不是良

好的预测参数,因为经论证,食物摄取是此种物质进入水系生

物体的通常路径(注释3)。生物蓄积性与亲脂性程度无关,而

且所涉蓄积作用并不主要发生在脂肪组织上;

(二) 对水生和陆界脊椎动物进行的毒理动力学研究结果表明,其去

除率极低(注释1和4)。此外还有资料表明全氟辛烷磺酸亦会

对哺乳动物的生长产生低度影响(在对两代大鼠进行的研究中

发现,所涉无观测逆效应等级值为每日/0.1毫克/公斤体重;

注释1);

(三) 监测数据证实,全氟辛烷磺酸在陆界和海洋哺乳动物中具有生

物蓄积能力和生物放大能力(注释4);

现已有足够的证据表明,全氟辛烷磺酸已达到关于生物蓄积性的筛选

标准;

(d) 长距离环境迁移潜力:

(一)和(二) 广泛的监测数据、包括在远离已知污染源的场址收集到的

数据表明,此种化学品具有长距离环境迁移潜力(注释1);

UNEP/POPS/POPRC.1/10

(三)其在空气中的估计半衰期约为114天(注释4);

现已有足够的证据表明,全氟辛烷磺酸已达到关于长距离环境迁移潜

力的筛选标准;

(e) 有害影响:

(一)未提供此方面的任何证据;

(二)经论证,全氟辛烷磺酸可对哺乳动物的生长产生低度有害影响。

此外,它还对水生生物具有毒性(注释4);

现已有足够的证据表明全氟辛烷磺酸已达到关于有害影响标准。 C. 结论

4.审查委员会最后认定,全氟辛烷磺酸已完全达到附件D中具体规定的筛选标准。

参考文献注释:

1. 《针对现有各种化学品开展合作的情况-对全氟辛烷磺酸及其各种盐类进行的危害评估结果》,经合组织,巴黎,2002年。

2. 文件UNEP/POPS/POPRC.1/9。

3. Kannan, K., Tao L., Sinclair, E., Patsva, S.D., Jude, D.J., Giesly, J.P 合著的论文:《环境污染毒理学档案》,48(4),第559-566页,2005年。

4. 《环境风险评估:全氟辛烷磺酸(PFOS)》。联合王国环境事务厅,联合王国,伦敦,2004年。

3

全氟化合物零碎知识

1. 全氟有机化合物(PFCs)是一类主要由碳原子与氟原子组成的有机化合物。这类物质的化学性质极为稳定,能够经受高温加热、光照、化学作用、微生物作用和高等脊椎动物的代谢作用。全氟化合物(PFCs)的生产历史已经有50年,广泛应用于化工、纺织、涂料、皮革、合成洗涤剂、炊具制造(如不粘锅)、纸制食品包装材料等领域。 早在上世纪60年代就有关于人体血清中发现有机氟化物的报道。自那以后,环境和生物基质中PFCs的含量越来越受到学术界的关注。由于PFCs具有远距离传输能力,因此污染范围十分广泛。全世界范围内被调查的环境和生物样品中都存在典型PFCs——全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的污染踪迹,甚至在人迹罕至的北极地区和我国青藏高原的野生动物体内,都发现了全氟有机化合物。 考虑到此类物质可能引发的生态环境问题和人体健康危害,在2009年5月召开的《关于持久性有机污染物的斯德哥尔摩公约》第四次缔约方大会上,将PFOS及其盐和全氟辛基磺酰氟列入《斯德哥尔摩公约》附录A或B。这意味着这些物质将在全球范围内被限制使用。而此前已经有部分国家和地区将一些全氟有机化合物列入禁止使用名单。经济合作与发展组织(OECD)及美国环保总署(EPA)也已将全氟化合物列为“可能使人致癌的物质”。 目前,关于PFOA和PFOS等全氟有机化合物的研究已逐渐成为国际上环境健康领域的研究热点。至今,人类对PFOS和PFOA等全氟有机化合物的环境污染途径、对生物多样性的危害、人体的暴露途径及人体健康损害的研究还处于初始阶段。 我国是全氟化有机化合物生产和使用的大国,我国人体PFOS污染水平较高,居世界前列。而中国PFOS的研究也刚刚起步,对其实施环境管理面临挑战。 2. 什么是Pops?Pops就是一个简称,它指的是持久性有机污染物。它是一类化学物质,这类化学物质可以在环境里长期的存留,可以在全球广泛的分布,它可以通过食物链蓄积,逐级的传递,进入到有机体的脂肪组织里聚积。最终会对生物体、人体产生不利的影响。 POPs的基本特性是:在环境中降解缓慢、滞留时间长,可在水体土壤和底泥等环境中存留数年时间。因其具有很强的亲脂憎水性,可以沿食物链逐级放大,导致低浓度存在于大气、水、土壤的POPs物质可通过食物链对处于最高营养级的人类健康造成严重损害。POPs物质因具有半挥发性,使得它们能够以蒸气形式存在或者吸附在大气颗粒物上,可在大气环境中作远距离迁移,导致全球范围的污染传播。POPs对人类健康和生态系统产生毒性影响,对肝、肾等脏器和神经系统、内分泌系统、生殖系统等有急性和慢性毒性,并具有致癌性、生殖毒性、神经毒性、内分泌干扰特性等 3. POPs"十二五"污染防治规划,构建我省POPs管理长效机制

《关于限制全氟辛烷磺酸销售及使用的指令》(2006122EC)指令简介

日期:2007-04-03 PFOS 又是一个绿色壁垒 就在国内企业为WEEE 、RoHS 指令挠头,对EUP 指令茫然之际,欧盟近期又筑起一道新的“绿色壁垒”:10月24日,欧盟议会正式通过决议,规定欧盟市场上制成品中全氟辛烷磺酰基化合物(PFOS )的含量不能超过质量的0.005%,这标志着欧盟正式全面禁止PFOS 在商品中的使用,该禁令的过渡期为18个月。有关专家认为,这将成为横亘在我国外贸出口企业面前的又一道技术壁垒。专家提醒,国内相关企业应提高警惕,积极采取应对措施。 06年12月17日,欧洲议会和部长理事会联合发布《关于限制全氟辛烷磺酸销售及使用的指令》(2006/122/EC ),该指令是对理事会《关于统一各成员国有关限制销售和使用禁止危险材料及制品的法律法规和管理条例的指令》(76/769/EEC )的第三十次修订。 一、2006/122/EC 指令产生背景 全氟辛烷磺酸(Perfluorooctane sulfonates-PFOS)以阴离子形式存在于盐、衍生体和聚合体中,因其防油和防水性而作为原料被广泛用于纺织品、地毯、纸、涂料、消防泡沫、影像材料、航空液压油等产品中。 2002年12月,OECD 召开的第34次化学品委员会联合会议上将PFOS 定义为“持久存在于环境、具有生物储蓄性并对人类有害的物质”。 依据欧盟部长理事会(EEC)793/93号《关于评估和控制现有物质危险性的法规》,英国向欧委会提交了PFOS 危险评估报告和减少PFOS 危害的策略以及该策略的影响评估。 欧盟健康与环境危险科学委员会(SCHER)对英国提交的策略进行了科学性方面的审查,于2005年3月18日确认了PFOS 的危害性。 基于上述原因,欧委会于2005年12月5日提出了关于限制全氟辛烷磺酸销售及使用的建议和指令草案,并对该建议实施的成本、益处、平衡性、合法性等方面进行了评估。 2006年10月30日,欧洲议会以632票比10票通过了该草案一读,2006年12月12日指令草案最终获得部长理事会批准,2006年12月27日指令正式公布并同时生效。 二、PFOS 限制指令的内容 1、限制PFOS 类产品的使用和市场投放。不得销售以PFOS 为构成物质或要素的、浓度或质 量等于或超过0.005%的物质。 2、限制在成品和半成品中使用PFOS 。不得销售含有PFOS 浓度或质量等于或超过O.1%的成 品、半成品及零件。指令限制范围包括有意添加PFOS 的所有产品,包括用于特定的零部 件中及产品的涂层表面,例如纺织品。但限制仅针对新产品,对于已经使用中的以及二手 市场上的产品不限制。 3、对指令进行评估。为逐步淘汰PFOS 的使用,当有新情况或安全的替代产品出现时,应对 指令中的限制范围进行评估。 4、部分例外情况: Fivestar 数字签名人 Fivestar DN :cn=Fivestar ,c=<无>,o=杭州方欣日期:2008.03.11 03:13:26 +08'00'

全氟磺酸树脂Nafion_NR50溶液的制备

第18卷第10期2001年10月应用化学 CHIN ESE J O U RN A L O F AP PL IED CHEM IS T RY V o l.18N o.10O ct.2001 全氟磺酸树脂Nafion R ○NR50溶液的制备 王 海 王建武 徐柏庆*  邱显清 (清华大学化学系,一碳化学与化工国家重点实验室 北京100084) 摘 要 研究了全氟磺酸树脂N afio n R ○N R 50溶液的制备过程.通过考察不同的溶剂体系,得到了5种对N afio n R ○N R50具有良好溶解作用的溶剂体系,即40%~70%水+60%~30%乙醇、40%~70%水+60%~ 30%正丙醇、10%~70%水+90%~30%异丙醇、30%~70%水+60%~20%正丙醇+10%甲醇和10%~70%水+80%~20%异丙醇+10%甲醇.适宜的溶解温度为230~250℃,溶解时间为4h .在溶解的过程中,N R50催化醇发生异构化、醚化和脱水等反应.甲醇起到促进N R50溶胀进而加速其溶解的作用.关键词 全氟磺酸树脂,溶解,醇溶液 中图分类号:O 632.32 文献标识码:A 文章编号:1000-0518(2001)10-0798-04 2001-01-20收稿,2001-07-02修回 中国石油化工股份有限公司石油化工科学研究院资助项目 Nafion R ○N R 50(简称N R 50),凝胶型全氟磺酸树脂,由美国杜邦公司研究开发,具有以下结 构: [(CF 2 CF 2)n CF CF 2]x (O C F CF)m CF 3 O CF 2CF 2SO 3H 其中:m =1~3;n =6~7;x ≈1000 Nafion R ○N R 50具有高热稳定性(<280℃)、化学惰性和超强酸性(H 0=-12),近年来在许多领域都得到广泛应用,如电解池膜分离器、气体扩散膜、燃料电池质子交换膜、超强酸催化剂和催化剂载体等 [1~3] .但由于其通常呈致密无孔状态, 表面积很低(≤0.02m 2 /g ),使得大量埋没的酸性中心得不到有效利用,这些不足使得本已昂贵的它实际应用受到很大限制[4,5].目前,N R 50溶液的制备只有杜邦公司1篇专利报道[6],且其未能对诸多影响N R50溶解性能的因素(如溶剂组成、 温度、时间等)进行细致讨论,国内尚未见有关报道.本文考察了不同溶剂体系(单一组分溶剂、双组分溶剂和多组分溶剂)和溶解条件(溶解温度和溶解时间)对N R50溶解性能的影响. 1 实验部分 全氟磺酸树脂N R 50从Lanca ster 化学公司购得,平均粒径约0.9mm ,酸量为0.89mmol /g .试剂甲醇、乙醇、正丙醇、异丙醇和正丁醇由北京 化工厂购得,均为分析纯. 溶解过程在25m L 高压釜中进行,电加热套加热,磁力搅拌,在一定温度下保持数小时,然后停止加热和搅拌,并在室温下自然冷却;分别收集 上下层溶液,下层为所要溶液.N R50如未全溶,用表面皿将残渣及溶液全部收集,在110℃烘箱 中烘干,对未成膜部分进行称重(溶解的N R 50经烘干后成膜),以此计算N R 50的溶解量.准确移取1m L 下层液体于称量瓶中,在110℃烘箱中烘干、称重,以此计算溶液的浓度. 2 结果与讨论 2.1 溶剂的选择 高聚物的溶解是比较复杂的过程,选择合适 的溶剂体系一般遵循3个原则:极性相近原则、溶解度参数相近原则、溶剂化原则.N R50含有极性较强的—SO 3H 基团,不能通过简单计算溶解度参数来选择合适的溶剂体系.根据极性相近原则,选择极性溶剂将有利于其溶解.这里将重点考察水、甲醇、乙醇、正丙醇、异丙醇和正丁醇对它的溶解.2.1.1 单一组分溶剂 分别以10m L 水、甲醇、乙醇、正丙醇、异丙醇和正丁醇为溶剂考察其对0.1g N R50的溶解作用,溶解温度和时间分别为230℃和4h .实验表明:异丙醇作溶剂时,NR 50基本全溶,但溶液呈浑浊状态;甲醇作溶剂时,所得溶液量很少且几乎不含NR50,这是因为甲醇在N R50催化作用下生成大量二甲醚,打开高压

全氟辛烷磺酸及其盐类

2009年5月召开的《斯德哥尔摩公约》第四次缔约方大会(COP4)通过决议,决定将9种新POPs增列入公约,其中全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)被列入了附件B。 PFOS是PerfluorooctaneSulfonate 的简称,其作为一种重要的全氟化表面活性剂,也是许多其他全氟化合物的重要前体。作为氟化有机物的代表性化合物,由于具有低表面张力、低临界胶束浓度、良好的热稳定性和化学稳定性及相容性等优越的自身特性,PFOS 可以用于低表面物质的润湿,乳化、分散,并可用于高温、强酸、强碱,强氧化剂介质体系中。PFOS被广泛使用于纺织品、电镀、消防、航空、农药、地毯、皮鞋、造纸等众多领域。 8 个碳原子的链烃及其末端的磺酰基是PFOS 的主体结构,链烃上一般连接氢原子,已经是相对稳定的化学结构。PFOS 在相对稳定的化学结构上将氢原子全部置换为氟原子,提高了生物键能,使得这类化合物具有很高的生物、化学和热稳定性,不会轻易发生分解。由于C-F键的生成和断裂都需要很高的能量,因此自然界中很少有天然氟代烃的存在,大部分全氟代的有机分子绝大多数是人工合成的。这种人工合成的物质一旦生成就很难降解。 美国3M公司于1952年率先将PFOS/PFOSF投入商业生产,从PFOSF为原料所生产的一系列产品在获得了巨大成功,多年来一直雄踞全球产量首位。资料表明,3M公司历史上共生产了约75000吨(按PFOSF计),其中最高年产量达3500吨。而3M以外的其它公司的产量非常有限,历史最高年产量总计不超过1000吨。2000年5月,作为美国3M公司宣布启动自愿停产计划,并在2002年末彻底停止生产。其它厂商也陆续采取了类似行动,目前几乎所有国外厂商均已停止了PFOS的生产,仅巴西声称还生产少量PFOS锂盐用作杀虫剂。 绝大多数的PFOS类物质都是被作为表面活性剂而使用的,而例外的情况是一种较为特殊的农药——氟虫胺(Sulfluramid,N-乙基全氟辛烷磺酰胺,CAS 号:4151-50-2),它是由Griffin Corporation于1989年率先研制出来并在美国完成原药登记,后来被富美实公司(FMC)等多家美国公司作为活性成分用于白蚁和蚂蚁防治饵剂。由于美国EPA对氟虫胺提出了淘汰要求,各原药和制剂厂商于2008年5月已自愿撤消了所有相关产品的登记。中持新兴处理垃圾焚烧、钢铁冶炼、行业烟气中所含二噁英。

C-P-020-全氟磺酸离子膜树脂的挤出流延薄膜成型研究-苑会林

C-P-020 全氟磺酸离子膜树脂的挤出流延薄膜成型研究 苑会林1,王婧2 1 北京化工大学 新型高分子材料的制备与加工北京市重点实验室 北京 100029 2 山东东岳高分子材料有限公司淄博 256401 关键词:全氟磺酸离子膜 熔融挤出 流延 工艺 性能 全氟磺酸树脂具有热塑性,起始分解温度较高,可供熔融加工的温度范围相对较宽,并具有良好的热稳定性。本论文主要讨论了全氟磺酸离子膜的熔融挤出流延成型工艺。 下图展示了全氟磺酸薄膜的成型工艺 Fig.1 Flow chart of processing art of plasticized PFSIEM 全氟磺酸离子树脂的流变特性 首先,测定该树脂的MI值为3.3g/10min,这样的熔体流动速率满足了挤出流延薄膜成型的要求。图3为树脂的熔融流动曲线。由图可见,该树脂熔体流动呈假塑性,属切力变稀流体。图4为熔体的表观粘度与切变速率的关系曲线,也可看出熔体具有切力变稀的流动特性,并且,在切变速率达到约200s-1前,熔体流动有着明显的切敏性,在这一范围内熔体粘度随切变速率的增加显著下降。切变速率超过200s-1后,熔体粘度随切变速率的增加略有下降,降幅较小。

050100 150 200250 300 ηa / P a ·s γ/s -1 Fig.4 The dependence of viscosity on shear rate 挤出机螺杆转速与三辊机线速度的选择 Table 1 The effect of screw revolution and linear speed of three-roll glazer on the molding process of membranes 挤出机螺杆转速 三辊上光机线速度 薄膜厚度 (r/min ) (cm/min ) (μm ) 30 45 230±3 30 72 130±2 30 96 58±0.5 30 >100 薄膜断裂 35 45 280±3 35 72 160±2 35 96 86±1 35 >108 薄膜断裂 45 60 难以塑化成膜 表1列出了挤出机螺杆转速与牵引辊转速对膜成型加工过程的影响,实验是 在片材模具狭缝宽度不变的情况下进行的。结果表明,在挤出速度不变的情况下,当牵引速率较快时很容易发生薄膜的断裂,这是由于PFSR 是具有一定的结晶性的线型高聚物,大分子晶格排列整齐紧密,并且PFSR 中包含有极性较大的磺酸基团,分子间的相互作用力较大 。结果还表明,挤出速度太快时,薄膜也会因容易断裂而难以成型,这是挤出速度太快造成树脂在挤出机中停留时间过短,塑化不好的原因。

全氟化合物测定

半自动固相萃取—衍生—气相色谱串联质谱法测定水中全氟化合物摘要:本文介绍一种测定水中6种全氟烷基羧酸以及全氟烷基磺酸的灵敏有效的方法。样品用自动固相萃取进行浓缩后,经气相色谱衍生测定。用氯甲酸异丁酯和异丁醇混合物对样品进行衍生,以含3%的N,N-二环己基碳二亚胺的吡啶作为催化剂。对几种反相和阳离子交换吸附剂对全氟化合物的截留效果进行比较,具有最高截留效果的是LiChrolut EN和 Discovery DSC-SAX色谱柱,对全氟化合物的吸附截留选择以下两种作为吸附剂,即LiChrolut EN(样品pH为1,流速5.5mL/min,穿透体积300mL),Discovery DSC-SAX(样品pH为6,流速3.0mL/min,穿透体积45mL)。检出限分别为0.1–0.5 ng/L到0.4–1.7 ng/L,对250mL的样品吸附容量是70mg,比相关的检测标准还要高7%。这种方法被应用到饮用水处理厂的进水和出水的水质分析以及其他各类水的处理中。很少有水样存在各种全氟化合物,但每个处理厂都会有其中一种,全氟庚酸或全氟辛酸。在污水中检测到了高浓度的全服化合物(全氟庚酸,全氟辛酸和全氟癸酸)。 引言 全氟化合物是人为活动产生的化学物质,广泛应用于大量的工业和国内生产。其中研究最多的是全氟烷基羧酸以及全氟烷基磺酸。这些广泛存在的持久的环境污染物的来源主要是污水处理厂,城市水体,工业排放,燃煤和垃圾填埋。由于碳和氟的结合,全氟化合物更加稳定并且难以代谢和降解。一些报告阐明了这些化合物的联合作用对哺乳类动物的健康会产生不利影响。因此,对全氟化合物的生产和使用的限制已经受到全球的关注。欧洲委员会提出的环境质量标准中限制内陆地表水中全氟烷基磺酸及其衍生物的浓度最高为0.65 ng/L,并且,美国环境保护局确定的临时健康评估报告中规定饮用水中全氟辛烷磺酸( per fluorooctane sulfonate, PFOS)全氟辛酸 ( per fluorooctanoate, PFOA)的浓度分别是200ng/L、400 ng/L。欧洲食品安全局规定全氟辛烷磺酸和全氟辛酸的允许摄入量分别是150 和500 ng/Kg/bw/day。 许多研究已经表明以上所述污染物很难通过污水处理去除,因此估计通过饮用水进入人体内的全氟化合物的含量在1.5%到55%范围内。这主要是因为它们在饮用水中的浓度的变化大。例如,欧洲不同国家的污水中全氟化合物和全氟辛烷磺酸的浓度变化范围分别是0.2到9ng/L和0.4 到6 ng/L 。在中国、欧洲、日

饮用水中全氟化合物_PFCs_的控制研究进展

饮用水中全氟化合物(PFCs)的控制研究进展 田富箱, 徐 斌, 夏圣骥, 高乃云, 李大鹏, 梁 闯 (同济大学污染控制与资源化研究国家重点实验室,上海200092) 摘 要: 全氟化合物(perfluoroche m ica ls ,PFCs)是目前饮用水领域关注的一类新的有机污染物,鉴于其具有极为特殊的持久稳定性、生物累积性和毒性,目前已成为研究的热点。对PFCs 的种类和理化性质、在地表水和自来水中的分布及控制技术等进行了介绍,调查结果表明,PFCs 广泛存在于水环境中,地表水和自来水中PFCs 含量一般在几个到几十个ng/L 的范围内,且传统的常规处理工艺难于有效去除PFCs ,而某些高级氧化技术(如亚临界水氧化)、膜过滤及活性炭和离子交换树脂吸附对其控制具有一定效果。 关键词: 全氟化合物; 饮用水处理; 持久性有机污染物 中图分类号:T U 991 文献标识码:B 文章编号:1000-4602(2010)12-0028-05 R esea rch P rogress i n C on trol of P erfluoroche m ica ls i n D r i nk i ngW a ter TIAN F u 2x ian g , XU B in, X IA Sh en g 2ji , GAO N a i 2yu n , LI Da 2p en g , L IANG Ch u ang (Sta te Ke y La bora tor y of P ollution Control a nd Res ourcesRe use ,Tongji University ,Shangha i 200092,China ) Abstr act : Perfl u oroche m icals (PFCs)are a class of e m ergi n g and persistent or gan ic poll u tants i n drink i n g water fie l d .Due to very specia l persistent stab ility ,strong b ioaccu mu lati o n and high toxicity ,PFCs are rece i v i n g more and more attenti o n and considerab le i n terest has been f o cused on these poll u 2tants .The c lassification,physica l and che m ica l pr operties of PFCs as well as the d istri b uti o n and control technol o gi e s of PFCs i n surface water and dri n ki n g water are presented .The i n vesti g ations resu lts sho w PFCs are w i d ely d istributed i n aqua tic envir onment and the concentrations of PFCs i n surf ace water and drink i n g water are i n the range of severa l to several tens ng /L .The conven ti o na l treat m ent pr ocesses are i n eff ective to re move PFCs i n deed .So me advanced oxi d ation technologies such as sub 2critica lwater oxi 2dation ,me mbrane separation ,acti v ated car bon adsorption ,ion 2exchange resi n adsorption can be e m 2p loyed to re move PFCs . K ey w ords : perfl u or oche m ica ls ; dri n king water treat m en;t persistent or gan ic poll u tant 基金项目:国家高技术研究发展计划(863)项目(2008AA06Z302); 国家自然科学基金资助项目(50708066); 国家水 体污染控制与治理科技重大专项(2008Z X07421-002) 随着国内外水质科学与痕量分析技术领域的不断突破,饮用水中微(痕)量有毒有害物质不断被检出,这些物质虽然浓度很低,但对人体健康危害巨大,由此产生的一系列污染和健康问题给现有的饮 用水处理研究和技术发展提出了严峻挑战。全氟化合物(perfluoroche m icals ,PFCs)是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。 第26卷 第12期2010年6月 中国给水排水C H INA WATER &WAS TE WATER Vo.l 26No .12 Jun .2010

全氟辛烷磺酸锂盐 (Lithium Perfluorooctane Sulfonate)

全氟辛烷磺酸鋰鹽(Lithium Perfluorooctane Sulfonate) HSDB編號:7254 最後修正日期:20030305 壹、物質確認(Substance Identification) 一、物質名稱: 全氟辛烷磺酸鋰鹽 二、CAS Number: 29457-72-5 三、別名: (一) 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid, Lithium salt (二) 1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluoro-, lithium salt (三) Lithium heptadecafluorooctanesulphonate (四) Lithium perfluoro-1-octanesulfonate (五) USEPA/OPP Pesticide Code: 075004 四、分子式: C8-H-F17-O3-S.Li

貳、製造及使用(Manufacturing/Use Information) 一、其他製造資訊(Other Manufacturing Information): 於美國全氟辛烷磺酸鋰鹽僅能註冊於戶外居住區非食物用途之使用。 二、主要用途(Major Uses) (一)美國證實全氟辛烷磺酸鋰鹽作為殺蟲劑之使用,可能隨時間改變,因此全 氟辛烷磺酸鋰鹽之許可用途,應經由聯邦、州政府或地方政府之管理機關 共同協商訂定之。 (二)殺蟲劑之主要用途為黃蜂類昆蟲之誘餌及戶外用殺蟲劑。 參、物理及化學性質(Chemical & Physical Properties) 一、顏色/型態(Color/Form) 米白色粉末狀 二、味道(Odor) 輕微刺激性臭味 三、熔點(Melting Point) 308℃

全氟磺酸树脂中不稳定端基的热行为研究

Vol.14高分子材料科学与工程No.6 1998年11月PO LYM ER M AT ERIALS SCIEN CE AND EN GIN EERIN G Nov.1998全氟磺酸树脂中不稳定端基的热行为研究⒇ 饶国瑛 张之旭 (北京化工大学应用化学系分析中心,北京,100029) 摘要 用傅立叶变换红外光谱(F T-IR)和热失重(T G)方法对全氟磺酸树脂中的不稳定端基的热行为进行了研究。 结果表明,该树脂中的不稳定羧端基受热分解是造成树脂热压成膜产品中存在气泡和“晶点”的主要原因,通过对不稳定羧端基热分解机理研究表明,树脂中不稳定羧端基受热时存在两种分解方式:即单纯脱羧放出CO2和交联脱羧放出CO2和水,前者结果使产品中存在气泡,后者则使膜中既存在气泡又产生交联点(晶点)。 关键词 全氟磺酸树脂,羰基,羧基,不稳定端基 70年代美国研制开发成功的氯碱工业用全氟磺酸-全氟羧酸复合膜制碱技术是代表世界膜技术最新水平的尖端技术。但是作为这种膜的原料树脂在热压成型加工中常常会产生大量气泡,严重影响膜的质量,对此国外的不少学者进行过研究[1,2],但对树脂中易分解的官能团即不稳定端基与热压成膜温度之间的关系及分解机理尚未见报导。本文用FT-IR及TG对全氟磺酸树脂的不稳定端基热行为进行了较详细的研究,并建立了不稳定端基与成膜温度之间的半定量关系,对分解机理也进行了探讨。 1 实验部分 1.1 仪器设备 傅立叶变换红外光谱仪60SX B:美国Nicolet 公司产品。热压装置:Y-88,天津实用技术开发公司产品。热分析仪:TGS-2,美国PE公司产品。 1.2 材料 全氟磺酸树脂:江苏南通合成材料实验厂提供。 1.3 实验方法 1.3.1 红外光谱法:先将约0.2g样品放入热压模具中加热到所需温度恒温5min,在40~60kg/cm2压力下热压成透明薄膜进行红外光谱分析。 1.3.2 热失重:样品在N2保护下以5℃/min的速度升温,记录180~340℃范围的热失重曲线。 2 结果与讨论 2.1 不稳定端基的确定 Fig.1为全氟磺酸树脂热压成膜位于2000~1500cm-1之间的红外光谱。由文献可知,1810cm-1吸收峰是游离羧端基-COOH的振动吸收,位于1794cm-1[1~3]吸收峰归于-CF=CF2相对稳定的端基吸收,而位于1775cm-1吸收峰是树脂受热后新产生的与不稳定羧端基有关的羰基吸收峰[4]。 Fig.1 FT-I R spectra of thermal-pres sed perfluorosulfacid resin film on the temperature of220℃ 2.2 不稳定端基的热行为 Fig.2为树脂在100~300℃范围内成膜样品的红外光谱图,由图可知,随成膜温度的升高,1812 cm-1吸收峰逐渐减小而1795cm-1吸收峰的强度保持不变。而当成膜温度达到240℃时在1775cm-1处开始出现新的羰基吸收。这可作如下解释:当成膜温度升高时不稳定的-COO H端基受热分解而导致1812cm-1吸收峰的强度减小,在我们的成膜温度范围内1795cm-1-CF=C F2端基是稳定的,故其强度保持不变,而当温度高于240℃后则不仅存在- ⒇收稿日期:1996-05-17;修改稿收到日期:1997-10-27 联系人及第一作者:饶国瑛,女,54岁,副教授.

PFOS全氟辛烷磺酸盐检测 PFOS 测试

PFOS全氟辛烷磺酸盐检测 PFOS 测试 PFOS全氟辛烷磺酸盐简介 PFOS全氟辛烷磺酸盐是perfluorooctanesulphonate的英文缩写,它由全氟化酸性硫酸基酸中完全氟化的阴离子组成并以阴离子形式存在于盐、衍生体和聚合体中。术语Perfluorinated常常用于描述物质中碳原子里所有氢离子都被转变成氟。目前,PFOS已成为全氟化酸性硫酸基酸perfluorooctanesulphonicacid各种类型派生物及含有这些派生物的聚合体的代名词。当PFOS被外界所发现时,是以经过降解的PFOS形态存在的。那些可分解成PFOS的物质则被称作PFOS有关物质。当前PFOS已经在出口产品材料中被广泛限制,了解其他相关及检测请进个人主页 限制指令 2006年12月27日,欧洲议会和部长理事会联合发布《关于限制全氟辛烷磺酸销售及使用的指令》(2006/122/EC)。2006年10月30日,欧洲议会以632票比10票通过了该草案,2006年12月12日指令草案最终获得部长理事会批准,2006年12月27日指令正式公布并同时成效。 欧盟将严格限制全氟辛烷磺酸(PFOS)的使用,欧洲议会集体投票通过了欧盟危险物质指令(76/769/EEC)的最后修正,该投票在其被纳入新化学品法规(REACH)之前举行。各成员国将有18个月的时间将该指令转为本国的法令(即截至2008年6月27日)。2002年12月,OECD召开的第34次化学品委员会联合会议上将PFOS定义为持久存在于环境、具有生物储蓄性并对人类有害的物质。REACH法规规定,PFOS是使用前需要经过批准的主要化学品,因为它是众所周知的持续性有机污染物。 因此,该指令的实施必将在一定范围内对我国相关产品出口造成影响。 美国PFOS最大的生产商宣布2002年底,停产PFOS, PFOA 的产品。但是因为在“停产”前,PFOS和其前驱物质已经生产了有半个世纪之久,已经有大量的PFOS进入了环境乃至人体的血液里,而且PFOS及其持久,所以PFOS的污染问题会一直持续。而且该公司只是宣称在美国停产。其在世界各地(包括我国)的分厂和其他的PFOS日本和欧洲的生产商仍然在继续生产这种物质。并且2012年的一篇论文发现(Water Research,2012, 46 (9), 3101–3109[1]),在明尼苏达州的靠近该公司生产基地的污水处理厂的进水中有大量的PFOS和其前驱物质,所以宣布“停产”不等于停止排放,停产和停止排放是不同的概念。 2006/122/EC规定,以PFOS作为配制品成分的,其浓度或质量等于或超过0.005%的不得销售;对于纺织品或其他涂层材料,如果涂层材料中PFOS的量等于或超过

[资料]全氟化合物零碎常识

[资料]全氟化合物零碎常识 1. 全氟有机化合物(PFCs)是一类主要由碳原子与氟原子组成的有机化合物。这类物质的化学性质极为稳定,能够经受高温加热、光照、化学作用、微生物作广用和高等脊椎动物的代谢作用。全氟化合物(PFCs)的生产历史已经有50 年,泛应用于化工、纺织、涂料、皮革、合成洗涤剂、炊具制造(如不粘锅)、纸制食品包装材料等领域。 早在上世纪60年代就有关于人体血清中发现有机氟化物的报道。自那以后,环境和生物基质中PFCs的含量越来越受到学术界的关注。由于PFCs具有远距离传输能力,因此污染范围十分广泛。全世界范围内被调查的环境和生物样品中都存在典型PFCs——全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的污染踪迹,甚至在人迹罕至的北极地区和我国青藏高原的野生动物体内,都发现了全氟有机化合物。 考虑到此类物质可能引发的生态环境问题和人体健康危害,在2009年5月召开的《关于持久性有机污染物的斯德哥尔摩公约》第四次缔约方大会上,将PFOS 及其盐和全氟辛基磺酰氟列入《斯德哥尔摩公约》附录A或B。这意味着这些物质将在全球范围内被限制使用。而此前已经有部分国家和地区将一些全氟有机化合物列入禁止使用名单。经济合作与发展组织(OECD)及美国环保总署 也已将全氟化合物列为“可能使人致癌的物质”。(EPA) 目前,关于PFOA和PFOS等全氟有机化合物的研究已逐渐成为国际上环境健康领域的研究热点。至今,人类对PFOS和PFOA等全氟有机化合物的环境污染途径、对生物多样性的危害、人体的暴露途径及人体健康损害的研究还处于初始阶段。 我国是全氟化有机化合物生产和使用的大国,我国人体PFOS污染水平较高,居世界前列。而中国PFOS的研究也刚刚起步,对其实施环境管理面临挑战。

严格限制全氟辛烷磺酸(PFOS)的销售和使用

歐盟(EU)將嚴格限制全氟辛烷磺酸(PFOS)的使用,歐洲議會集體投票通過了歐盟危險物質指令(76/769/EEC)的最後修正,該投票在其被納入新化學品法規(REACH)之前舉行。 指令可能尚未完整,其中規定如果PFOS濃度超過0.005%(50ppm),半成品或物質中級別超過0.1%(1000ppm),或者紡織品或塗層材料中含有1μg/m2,則為非法物質或非法制劑成分。小量必需使用的某些例外情況除外;如無不可接受風險,僅允許在更大量中包含PFOS。各成員國將有18個月的時間將該指令轉為本國的法令(即截至2008年6月27日)。REACH法規規定,PFOS 是使用前需要經過批准的主要化學品,因為它是眾所周知的持續性有機污染物。 PFOS的有害影響 PFOS是全氟化學品,有良好耐熱性與耐環境破壞性,還可耐水耐油。另一種常見的全氟化學品是全氟辛酸(PFOA)以及其鹽。全氟化學品種聚在活有機體的脂肪組織中,對於人體和野生動物都是有害的。有依據證明接觸包括PFOS和PFOA 的全氟化學品可能導致出生嬰兒缺陷,對免疫系統產生不利影響,也會破壞甲狀腺功能,這樣在懷孕期間,會導致許多發育問題。 更重要的是,美國環境保護局認為可致癌的PFOS和PFOA以及職業接觸的PFOS都與膀胱癌發生率的增加有關。 PFOS的應用 PFOS是陰離子,過去可以在市場上找到,以PFOS鹽或包括聚合體在內的其它衍生產品的形式出現。由於健康和環境問題,PFOS的主要生產商已於2003年停止生產。PFOS相關化學品現在用於不同的產品,主要包含了三個應用領域。(1)用於表面處理的PFOS相關化學品可保證個 人衣服、家庭裝飾、汽車內部的防污、防油和防水性。特殊應用包括衣服和皮革的護理,纖維/室內裝潢,以及地毯。這些應用由顧客按照行業設置來執行,如紡織廠、皮革 廠、加工廠、纖維廠以及地毯廠家。 (2)用於紙張保護的PFOS相關化學品,作為漿 料成形的一部分,可保證紙張和紙板的防油 和防水性。特殊應用包括食品接觸應用(碟 子、食品器皿、食品包、食品袋),還有非食 品接觸應用(折疊紙箱、集裝箱、非碳性形 式,復面紙)。 (3)性能化學品種類中的PFOS相關化學品廣泛 用於專門工業、商業和消費領域。該種類包 括各種作為最終產品被商品化的PFOS鹽。 該種類中的特殊應用包括防火泡沫、礦井和 油井表面活性劑、金屬電鍍和電子腐蝕槽的 抑酸霧劑,影印石版術、電子化學、液壓液 體劑、鹼性清洗劑、地板拋光劑、照相底片、 義齒清潔劑、洗髮精、化學媒介、塗料劑、 地毯污點清潔劑、還可用作毒餌站的殺蟲 劑。

全氟辛酸的性质

全氟辛酸的性质 全氟辛酸(perfluorooctanoic acid),简称PFOA,分子式CF3(CF2)COOH,是一种有机强酸,浓度为1 g·L-1时,pH为2.6,pKa值为2.5;通常人们所说的还包括其盐,主要指全氟辛酸铵(ammonium perfluorooctanoate,简称APFO,有时也简称C8)。PFOA是引起环境污染的重要全氟化合物(PFCs)(Van de Vijver et al.2005;Yeung et al.2006;Blake et al.2007;Kannan et al.2001)。全氟化合物大多具有很高的稳定性,由于氟具有最大的电负性(-4.0),使得碳氟键具有强极性,是自然界中键能最大的共价键之一(键能大约460 kJ·mo1-1)(Nakata et al.2006)。与其他卤代化合物的相分配行为不同,全氟烷基不但疏水而且疏油,因此一些全氟化合物与碳氢化合物和水混合时会出现三相互不相溶的现象;羧基、磺酸基、铵基等带电基团的引入,又赋予其一定亲水性和表面活性,使得PFOA比相应的烃类表面活性剂的表面张力要小(Giesy and Kannan et al.2002)。PFOA的这些特殊性质,使其在被排放进入到环境中后,主要存在于水体中,部分会吸附在沉积物和有机物上(祝凌燕和林加华2008)。 目前关于PFOA及其相关物质向环境中的排放与途径的资料还很有限,大多数学者认为它们可在工业和消费品的生产、运输、使用、处理和处置过程中向环境释放,而生1产过程的PFOA的释放是环境中PFOA的主要来源。在这些过程中,与PFOA有关的挥发性母体物质C8F17CH2CH2OH(缩写为8:2 FTOH)可能会被排放到大气中并进行迁移转化(Ellis et al.2003a,2004b;Wallinton et al.2006),以PFOA和8:2 FTOH等物质为原料的相关含氟化合物在环境介质中的降解及生物体内的代谢(Dinglasan et al.2004)都会导致环境中PFOA含量的增加。而且由于其化学惰性,普通的环境条件(化学、生物或光解)只能对分子中除全氟羧基以外的部分进行降解(Remde and Debus1996)。 因此一般认为(De Silva and Mabury 2006),PFOA进入大气环境有2种途径:(1)含氟化合物的降解,(2)PFOA直接排放到大气环境中。进入大气环境的PFOA,不易被降解,并可进行远距离迁移或转运,随干湿沉降到达地面,或进入水体或土壤。Martin(2006)等利用烟雾室实验证明了大气中的全氟辛烷磺酸氨化合物[C8F17SO2N(R1)(R2)]可以通过大气转运、氧化为全氟羧酸化合物(PFCA)和PFOS,并导致偏远地区的污染。他认为全氟化物挥发性前体物质可通过大气转运扩散到遥远的地区,然后沉降为不挥发性全氟化合物,这个过程也导致了对生物体的污染。 PFOA可通过摄取、吸入、皮肤接触等被人体吸收(Gerald and Kennedy 1985;Kennedy et al.1986),导致人体中过氧物酶体繁殖(Berthiaum and Wallace 2002),影响能量传递、破坏细胞膜等,从而诱发癌症、肝肿大等疾病。

全氟辛烷磺酸的介绍

https://www.360docs.net/doc/ec7957330.html, 全氟辛烷磺酸的介绍 ★基本信息: 它由全氟化酸性硫酸基酸中完全氟化的阴离子组成。全氟辛烷磺酸盐,简称PFOS,是含氟类表面活性剂。PFOS全氟辛烷磺酸盐是perfluorooctanesulphonate的英文缩写,它由全氟化酸性硫酸基酸中完全氟化的阴离子组成并以阴离子形式存在于盐、衍生体和聚合体中。术语Perfluorinated常常用于描述物质中碳原子里所有氢离子都被转变成氟。目前,PFOS已成为全氟化酸性硫酸基酸各种类型派生物及含有这些派生物的聚合体的代名词。当PFOS被外界所发现时,是以经过降解的PFOS形态存在的。那些可分解成PFOS的物质则被称作PFOS有关物质。当前PFOS已经在出口产品材料中被广泛限制; ★应用领域: PFOS相关化学品现在用于不同的产品,主要包含了三个应用领域: 1)用于表面处理的PFOS相关化学品可保证个人衣服、家庭装饰、汽车内部的防污、防油和防水。 2)用于纸张保护的PFOS相关化学品,作为浆料成形的一部分,可保证纸张和纸板的防油和防水。 3)性能化学品种类中的PFOS相关化学品广泛用于专门工业、商业和消费领域。该种类包括各种作为最终产品被商品化的PFOS盐。 ★危害/伤害: 全氟辛烷磺酸在脂肪组织中不会累积起来。这是因为全氟辛烷磺酸既具有疏水性,又具有疏脂性。相反,全氟辛烷磺酸依附于血液和肝脏中的蛋白质。据EPA、欧洲、日本及我国研究机构的研究结果表明:PFOS及其衍生物通过呼吸道吸入和饮用水、食物的摄入等途径,而

https://www.360docs.net/doc/ec7957330.html, 很难被生物体排出,尤其最终富集于人体、生物体中的血、肝、肾、脑中。

全氟辛烷磺酸PFOS

作为20世纪最重要的化工产品之一,氟化有机物在工业生产和生活消费领域有着广泛的应用。全氟辛烷磺酸盐(PFOS)同时具备疏油、疏水等特性,被广泛用于生产纺织品、皮革制品、家具和地毯等表面防污处理剂;由于其化学性质非常稳定,被作为中间体用于生产涂料、泡沫灭火剂、地板上光剂、农药和灭白蚁药剂等。此外,还被使用于油漆添加剂、粘合剂、医药产品、阻燃剂、石油及矿业产品、杀虫剂等,包括与人们生活接触密切的纸制食品包装材料和不粘锅等近千种产品。 PFOS是PerfluorooctaneSulfonate 的简称,其作为一种重要的全氟化表面活性剂,也是许多其他全氟化合物的重要前体。作为氟化有机物的代表性化合物,由于具有低表面张力、低临界胶束浓度、良好的热稳定性和化学稳定性及相容性等优越的自身特性,PFOS 可以用于低表面物质的润湿,乳化、分散,并可用于高温、强酸、强碱,强氧化剂介质体系中。PFOS被广泛使用于纺织品、电镀、消防、航空、农药、地毯、皮鞋、造纸等众多领域。 8 个碳原子的链烃及其末端的磺酰基是PFOS 的主体结构,链烃上一般连接氢原子,已经是相对稳定的化学结构。PFOS 在相对稳定的化学结构上将氢原子全部置换为氟原子,提高了生物键能,使得这类化合物具有很高的生物、化学和热稳定性,不会轻易发生分解。由于C-F键的生成和断裂都需要很高的能量,因此自然界中很少有天然氟代烃的存在,大部分全氟代的有机分子绝大多数是人工合成的。这种人工合成的物质一旦生成就很难降解。 全氟辛烷磺酸的识别: 全氟辛烷磺酸; 辛烷磺酸钠, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-十七氟; 同物异名: 1-辛烷磺酸钠酸,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-十七氟; 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-十七氟- 1-辛烷磺酸钠酸; 1-辛烷磺酸钠酸,十七氟-; 1-全氟辛烷磺酸钠酸; 十七氟-1-辛烷磺酸钠酸; 全氟辛烷磺酸钠酸; 全氟辛烷磺酸; 美国3M公司于1952年率先将PFOS/PFOSF投入商业生产,从PFOSF为原料所生产的一系列产品在获得了巨大成功,多年来一直雄踞全球产量首位。资料表明,3M公司历史上共生产了约75000吨(按PFOSF计),其中最高年产量达3500吨。而3M以外的其它公司的产量非常有限,历史最高年产量总计不超过1000吨。2000年5月,作为美国3M公司宣布启动自愿停产计划,并在2002年末彻底停止生产。其它厂商也陆续采取了类似行动,目前几乎所有国外厂商均已停止了PFOS的生产,仅巴西声称还生产少量PFOS锂盐用作杀虫剂。 绝大多数的PFOS类物质都是被作为表面活性剂而使用的,而例外的情况是一种较为特殊的农药——氟虫胺(Sulfluramid,N-乙基全氟辛烷磺酰胺,CAS号:4151-50-2),它是由美国固信公司(Griffin Corporation)于1989年率先研制出来并在美国完成原药登记,后来被富美实公司(FMC)等多家美国公司作为活性成分用于白蚁和蚂蚁防治饵剂。由于美国

相关文档
最新文档