光耦电阻选择

光耦电阻选择
光耦电阻选择

光耦主副边电阻的选择

假设我们现在设定,tlp521的电流是2ma,ctr(current transfer ratio)取50%,原边是24V,副边是3.3V,led压降是1.5V,算一下限流电阻和上拉电阻的大小:

R(led)=(24-1.5)/2=11.25K

取一个归一化的电阻值,10K

那么,I(led)=(24-1.5)/10=2.25ma

Ic=2.25*0.5=1.125

Rc=(3.3-Vce)/1.12=2.9

Vce是三极管的饱和压降,这里简化为0v;

那么,还要考虑到充分的进入饱和状态,那么,可以取Rc为近视的2倍,也就是5.1K;一、光耦电阻选择

1、左边光耦输出的R13接几伏,应该是知道的,算出饱和时有多大电流。举例:假如R13接到12V(注意,这个条件将影响到下面所有的计算结果),光耦输出饱和压降忽略不计,算得电流 I=12V/3.3kΩ=3.6mA。

2、查看TLP521的手册,可知该器件不挑档次的话最小变换效率为50%,因此为保证光耦被驱动时饱和,右边的输入回路电流不得小于3.6mA/0.5=7.2mA。

3、查TLP521的手册,该器件发光二极管的最大正向压降是1.3V(10mA时),于是为保证能以7.2mA以上的电流驱动,R14+R17≦(3.3V-1.3V)/7.2mA=0.28kΩ。

4、考虑电源波动和电阻精度的因素,实际R14+R17电阻取值建议为200Ω以下

电阻应变片(计)简介

电阻应变片(计)简介 电阻应变式传感器是目前应用最广泛的传感器之一。它由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。电阻应变式传感器已广泛应用于航空、机械、电力、化工、建筑、医疗等领域中。 电阻应变式传感器的主要优点是结构简单,使用方便,灵敏度高,性能稳定、可靠,测量速度快,适合静态、动态测量。 1.电阻应变片(计)工作原理 设有一个金属电阻丝, 如图1-1所示,当金属丝未受力时,原始电阻值为 S L R ρ= (式1) 式中:R 为金属丝的电阻; ρ为金属丝的电阻率; L 为金属丝的长度; S 为金属丝的截面积; 图 1-1 金属电阻丝力变形情况 当金属丝受到拉力F 作用时,将伸长△L ,横截面积相应减小ΔS ,电阻率因金属晶格发生形变等因素的影响也将改变△ρ,从而引起金属丝电阻的改变。 对式1作全微分,有 ρρρ d S L dS S L dL S dR +-=2 (式2) 式2左边除R ,右边除ρL/S 得 ρ ρd S dS L dL R dR +-= (式3) 若金属丝的截面是圆形的,则2 r S π=(r 为金属丝的半径)。对S 作微分得,rdr dS π2=则 r dr S dS 2= (式4) 令金属丝的轴向应变为 L dL x =ε (式5)

金属丝的径向应变为 x y μεε-= (式6) 式中:μ为金属丝材料的泊松系数,负号表示应变方向相反。 将式3—6代入式2得: x x d R dR ερρμε/)21(/+ += (式7) 令 x x s d R dR K ερρμε/)21(/++== (式8) 则Ks 称为金属丝的灵敏系数,其物理意义为单位应变所引起的电阻阻值的相对变化。显然,Ks 越大,单位应变引起的电阻阻值的相对变化越大,故越灵敏。 从式8可以看出,金属丝的灵敏系数Ks 由两个因素决定:第一项(1+2μ),它是由于金属丝受拉伸力作用后,材料的几何尺寸发生变化而引起的;第二项x d ερ ρ/,它 是由于材料发生变形时,其自由电子的活动能力和数量均发生了变化而引起的。对于金属丝来说,第一项的值要比第二项的值大的多。 2.电阻应变片的结构 电阻应变片(简称应变片或应变计)种类繁多, 形式多样, 但其基本构造大体相似。现以常见的丝绕式应变片为例进行说明。 图1- 2为丝绕式应变片的结构示意图。它是由敏感栅、基底、覆盖层和引线等部分组成的。图中,l 称为应变片的标距或基长,它是敏感栅沿轴向测量变形的有效长度;宽度b 指最外两敏感栅外侧之间的距离。 图 1-2 电阻丝应变片的基本结构 敏感栅是以直径为0.01~0.05 mm 左右的高电阻率的合金电阻丝绕成的。敏感栅是应变片的核心部分,其作用是敏感应变的大小。敏感栅粘贴在绝缘的基底上,其上再粘贴起保护作用的覆盖层,两端焊接引出导线。敏感栅常用的材料有铜镍合金(俗称康铜)、 镍铬合金及镍铬改良性合金、铁铬铝合金、镍铬铁合金及铂金。 基底的作用是固定敏感栅,并使敏感栅与弾性元件相互绝缘。基底要将被测体的应变准确地传速到敏感栅上,因此它很薄,一般为0.03~0.06 mm ,使它与被测体及敏感

(完整版)第4章应变式传感器习题及解答

第4章应变式传感器 一、单项选择题 1、为减小或消除非线性误差的方法可采用()。 A. 提高供电电压 B. 提高桥臂比 C. 提高桥臂电阻值 D. 提高电压灵敏度 2、全桥差动电路的电压灵敏度是单臂工作时的()。 A. 不变 B. 2倍 C. 4倍 D. 6倍 3、电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( )。 A.直流平衡电桥 B.直流不平衡电桥 C.交流平衡电桥 D.交流不平衡电桥 4、通常用应变式传感器测量( )。 A. 温度 B.密度 C.加速度 D.电阻 5、影响金属导电材料应变灵敏系数K的主要因素是()。 A.导电材料电阻率的变化 B.导电材料几何尺寸的变化 C.导电材料物理性质的变化 D.导电材料化学性质的变化 6、产生应变片温度误差的主要原因有()。 A.电阻丝有温度系数 B.试件与电阻丝的线膨胀系数相同 C.电阻丝承受应力方向不同 D.电阻丝与试件材料不同 7、电阻应变片的线路温度补偿方法有()。 A.差动电桥补偿法 B.补偿块粘贴补偿应变片电桥补偿法 C.补偿线圈补偿法 D.恒流源温度补偿电路法 8、当应变片的主轴线方向与试件轴线方向一致,且试件轴线上受一维应力作用时,应变片灵敏系数K的定义是()。 A.应变片电阻变化率与试件主应力之比 B.应变片电阻与试件主应力方向的应变之比 C.应变片电阻变化率与试件主应力方向的应变之比 D.应变片电阻变化率与试件作用力之比 9、制作应变片敏感栅的材料中,用的最多的金属材料是()。 A.铜 B.铂 C.康铜 D.镍铬合金 10、利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小()。 A.两个桥臂都应当用大电阻值工作应变片 B.两个桥臂都应当用两个工作应变片串联 C.两个桥臂应当分别用应变量变化相反的工作应变片

电阻应变片压力传感器设计

《电阻应变片的压力传感器设计》 题目电阻应变片的压力传感器设计时间 201608 班级 2014级 姓名 序号 指导教师 教研室主任 系教学主任 2016年08月 前言

随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。 目录

电阻应变片

电阻应变片 一、应变计的分类 根据敏感栅材料可分为金属、半导体及金属或金属氧化物浆料等三类: 1、金属应变计包括丝式(丝绕式、短接式)应变计、箔式应变计和薄膜应变计; 2、半导体应变计包括体型半导体应变计、扩散型半导体应变计和薄膜半导体应变计; 3、金属或金属氧化物浆料主要是制作厚膜应变计。 二、应变计的主要参数 1、应变计的电阻值应变计的电阻是指应变计在室温环境、未经安装且不受力的情况下,测定的电阻值。应变计电阻值的选定主要根据测量对象和测量仪器的要求。 2、应变计的灵敏系数应变计的灵敏系数是指:当应变计粘贴在处于单向应力状态的试件表面上,且其纵向(敏感栅纵线方向)与应力方向平行时,应变计的电阻变化率与试件表面贴片处沿应力方向的应变(即沿应变计纵向的应变)的比值,即式中,K为应变计的灵敏系数;ε为试件表面测点处与应变计敏感栅纵线方向平行的应变;RRΔ为由ε所引起的应变计电阻的相对变化,常用的应变计灵敏系数为2.0~2.4。 3、应变计的疲劳寿命: 应变计的疲劳寿命是指:在恒定幅值的交变应力作用下,应变计连续工作,直至产生疲劳损坏时的循环次数。 三、金属电阻应变片应用与工作原理电阻应变计有两方面的应用:一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性元件构成传感器,用以对任何能转变成弹性元件应变的其它物理量作间接测量。用应变片测量时,将其粘贴在被测对象表面上。当被测对象受力变形时,应变片的敏感栅也随同变形,其电阻值发生相应变化,通过转换电路转换为电压或电流的变化,从而实现应变的测量。 金属电阻应变片的工作原理是电阻应变效应,即金属丝在受到应力作用时,其电阻随着所发生机械变形(拉伸或压缩)的大小而发生相应的变化。电阻应变效应的理论公式如下: R=ρ*(L/S)式中:ρ—电阻率(Ω·mm2/m) L—金属丝的长度(m) S—金属丝的截面积(mm2) 由上式可知,金属丝在承受应力而发生机械变形的过程中,ρ、L、S三者都要发生变化,从而必然会引起金属丝电阻值的变化。当受外力伸张时,长度增加,截面积减小,电阻值增加;当受压力缩短时,长度减小,截面积增大,电阻值减小。因此,只要能测出电阻值的变化,便可知金属丝的应变情况。这种转换关系为 ΔR/R=Koε式中:R—金属丝电阻值的变化量; Ko—金属材料的应变灵敏系数,它主要由试验方法确定,且在弹性极限内基本为常数值; ε—金属材料的轴向应变值,即ε=ΔL/L,因此又称ε为长度应变值,对金属丝而言,其值勤在0.24~0.4之间。 在实际应用中,将金属电阻应变片粘贴在传感器弹性元件或被测饥械零件的表面。当传感器中的弹性元件或被测机械零件受作用力产生应变时,粘贴在其上的应变片也随之发生相同的机械变形,引起应变片电阻发生相应的变化。这时,电阻应变片便将力学量转换为电阻的变化量输出。 电路原理:通常传感器采用四片等值电阻组成惠氏顿等桥电路。R,B为输入端,G,W为输出端,RS起到保护电路的作用。通过调节RS、R1调节电路的零点平衡。

电阻应变片的结构及工作原理

电阻应变片的结构及工作原理 电阻应变片的结构如图4-1-3所示,其中,敏感栅是应变片中把应变量转换成电阻变化量的 敏感部分,它是用金属丝或半导体材料制成的单丝 或栅状体。引线是从敏感栅引出电信号的丝状或带 状导线。 (1)粘结剂:是具有一定电绝缘性能的粘结 材料,用它将敏感栅固定在基底上。 (2)覆盖层:用来保护敏感栅而覆盖在上面的 绝缘层。 (3)基底:用以保护敏感栅,并固定引线的 几何形状和相对位置。 电阻应变片能将力学量转变为电学量是利用了金属导线的应变——电阻效应。我 们知道,金属导线的电阻R 与其长度L 成正比,与其截面积A 成反比,即 A L R ρ= (4-1-3) 式中ρ是导线的电阻率。 如果导线沿其轴线方向受力产生形变,则其电阻值也随之发生变化,这一物理现象被称为金属导线的应变——电阻效应。为了说明产生这一效应的原因,可将式(4-1-3)取对数后进行微分得 ρ ρd A dA L dL R dR +-= (4-1-4) 式中,L dL 为金属导线长度的相对变化,用轴向应变来表示,即L dL =ε;A dA 是截面积的相对变化。2r A π=(r 为金属导线的半径),,r dr A dA 2= r dr 是金属导线半径的相对变化,即径向应变 r 。导线轴向伸长的同时径向缩小,所以轴向应变与径向应变r 有下列关系: μεε-=r (4-1-5) 为金属材料的泊松比。 根据实验,金属材料电阻率相对变化与其体积的相对变化之间的关系为V dV C d =ρρ,C 为金属材料的一个常数,如铜丝C =1 。 由L A V ?= 我们可导出V dV 与、r 之间的关系。 1 2 3 4 5 图4-1-3 电阻应变片 1-敏感栅;2-引线;3-粘结剂; 4-覆盖层;5-基底

应变片的种类和应用

应变片的种类和应用 应变片主要有两种,电阻应变片和光学应变片。 一.光学应变片: 光学应变计一般采用不超过4-9 微米直径的布拉格光栅玻璃纤维制造。一般来说,人的头发直径为60-80微米。纤维芯被直径大约125 微米的纯玻璃覆盖层所包围。 基于布拉格光栅的应变片有以下优势: 1. 对电磁场不敏感。 2. 可以用于可能爆炸的环境。 3. 高震动负载情况下,材料(玻璃)不会产生故障。 4. 可以测量更大的应变,一般电阻应变片的最大应变为数百微应变,而光学应变片的可测量的最大应变为7000微应变。 5. 更少的连接线,因此会对测试物体产生更少的干扰。 6. 互连需要大量的传感器,不同的布拉格波长可以集成在一个光纤中。 二.电阻应变片: 电阻应变片的工作原理是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,这种现象称为“应变效应”。 半导体应变片是用半导体材料制成的,其工作原理是基于半导体材料的压阻效应。压阻效应是指当半导体材料某一轴向受外力作用时,其电阻率发生变化的现象。 应变片是由敏感栅等构成用于测量应变的元件,使用时将其牢固地粘贴在构件的测点上,构件受力后由于测点发生应变,敏感栅也随之变形而使其电阻发生变化,再由专用仪器测得其电阻变化大小,并转换为测点的应变值。 金属电阻应变片品种繁多,形式多样,常见的有丝式电阻应变片和箔式电阻应变片。 箔式电阻应变片是一种基于应变——电阻效应制成的,用金属箔作为敏感栅的,能把被测试件的应变量转换成电阻变化量的敏感元件。应变片有很多种类。一般的应变片是在称为基底的塑料薄膜(15-16μm)上贴上由薄金属箔材制成的敏感栅(3-6μm),然后再覆盖上一层薄膜做成迭层构造。 而应变片有很多分类方法: 比如按材料分可分为:

电阻应变片的粘贴技术

电阻应变片的粘贴技术 一、实验目的 1.初步掌握常温用电阻应变片的粘贴技术。 2.初步掌握接线、检查等准备工作。 二、实验设备和器材 1.常温用电阻应变片 2.数字式万用表。 3.502粘结剂。 4.电烙铁、镊子、沙纸。 5.等强度梁试件,温度补偿块。 6.丙酮、药棉等。 7.测量导线若干。 三、实验方法和步骤 1.检查应变片的外观和电阻(电阻为200Ω±0.5Ω)。 2.测点表面的清洁处理:为使应变计与被测试件贴得牢,对测点表面要进行清洁处理。首先把测点表面用砂纸打磨;使测点表面平整、光洁。用棉花球蘸丙酮擦洗表面的油污,到棉花球不黑为止。再用划针在测片位置处划出应变计的座标线。 3.贴片:在测点位置和应变片的底基面上,涂上薄薄一层胶水,用镊子夹住应变片,把应变片轴线对准座标线,上面盖一层聚乙烯塑料膜作为隔层,用手指在应变计的长度方向滚压,挤出片下汽泡和多余的胶水,手指保持不动约1分钟后再放开,注意按住时不要使应变片移动,轻轻掀开薄膜检查有无气泡、翘曲、脱胶等现象。 4.贴接线端子片、焊接:将端子片基地和待贴位置处涂抹上一层胶水,等贴牢后将应变片的两个引出线分别焊接到端子片上,再将两根导线分别焊接到另外的两个端子上,注意不能出现短路的情况。 5.检查应变片是否通路,并测量阻值。 四.实验结果 1.电阻理论值为120Ω,测量电阻值均符合要求。

一、应变计的选择 1、1/4桥 λε,仪器调零困难。同时也受温度的影响,用手握住导线的变化就能有100εμ2根线的1/4桥:长的引线会引入电阻导致电桥不平衡,6m长的导线导致电桥不平衡量为29000 以上。 λ,仪器调零容易。也不受导线温度的影响。εμ3根线的1/4桥:6m长的导线导致电桥不平衡量为400 2、应变计的长度选择:要基于应力的分布。 λ应变测量的是局部区域的平均,而非某点的微应变。当应力是线性分布,应变计的长度无影响。 λ应力集中时,最好用非常小的应变计贴在应力集中处,应变计应比应力集中点稍大一点。 λ各向异性材料(如混凝土、碳纤维复合材料等),用长应变计在较大区域得到平均值。 3、应变片样式 λ单向应变计:需要知道主应力方向; T型应变计:也需要知道主应力方向;λ 三片应变花:不知道主应力方向时,可随意贴,通过计算可得出最大最小主应力和方向。λ 剪切式应变计:用于剪切和扭转。λ 4、应变计电阻选择 常用的有120Ω、350Ω和1000Ω。 电阻120Ω350Ω 优 点应变计尺寸小电流低,发热功率低 成本稍低可大电压激励,信号噪声小

应变片种类

应变片主要有两种,电阻应变片和光学应变片。 一.光学应变片: 光学应变计一般采用不超过4-9 微米直径的布拉格光栅玻璃纤维制造。一般来说人的头发直径为60-80微米。纤维芯被直径大约125 微米的纯玻璃覆盖层所包围。基于布拉格光栅的应变片有以下优势:1. 对电磁场不敏感2. 可以用于可能爆炸的环境。3. 高震动负载情况下,材料(玻璃)不会产生故障。4. 可以测量更大的应变,一般电阻应变片的最大应变为数百微应变,而光学应变片的可测量的最大应变为7000微应变。5. 更少的连接线,因此会对测试物体产生更少的干扰。6. 互连需要大量的传感器,不同的布拉格波长可以集成在一个光纤中。 二.电阻应变片:电阻应变片的工作原理是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,这种现象称为“应变效应”。半导体应变片是用半导体材料制成的,其工作原理是基于半导体材料的压阻效应。压阻效应是指当半导体材料某一轴向受外力作用时,其电阻率发生变化的现象。应变片是由敏感栅等构成用于测量应变的元件,使用时将其牢固地粘贴在构件的测点上,构件受力后由于测点发生应变,敏感栅也随之变形而使其电阻发生变化,再由专用仪器测得其电阻变化大小,并转换为测点的应变值。金属电阻应变片品种繁多,形式多样,常见的有丝式电阻应变片和箔式电阻应变片。箔式电阻应变片是一种基于应变——电阻效应制成的,用金属箔作为敏感栅的,能把被测试件的应变量转换成电阻变化量的敏感元件。应变片有很多种类。一般的应变片是在称为基底的塑料薄膜(15-16μm)上贴上由薄金属箔材制成的敏感栅(3-6μm)然后再覆盖上一层薄膜做成迭层构造。 应变片的应用:

电阻应变片的三个实验

第一章传感器实验台介绍ZY13Sens12SB传感器技术实验台由主控台、三源板(温度源、转动源、振动源)、18个传感器、相应的实验模板、数据采集卡及处理软件、实验桌等六部分组成。 一、实验台的组成 1、主控台部分:提供高稳定的±15V、+5V、±2V±4V±6V±8V±10V可调及+2V-+24V可调四种直流稳压电源;主控台面板上还装有测电压、气压、频率、转速的数显表及计时表。音频信号源(音频振荡器)1kHz~10kHz(可调);低频信号源(低频振荡器)1Hz~30Hz(可调);气压源0-20kpa可调;高精度温度转速两用仪表(控制精度±0.5℃),RS232计算机串行接口;流量计;漏电保护器。其中电源、音频、低频、均具有断电保护功能。±2V±4V±6V±8V±10V电源与其它电源、信号Fin、Vin部分不共地。如果与其它电源同时使用时,应将其共地。因断路无输出重新开机即恢复正常。调节仪置内为温度调节、置外为转速调节。 2、三源板:装有振动源1Hz-30Hz(可调);旋转源0-2400转/分(可调);加热源常温<150℃(可调)。 3、传感器:包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式传感器、霍尔转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器共十八种。 4、实验模块部分:应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单独采样亦能连续采样。标准RS232接口,与计算机串行工作。具有网络监控功能和用户认证功能;提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。 二、电路原理 传感器模块电路原理图见模块正面 三、使用方法

电阻器的命名规则与电阻类别

电阻器的命名规则与电阻类别(带实物图) 1.电阻器的命名规则 (一)、固定电阻器的型号命名方法: 国产电阻器的型号命名由三部分或四部分组成,名部分的主要含义见表1。 表 1 国产电阻器的型号命名及含义 第一部分为字头符号,用字母“R”表示电阻器为产品主称。 第二部分用字母表示电阻器的电阻体材料。 第三部分通常用数字或字母表示电阻器的类别,也有的电阻器用该部分的数字来表示额定功率。 第四部分用数字表示生产序号,以区别该电阻器的外形尺寸及性能指标。 例如: TJ75(精密金属膜电阻器)RT10(普通碳膜电阻器) R——电阻器(第一部分)R——电阻器

J——金属膜(第二部分)T——碳膜 7——精密(第三部分)1——普通型 5——序号(第四部分)0——序号 RX28(阻燃型线绕电阻器)RJ 90-B (不然性金属膜熔断电阻器) R——电阻器RJ——金属膜电阻器 X——线绕9——熔断型 2——阻燃型0-B ——不燃性、额定功率为 8——序号 电阻类别(带实物图) 一、基础知识电阻器是电路元件中应用最广泛的一种,在电子设备中约占元件总数的30%以上,其质量的好坏对电路工作的稳定性有极大影响。它的主要用途是稳定和调节电路中的电流和电压,其次还作为分流器分压器和负载使用。 1.分类 在电子电路中常用的电阻器有固定式电阻器和电位器,按制作材料和工艺不同,固定式电阻器可分为:膜式电阻(碳膜RT、金属膜RJ、合成膜RH和氧化膜RY)、实芯电阻(有机RS和无机RN)、金属线绕电阻(RX)、特殊电阻(MG型光敏电阻、MF型热敏电阻)四种。 表1 几种常用电阻的结构和特点

2.主要性能指标 额定功率:在规定的环境温度和湿度下,假定周围空气不流通,在长期连续负载而不损坏或基本不改变性能的情况下,电阻器上允许消耗的最大功率。为保证安全使用,一般选其额定功率比它在电路中消耗的功率高1-2倍。额定功率分19个等级,常用的有、、 W、 W、1 W、2 W、3 W、5 W、7 W、10 W,在电路图中非线绕电阻器额定功率的符号表示如下图: 电阻器阻值标示方法 1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。 2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。 表示允许误差的文字符号

电路设计—— 常用电阻的选择及其作用

电路设计——常用电阻的选择及其作用 电阻的种类很多,普通常用的电阻有碳膜电阻、水泥电阻、金属膜电阻和线绕电阻等;特殊电阻有压敏电阻、热敏电阻、光敏电阻等。不同类型电阻其特性参数都有一定的差异,在电路使用时需要考虑的点也不一样。 对于刚接触电路设计的工程师来说很可能会忽略电阻的某些特殊的参数,导致产品的稳定性和可靠性得不到保证。正确的理解电阻各个参数及选型的注意事项,且全面的理解电阻在电路中起到的真正作用,才能够从底层最基本的电路设计上保证产品的优质性。 1电阻的基本参数: 新接触硬件电路设计的工程师,可能对电阻的第一印象就是物理书上描述的导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。主要关注的参数为1)、标称阻值:电阻器上面所标示的阻值;2)、允许误差:

标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。而在电路的设计上,只关注这两个参数是不够的,还有两个重要的参数必须要在设计当中引起重视:额定功率和耐受电压值,这两个参数对整个系统的可靠性影响非常大。 如电路中流过电阻的电流为100mA,阻值为100Ω,那么在电阻上的功率消耗为1W,选择常用的贴片电阻,如封装为0805或1206等是不合适的,会因电阻额定功率小而出现问题。因此,选择电阻的额定功率要满足在1W以上(电路设计选择电阻的功率余量一般在2倍以上),否则电阻上消耗的功率会使电阻过热而失效。 同样,耐压值选择不合适的情况下,也会因为电阻被击穿而导致系统设计的失败。举个例子:AC-DC开关电源模块在设计的输入前端,根据安规GB4943.1标准的要求,在保证插头或连接器断开后,在输入端L、N上的滞留电压在1S之内衰减到初始值的37%,因此,在设计时一般会采用并接一个或两个MΩ级阻抗的电阻进行能量泄放,而输入端是高压,即电阻两端是要承受高压的,当电阻的耐压值低压输入端高压的情况下,就会产生失效。以下表一是常见SMT厚膜电阻的参数,最终选型时还要和选购器件的厂家核实。 表一常用SMT厚膜电阻 注:只做参考,以最终选择的厂家说明为准

基于电阻应变片的压力传感器设计

前言 随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。

电阻应变片

电阻应变片 电阻应变片贴片技巧公开 电阻应变片贴片技巧公开 目前市面上流行的称重传感器,高压力传感器以及扭矩传感器都是贴片工艺制造的也就是粘贴电阻应变 片。电阻应变片贴的好坏影响传感器的特性,不如精度,输岀信号大小等,如果粘贴的不好,传感器也就是一个次品无法在进行下一步的工艺。因此可以说传感器最关键最基本的一步就是粘贴电阻应变片。(电阻应变片的组成及工艺原理请参见我司撰写的其他文章)。上次“扭矩传感器技术公开”的这一文章上也大致的说了下贴片的重要性。故此,着重用一篇文章来介绍如何贴电阻应变片。下面的介绍中我以实验的方式向大家介绍这一工艺。如有其他问题也可以与我司人员联系。 一、实验目的 1?了解应变片的测量原理、结构、种类; 2?掌握应变片的粘贴技术及质量检查与防潮方法。 二、实验原理(应变片) 在机械工程测试技术中,广泛应用电阻应变片,因为它能准确地测量各种力参数。对于应变片的正确选取和粘贴质量的好坏,将直接影响应变片的性能和测量的准确性。 (一)应变片的分类 应变片可分为金属式和半导体式两大类: 金属式:丝式、箔式、薄膜式;半导体式:薄膜式、扩散式。 根据基底材料不同又可分为纸基、胶基和金属片基等。 (二)基底材料 基底材料要满足如下要求:机械强度高,粘贴容易,电绝缘性好,热稳定性好,抗潮湿性能好,挠性好(能够粘贴在曲率半径很小的曲面上),无滞后和蠕变。 1?胶基:是由有机聚合材料的薄片作为基底的称为胶基应变片;(1)酚醛、环氧树脂基底(箔式片居多), 它具有良好的耐热和防潮性能,使用温度达成180 C,并且长时间稳定性好;(2)聚酰亚胺基底,使用温 度-260 'C?400 C,绝缘性能好,因此可以做得很薄,通常为0.025mm,应变片的柔韧性好;(3)石棉、 玻璃纤维增强塑料作基底,主要在高温下使用。 (三)敏感元件材料 对敏感材料的要求:灵敏度K。在尽可能大的应变范围内是常数;K。尽可能大;具有足够的热稳定性;电 阻系数高且受温度变化的影响小;在一定的电阻值要求下,电阻系数越高,电阻丝的长度越短,因此可以减小电阻应变片的尺寸。

电阻器使用注意事项

?电阻器使用注意事项 ?标签:分类:更新日期:2008-09-25 09:10 ?各类型电阻器使用注意事项: 正确的选择和使用电子元器件是提高电子整机技术性、稳定性、可靠性、安全性重要条件. 因此,在整机电路的设计过程中,一个关键环节就是元件的选择,制造商千百家,选择哪一家? 元件千百类,选择哪一类?元件标准数十种,选择哪一种?元件性能参数繁多,如何选择?如何简捷规范清晰的提出采购清单?国内外的大量质量案例都反映出此环节工作的至关重要,一旦选用错误,将产生严重后果. 一、电阻器选用的三项基本原则: * 选择通过认证机构认证的生产线制造出的执行高水平标准的电阻器. * 选择具备功能优势、质量优势、效率优势、功能价格比优势、服务优势的制造商生产的电阻器. * 选择能满足上述要求的上型号目录的制造商,并向其直接订购电阻器. 二、在选用电阻器时应注意的几个问题: * 电阻器的电压和电流限制 当施加到电阻器两端的电压增至一定数值时会发生击穿现象,导致电阻值不可逆的增大或开路,因此必须对施加的电压进行限制.电阻器的击穿现象发生在两引出线之间或螺旋槽之间,引出线之间的击穿电压取决于引出线之间的距离、形状和环境大气压力的大小.电阻器槽间的击穿电压取决于槽宽、刻槽质量及涂敷绝缘材料的耐压性能.根据额定功耗和标称阻值确定的电流值为额定电流. In = 从上式可以看出:额定功耗不变时,电阻值越小,额定电流越大,对于低阻电阻器,其接触电阻所占比例很大,当电流通过时在此处耗散的功率越大,同时从接触部份分析,由于此部位电流密度很大势必造成局部过热,最终导至早期老化.另外,电路中若有高压电脉冲,应选用玻璃釉膜型电阻器. * 电阻器的负荷功率 电阻器是能量转换元件,在工作时将电能转变成热能,在此转换过程中,自身温度升高,周围温度也随之增高,此过程引起电阻器性能的可逆性变化和不可逆性变化,所谓可逆性变化指的是当温度变化后电阻值也发生了变化,当温度恢复后电阻值也恢复到原值,此物理变化过程用温度系数来描述.而不可逆变化指的是当温度变化后电阻值也发生了变化,当温度恢复后电阻值不能恢复原值,此物理过程用"老化" 来描述.电阻器的温度系数和老化在一定程度上反映出电阻器的稳定性和可靠性,因此,电阻器的电负荷性能取决于在长期工作时

电阻应变片例题与练习题

电阻应变片传感器例题与习题例题:

例2-3 采用阻值为120Ω灵敏度系数K =的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V ,并假定负载电阻无穷大。当应变片上的应变分别为1和1 000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。 解:单臂时40U K U ε=,所以应变为1时660102410244--?=??==U K U ε/V ,应变为1000时应为330102410244--?=??==U K U ε/V ;双臂时2 0U K U ε=,所以应变为1时 6 6 01042 10242--?=??==U K U ε/V ,应变为1000时应为 33 010*******--?=??==U K U ε/V ;全桥时U K U ε=0,所以应变为1时 60108-?=U /V ,应变为1000时应为30108-?=U /V 。从上面的计算可知:单臂时灵敏度

最低,双臂时为其两倍,全桥时最高,为单臂的四倍。 例2-4 采用阻值R=120Ω灵敏度系数K=的金属电阻应变片与阻值R=120Ω的固定电阻组成电桥,供桥电压为10V。当应变片应变为1000时,若要使输出电压大于10mV,则可采用何种工作方式(设输出阻抗为无穷大) 解:由于不知是何种工作方式,可设为n,故可得: 得n要小于2,故应采用全桥工作方式。 例 2-5 解:(1)沿纵向粘贴时: 由 112 10t E0.49 E210N/m σ σεεμε =??=== ? , 6 R R R K K20.490.9810 R ε ε - ? ? =?=?=?=? (2)沿圆周向粘贴时: 66 R 0.30.49100.14710 R με-- ? =-=-??=-? 例2-6 解: 按题意要求圆周方向贴四片相同应变片,如果组成等臂全桥电路,当四片全感受应变 时,桥路输出信号为零。故在此种情况下,要求有补偿环境温度变化的功能,同时桥路输出 电压还要足够大,应采取两片 3 1 R R、贴在有应变的圆筒壁上做敏感元件,而另两片 4 2 R R、

应变片的种类和应用

应变片的种类与应用 应变片主要有两种,电阻应变片与光学应变片。 一.光学应变片: 光学应变计一般采用不超过4-9 微米直径的布拉格光栅玻璃纤维制造。一般来说,人的头发直径为60-80微米。纤维芯被直径大约125 微米的纯玻璃覆盖层所包围。 基于布拉格光栅的应变片有以下优势: 1、对电磁场不敏感。 2、可以用于可能爆炸的环境。 3、高震动负载情况下,材料(玻璃)不会产生故障。 4、可以测量更大的应变,一般电阻应变片的最大应变为数百微应变,而光学应变片的可测量的最大应变为7000微应变。 5、更少的连接线,因此会对测试物体产生更少的干扰。 6、互连需要大量的传感器,不同的布拉格波长可以集成在一个光纤中。 二.电阻应变片: 电阻应变片的工作原理就是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,这种现象称为“应变效应”。 半导体应变片就是用半导体材料制成的,其工作原理就是基于半导体材料的压阻效应。压阻效应就是指当半导体材料某一轴向受外力作用时,其电阻率发生变化的现象。 应变片就是由敏感栅等构成用于测量应变的元件,使用时将其牢固地粘贴在构件的测点上,构件受力后由于测点发生应变,敏感栅也随之变形而使其电阻发生变化,再由专用仪器测得其电阻变化大小,并转换为测点的应变值。 金属电阻应变片品种繁多,形式多样,常见的有丝式电阻应变片与箔式电阻应变片。 箔式电阻应变片就是一种基于应变——电阻效应制成的,用金属箔作为敏感栅的,能把被测试件的应变量转换成电阻变化量的敏感元件。应变片有很多种类。一般的应变片就是在称为基底的塑料薄膜(15-16μm)上贴上由薄金属箔材制成的敏感栅(3-6μm),然后再覆盖上一层薄膜做成迭层构造。 而应变片有很多分类方法: 比如按材料分可分为:

金属电阻应变片的种类、材料及粘贴

1.金属电阻应变片的种类金属电阻应变片种类繁多,形式多样,但常见的基本结构有金属丝式应变片、金属箔式应变片和薄膜式应变片。其中金属丝式应变片使用最早、最多,因其制作简单、性能稳定、价格低廉、易于粘贴而被广泛使用。 2.电阻应变片的结构金属丝式电阻应变片由敏感栅、基底、盖层、黏合层和引线等组成。图2-2为金属丝式应变片的典型结构图。其中敏感栅是应变片内实现应变——.电阻转换的最重要的传感元件,一般采用的栅丝直径为0. 015~ mm。敏感栅的纵向轴线称为应变片轴线,L为栅长,n为基宽。根据不同用途,栅长可为~200 mm。基底用以保持敏感栅及引线的几何形状和相对位置,并将被测件上的应变迅速、准确地传递到敏感栅上,因此基底做得很薄,一般为0. 02~ mm。盖层起防潮、防腐、防损的作用,用以保护敏感栅。用专门的薄纸制成的基底和盖层称为纸基,用各种黏合剂和有机树脂薄膜制成的称为胶基,现多采月后者。黏合剂将敏感栅、基底及盖层黏合在一起。在使用应变片时也采用黏合剂将应变片与被测件黏牢。引线常用直径为~ mm的镀锡铜线,并与敏感栅两输出端焊接。 金属箔式应变片的基本结构如图2-3所示,其敏感栅是由很薄的金属箔片制成的,厚度只有0. 01~ mm,用光刻、腐蚀等技术制作。箔式应变片的横向部分特别粗,可大大减少横向效应,且敏感栅的粘贴面积大,能更好地随同试件变形。此外与金属丝式应变片相比,金属箔式应变片还具有散热性能好、允许电流大、灵敏度高、寿命长、可制成任意形状、易加工、生产效率高等优点,所以其使用范围日益扩大,已逐渐取代丝式应变片而占主要的地位。 但需要注意,制造箔式应变片的电阻值的分散性要比丝式的大,有的能相差几十欧姆,故需要作阻值的调整。对金属电阻应变片敏感栅材料的基本要求如下。 ①灵敏系数K。值大,并且在较大应变范围内保持常数。 ②电阻温度系数小。 ③电阻率大。 ④机械强度高,且易于拉丝或辗薄。 ⑤与铜丝的焊接性好,与其他金属的接触热电势小。

超详细的电子元器件选型指南(电阻器)

超详细的电子元器件选型指南(电阻器) 电阻器,简称电阻(Resistor,通常用“R”表示)是电路元件中应用最广的一种,在电子设备中约占元件总数的30%以上,其性能好坏对电路工作的稳定性有极大影响。它的主要用途是稳定和调节电路中的电流和电压,其次还可作为消耗电能的负载、分流器、分压器、稳压电源中的取样电阻、晶体管电路中的偏置电阻等。 一、基础知识 1.电阻的分类 电阻器的种类有很多,通常分为三大类:固定电阻、可变电阻、特殊电阻。固定电阻按照制作材料和工艺的不同,主要分为以下四大类: 2.电阻的型号命名方法 电阻器、电位器的命名由四部分组成:主称、材料、特征和序号。

3.主要性能指标 (1)标称阻值 产品上标示的阻值,单位为欧,千欧,兆欧,标称阻值都应符合下表所列数值乘 以10n倍(n为整数)。

(2)允许误差 电阻和电位器实际阻值对于标称阻值的最大允许偏差范围,它表示产品的精度。允许误差的等级如下表所示。 (3)额定功率 在规定的环境温度和湿度下,假定周围的空气不流通,在长期连续负载而不损坏或基本不改变性能的情况下,电阻器上允许消耗的最大功率,一般选用其额定功率比它在电路中消耗的功率高1-2倍。额定功率分19个等级,常用的有0.05W、0.125W、0.25W、0.5W、1W、2W、3W、5W、7W、10W。 (4)最高工作电压 电阻在长期工作不发生过热或电击穿损坏时的电压。如果电压超过规定值,电阻器内部产生火花,引起噪声,甚至损坏。 (5)稳定性 稳定性是衡量电阻器在外界条件(温度、湿度、电压、时间、负荷性质等)作用下电阻变化的程度。

温度系数a,表示温度每变化1度时,电阻器阻值的相对变化量; 电压系数av,表示电压每变化1伏时,电阻器阻值的相对变化量。 二、电阻器选型与运用 在电子电路设计的时候,应根据电子设备的技术指标、电路的具体要求和电阻的特性参数“因地制宜”地来选用电阻的型号和误差等级;额定功率应大于实际消耗功率的1.5-2倍;电阻装接前要测量核对,尤其是要求较高时,还要人工老化处理,提高稳定性。下面是有关电阻的选型基本原则。 1.电阻器的归一化选型 归一化选型原则只是针对电阻选型的一个“轮廓”,根据以往工程师的选型经验总结出来的,具有大众化的选型意义,在要求严格的电路设计中,还需要根据具体电路设计中的电器要求对电阻选型进行进一步的考量。 (1)金属膜电阻器:1W以下功率优选金属膜电阻;1W及1W以上功率优选金属氧化膜电阻; (2)熔断电阻器:不推荐使用。反应速度慢,不可恢复。建议使用反应快速、可恢复的器件,以达到保护的效果,并减少维修成本。 (3)绕线电阻器:大功率电阻器。 (4)集成电阻器:贴片化。插装项目只保留并联式,插装的独立式项目将逐步淘汰,用同一分类的片状集成电阻器替代。 (5)片状厚膜电阻器:在逐步向小型化、大功率方向发展,优选库会随着适应发展方向的变化而动态调整。这类电阻器是小功率电阻的优选对象。 (6)片状薄膜电阻器:建议使用较高精度类别。

电阻选型主要参数及注意问题

电阻选型 一、电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表 示电阻器的精度。允许误差与精度等级对应关系如下:坦.5%-0.05 ±%-0.1(或00)、±2%-0.2(或 0)、=t5%- I 级、土0%-1 级、zt20%-m 级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为—55C?+ 70 C的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W) : 1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、 50、75、100、150、250、500 非线绕电阻器额定功率系列为(W) : 1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1C所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 二、具体选择 计算(估算)所需电阻的阻值,计算电阻器消耗的可能功耗,要留有一定裕量。根据阻 值和功耗选择合适的系列和封装根据算出的阻值,选择最接近的标称值电阻;根据功耗需求, 选择合适的封装。 尽量选择常用,公用的电阻不同类型的电阻能提供的阻值范围和功耗以及封装是不一样的。要尽量选择常用的,低成本的或者BOM中公用的电阻。 比如对于一些对阻值不敏感的应用场合,如上拉或下拉电阻,可以选取BOM中已有的 电阻,以降彳氐BOM中的元件种类。

电阻应变片例题与练习题

电阻应变片传感器例题与习题 例题: 例M 采用四片相間时金属丝应变片(K=2),将英結在实心岡柱形测力弾性丘件上。 4111512-1(!!) 所示,应变片 1、309 [为 1.56x10 4,应变片趴 4的 t 为-0.41 ,: 求仃)画出应变片在圆柱上贴粘位置及相应测量桥路原理图;(2)各应变片的电眼相对变化 匱 3RN ⑶君供电桥压UN V,求桥烙输出电压5" ⑷此种测輦方式能否科偿 坏境覗巫对碍童的越响了说明原因, ff :(l)按題意采用四个拍诃应变片側力弹性兀件.贴的位SSUffi2 Ka)所示。际兔沿 轴向在力F 作 用下产生正应变引>0,£,>0:/?2^ 沿圖周方向貼则产主负应变5<仇訂< 皿伞应变电01按人桥郵位蜀如圏21(b)所示c ?从而组曲全桥测盘电路可以提髙输出起 斥灵戰度」 ⑵ = =2X1,56X10-* =3.12X 10 * K i 叫 AD 云二衬=-底产-J X O.47XJO 4= -O,?MX LO 4 = 4(3.12X10"^ 0.94X K )-4)X 6=1.22 mV (4)此种测量方式可以补偿环境沮度变化的形响因。因为四个榊同电职应变在同样环境条 件卜'感曼汩度变化产生电相对业化量相网,在全桥电路中不匪响输岀电压值,闪 AR ( t _ AR 2/ _ 厶尺訂 _ SR t r _ ^

6 解:单臂时U 0 所以应变为1时U 0 6 4 2 10 4 10 6/V ,应变为 1000时应为U 4 2 10 3 10 3 /V ; 双臂时U 0 ,所以应变为 U 0 U 0 U 0 10 6 10 /V 应变为 1000 时应 8 10 3 2 10 , 4 2 3 10 /V /V ,应变为1000时应为U 0 全桥时U 0 K U ,所以应变为1 3 8 10 /V 。从上面的计算可知: 单臂时灵敏度 ^2-2…台用等涌度聳作为沖性元件的电子秤■在鑒的上、卩面各贴两片相同的电聊应 愛片(K =町如图 2吃(韵所示心 ESH / = IW mm,6 "1 mni = 3 mm, E - 2x 104 M/mm\ 现將四丰应变片攥入图(b )克流拼路中.电桥电叢电托JJ-fi V “当力f = Q.5眾时?求电桥 輪也电压%七 解:由图5)所示四片相同电齟应变片聒于尊窿度梁上,下面各两片「号亟力F 柞啊梁端 部耳.魅 匕表面&和尺』产生止厲变电肌蟹化而T 表面R.和&则产生负应变电阻亶化.其 应变絶对值相等.即 电阻相对变化屋为 凡一卫? 现将四个应变电限揽图〔讨所赤接人轿路组咸彈曹全祈电路.其检出桥粘电压为 门 M 门 v 门一覚"6M 例2-3 采用阻值为120Q 灵敏度系数 K=2.0的金属电阻应变片和阻值为 120 Q 的固定电阻 组成电桥,供桥电压为 4V ,并假定负载电阻无穷大。当应变片上的应变分别为 1和1 000 时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。 U 6F1 br 7^ L 6 AR . 寸3

相关文档
最新文档