地震工程学反应谱和地震时程波的相互转化matlab编程

地震工程学反应谱和地震时程波的相互转化matlab编程
地震工程学反应谱和地震时程波的相互转化matlab编程

地震工程学作业

课程名称:地震工程学______ 指导老师:_______翟永梅_________ 姓名:史先飞________ 学号:1232627________

一、地震波生成反应谱

1 所取的地震波为Elcentro地震波加速度曲线,如图1所示。

图1 Elcentro地震波加速度曲线

2 所调用的Matlab程序为:

% ***********读入地震记录***********

ElCentro;

Accelerate= ElCentro(:,1)*9.8067;%单位统一为m和s

N=length(Accelerate);%N 读入的记录的量

time=0:0.005:(N-1)*0.005; %单位 s

%初始化各储存向量

Displace=zeros(1,N); %相对位移

Velocity=zeros(1,N); %相对速度

AbsAcce=zeros(1,N); %绝对加速度

% ***********A,B矩阵***********

Damp=0.02; %阻尼比0.02

TA=0.0:0.05:6; %TA=0.000001:0.02:6; %结构周期

Dt=0.005; %地震记录的步长

%记录计算得到的反应,MaxD为某阻尼时最大相对位移,MaxV为某阻尼最大相对速度,MaxA某阻尼时最大绝对加速度,用于画图

MaxD=zeros(3,length(TA));

MaxV=zeros(3,length(TA));

MaxA=zeros(3,length(TA));

t=1;

for T=0.0:0.05:6

NatualFrequency=2*pi/T ; %结构自振频率

DampFrequency=NatualFrequency*sqrt(1-Damp*Damp); %计算公式化简

e_t=exp(-Damp*NatualFrequency*Dt);

s=sin(DampFrequency*Dt);

c=cos(DampFrequency*Dt);

A=zeros(2,2);

A(1,1)=e_t*(s*Damp/sqrt(1-Damp*Damp)+c);

A(1,2)=e_t*s/DampFrequency;

A(2,1)=-NatualFrequency*e_t*s/sqrt(1-Damp*Damp);

A(2,2)=e_t*(-s*Damp/sqrt(1-Damp*Damp)+c);

d_f=(2*Damp^2-1)/(NatualFrequency^2*Dt);

d_3t=Damp/(NatualFrequency^3*Dt);

B=zeros(2,2);

B(1,1)=e_t*((d_f+Damp/NatualFrequency)*s/DampFrequency+(2*d_3t+1/NatualFrequency^2)*c)-2*d_3 t;

B(1,2)=-e_t*(d_f*s/DampFrequency+2*d_3t*c)-1/NatualFrequency^2+2*d_3t;

B(2,1)=e_t*((d_f+Damp/NatualFrequency)*(c-Damp/sqrt(1-Damp^2)*s)-(2*d_3t+1/NatualFrequency^2 )*(DampFrequency*s+Damp*NatualFrequency*c))+1/(NatualFrequency^2*Dt);

B(2,2)=e_t*(1/(NatualFrequency^2*Dt)*c+s*Damp/(NatualFrequency*DampFrequency*Dt))-1/(NatualF requency^2*Dt);

for i=1:(N-1) %根据地震记录,计算不同的反应

Displace(i+1)=A(1,1)*Displace(i)+A(1,2)*Velocity(i)+B(1,1)*Accelerate(i)+B(1,2)*Accelerate(i +1);

Velocity(i+1)=A(2,1)*Displace(i)+A(2,2)*Velocity(i)+B(2,1)*Accelerate(i)+B(2,2)*Accelerate(i +1);

AbsAcce(i+1)=-2*Damp*NatualFrequency*Velocity(i+1)-NatualFrequency^2*Displace(i+1);

end

MaxD(1,t)=max(abs(Displace));

MaxV(1,t)=max(abs(Velocity));

if T==0.0

MaxA(1,t)=max(abs(Accelerate));

else

MaxA(1,t)=max(abs(AbsAcce));

end

Displace=zeros(1,N);%初始化各储存向量,避免下次不同周期计算时引用到前一个周期的结果

Velocity=zeros(1,N);

AbsAcce=zeros(1,N);

t=t+1;

End

% ***********PLOT***********

close all

figure %绘制地震记录图

plot(time(:),Accelerate(:))

title('PEER STRONG MOTION DATABASE RECORD')

xlabel('time(s)')

ylabel('acceleration(g)')

grid

figure %绘制位移反应谱

plot(TA,MaxD(1,:),'-.b',TA,MaxD(2,:),'-r',TA,MaxD(3,:),':k')

title('Displacement')

xlabel('Tn(s)')

ylabel('Displacement(m)')

legend('ζ=0.02')

Grid

figure %绘制速度反应谱

plot(TA,MaxV(1,:),'-.b',TA,MaxV(2,:),'-r',TA,MaxV(3,:),':k') title('Velocity')

xlabel('Tn(s)')

ylabel('velocity(m/s)')

legend('ζ=0.02')

Grid

figure %绘制绝对加速度反应谱

plot(TA,MaxA(1,:),'-.b',TA,MaxA(2,:),'-r',TA,MaxA(3,:),':k') title('Absolute Acceleration')

xlabel('Tn(s)')

ylabel('absolute acceleration(m/s^2)')

legend('ζ=0.02')

Grid

3 运行的结果得到的反应谱

图2 位移反应谱

图3 速度反应谱

图4 加速度反应谱

一、反应谱生成地震波

1所取的反应谱为上海市设计反应谱

图5 上海市设计反应谱

2反应谱取值程序为:

%%规范反应谱取值程序参照01年抗震规范

function rs_z=r_s_1(pl,zn,ld,cd,fz) %%%pl 圆频率,zn阻尼比,ld烈度,cd场地类型,场地分组fz %%%%烈度选择

if ld==6

arfmax=0.11;

end

if ld==7

arfmax=0.23;

end

if ld==8

arfmax=0.45;

end

if ld==9

arfmax=0.90;

end

%%%%场地类别,设计地震分组选择

if cd==1

if fz==1

Tg=0.25;

end

if fz==2

Tg=0.30;

end

if fz==3

Tg=0.35;

end

end

if cd==2

if fz==1

Tg=0.35;

if fz==2

Tg=0.40;

end

if fz==3

Tg=0.45;

end

end

if cd==3

if fz==1

Tg=0.45;

end

if fz==2

Tg=0.55;

end

if fz==3

Tg=0.65;

end

end

if cd==4

if fz==1

Tg=0.65;

end

if fz==2

Tg=0.75;

end

if fz==3

Tg=0.90;

end

end

%%%%%%%%%

ceita=zn; %%%%%阻尼比

lmt1=0.02+(0.05-ceita)/8;

if lmt1<0

lmt1=0;

end

lmt2=1+(0.05-ceita)/(0.06+1.7*ceita); if lmt2<0.55

lmt2=0.55;

end

sjzs=0.9+(0.05-ceita)/(0.5+5*ceita); %%%%%分段位置 T1 T2 T3

T1=0.1;

T2=Tg;

T_jg=2*pi./pl;

%%%% 第一段 0~T1

if T_jg<=T1

arf_jg=0.45*arfmax+(lmt2*arfmax-0.45*arfmax)/0.1*T_jg;

end

%%%% 第二段 T1~T2

if T1

arf_jg=lmt2*arfmax;

end

%%%% 第三段 T2~T3

if T2

arf_jg=((Tg/T_jg)^sjzs)*lmt2*arfmax;

end

%%%% 第四段 T3~6.0

if T3

arf_jg=(lmt2*0.2^sjzs-lmt1*(T_jg-5*Tg))*arfmax;

end

%%%% 第五段 6.0~

if 6.0

arf_jg=(lmt2*0.2^sjzs-lmt1*(6.0-5*Tg))*arfmax;

end

%%%%%%反应谱值拟加速度值

rs_z=arf_jg*9.8;

end

3生成人造地震波主程序:

%%%主程序%%%%

%%%%确定需要控制的反应谱Sa(T)(T=T1,...,TM)的坐标点数M,反应谱控制容差rc Tyz=[0.04:0.016:0.1,0.15:0.05:3.0,3.2:0.05:5.0];

rc=0.06;

nTyz=length(Tyz);

ceita=0.035;%%%阻尼比:0.035

for i=1:nTyz

Syz(i)=r_s_1(2*pi/Tyz(i),ceita,8,2,1); %%%%8度,2类场地,第1地震分组end

%%%%%% 变换的频率差:2*pi*0.005(可以保证长周期项5s附近有5项三角级数);

%%%%频率变化范围 N1=30, 30*0.005*2*pi ;N2=3000, 5000*0.005*2*pi

plc=2*pi*0.005;

pl=30*0.005*2*pi:0.005*2*pi:10000*0.005*2*pi;

npl=length(pl);

P=0.9; %%%保证率

%%%%%%人造地震动持续时间40s,时间间隔:0.02s

Td=40;

dt=0.02;

t=0:0.02:40;

nt=length(t);

%%%%%%% 衰减包络函数

t1=8; %%%%上升段

t2=8+24; %%%%%平稳段; 下降段则为40-32=8s

c=0.6; %%%%衰减段参数

for i=1:nt

if t(i)<=t1

f(i)=(t(i)/t1)^2;

end

if t(i)>t1 & t(i)

f(i)=1;

end

if t(i)>=t2

f(i)=exp(-c*(t(i)-t2));

end

end

%%%%%%% 反应谱转换功率谱

for i=1:npl

Sw(i)=(2*ceita/(pi*pl(i)))*r_s_1(pl(i),ceita,8,2,1)^2/(-2*log(-1*pi*log(P)/(pl(i)*Td))); Aw(i)=sqrt(4*Sw(i)*plc);

end

%%%%%%%%%%%%%% 合成地震动

at=zeros(nt,1);atj=zeros(nt,1);

for i=1:npl

fai(i)=rand(1)*2*pi;

for j=1:nt

atj(j)=f(j)*Aw(i)*real(exp(sqrt(-1)*(pl(i)*t(j)+fai(i))));

end

at=at+atj;

end

%%%%%%% 计算反应谱验证是否满足rc在5%的要求,需要时程动力分析

%%%%%%%%%%%% response spectra of callidar

%%%%%%% parameter

g=9.8;

m=1;

x0=0;

v0=0;

ww=2*pi./Tyz;

%%%%%%%% load

ag=at; %%%%%%%修改

%%%%%%% solution

for y=1:nTyz

z=0.037;

w=ww(y);

c=2*z*w;

k=w^2;

for i=1:nt-1

p(i)=-ag(i+1)+ag(i);

a0=m\(-ag(i)-c*v0-k*x0);

kk=k+(dt^2)\(6*m)+dt\(3*c);

pp=p(i)+m*(dt\(6*v0)+3*a0)+c*(3*v0+2\(dt*a0)); dx=kk\pp;

dv=dt\(3*dx)-3*v0-2\(dt*a0);

x1=x0+dx;

x0=x1;

v1=v0+dv;

v0=v1;

as(i)=a0;

as(i)=as(i)+ag(i);

vs(i)=v0;

xs(i)=x0;

end

maxas(y)=max(as);

maxvs(y)=max(vs);

maxxs(y)=max(xs);

end

for i=1:nTyz

rspa(i)=maxas(i);

end

%%%%%%% 比较容差

for i=1:nTyz

rcrsp(i)=abs(rspa(i)-Syz(i))/max(Syz(:));

end

jsnum=1;

while max(rcrsp(:))>rc

%%%%%循环体函数

blxs=Syz./rspa;

for xsxs=1:npl

if 2*pi/pl(xsxs)

blxs1(xsxs)=blxs(1);

end

for sxsx=1:nTyz-1

if (2*pi/pl(xsxs)>=Tyz(sxsx)) & (2*pi/pl(xsxs)<=Tyz(sxsx+1))

blxs1(xsxs)=blxs(sxsx)+(blxs(sxsx+1)-blxs(sxsx))*(2*pi/pl(xsxs)-Tyz(sxsx))/(Tyz(sxsx+1)-Tyz(sxsx));

end

end

if 2*pi/pl(xsxs)>Tyz(nTyz)

blxs1(xsxs)=blxs(nTyz);

end

end

Aw=Aw.*blxs1;

%%%%%%%%%%%%%% 合成地震动

at=zeros(nt,1);

atj=zeros(nt,1);

for i=1:npl

for j=1:nt

atj(j)=f(j)*Aw(i)*real(exp(sqrt(-1)*(pl(i)*t(j)+fai(i))));

end

at=at+atj;

end

%%%%%%% 计算反应谱验证是否满足rc在5%的要求

%%%%%%%%%%%% response spectra of callidar

%%%%%%% parameter

g=9.8;

m=1;

x0=0;

v0=0;

ww=2*pi./Tyz;

%%%%%%%% load

ag=at; %%%%%%%修改

%%%%%%% solution

for y=1:nTyz

z=0.037;

w=ww(y);

c=2*z*w;

k=w^2;

for i=1:nt-1

p(i)=-ag(i+1)+ag(i);

a0=m\(-ag(i)-c*v0-k*x0);

kk=k+(dt^2)\(6*m)+dt\(3*c);

pp=p(i)+m*(dt\(6*v0)+3*a0)+c*(3*v0+2\(dt*a0)); dx=kk\pp;

dv=dt\(3*dx)-3*v0-2\(dt*a0);

x1=x0+dx;

x0=x1;

v1=v0+dv;

v0=v1;

as(i)=a0;

as(i)=as(i)+ag(i);

vs(i)=v0;

xs(i)=x0;

end

maxas(y)=max(as);

maxvs(y)=max(vs);

maxxs(y)=max(xs);

end

for i=1:nTyz

rspa(i)=maxas(i);

end

%%%%%%% 比较容差

for i=1:nTyz

rcrsp(i)=abs(rspa(i)-Syz(i))/max(Syz(:));

end

jsnum=jsnum+1

max(rcrsp(:))

end

%%%%%%% 最终的反应谱与规范谱

%%%%%%%%%%%% response spectra of callidar

%%%%%%% parameter

%% Tjs=0.05:0.01:6;

%% nTjs=length(Tjs);

g=9.8;

m=1;

x0=0;

v0=0;

ww=2*pi./Tyz;

%%%%%%%% load

ag=at; %%%%%%%修改

%%%%%%% solution

for y=1:nTyz

z=0.037;

w=ww(y);

c=2*z*w;

k=w^2;

for i=1:nt-1

p(i)=-ag(i+1)+ag(i);

a0=m\(-ag(i)-c*v0-k*x0);

kk=k+(dt^2)\(6*m)+dt\(3*c);

pp=p(i)+m*(dt\(6*v0)+3*a0)+c*(3*v0+2\(dt*a0));

dx=kk\pp;

dv=dt\(3*dx)-3*v0-2\(dt*a0);

x1=x0+dx;

x0=x1;

v1=v0+dv;

v0=v1;

as(i)=a0;

as(i)=as(i)+ag(i);

vs(i)=v0;

xs(i)=x0;

end

maxas(y)=max(as);

maxvs(y)=max(vs);

maxxs(y)=max(xs);

end

for i=1:nTyz

rspa(i)=maxas(i)/g;

rspa_S(i)=r_s_1(2*pi/Tyz(i),ceita,8,2,1)/g;

end

subplot(2,1,1);

plot(t,at);

subplot(2,1,2);

plot(Tyz,rspa);

hold on;

plot(Tyz,rspa_S);

4生成的人造地震波如图所示。

图6 人造地震波和初始反应谱

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

反应谱理论与人工模拟地震波技术简介

第33卷第26期?106?2007年9月山西建筑 SHANXIARCHITECTURE Vd33No.26 Sep.2007 文章编号:1009—6825{2007)26—0106—03 反应谱理论与人工模拟地震波技术简介 邱玉国王玉富 摘要:介绍了反应谱理论的发展历程和国内外研究现状,分析了研究问题的思路,指出了利用反应谱理论来解决实际工程时遇到的问题,并简单介绍了国外对人工模拟地震波技术的应用和研究,为抗震理论提供了参考依据。 关键词:反应谱理论,地震波,随机振动,非弹性地震波 中图分类号:TU352文献标识码:A 1概述 反应谱理论是建筑结构抗震设计的重要理论基础之一。从20世纪50年代开始,反应谱理论逐渐成为结构抗震设计的重要方法,经过50多年的发展,目前这种方法已经为世界上大多数国家的设计规范所采用。但是,由于地震产生机理和作用效果的复杂性,采用反应谱理论进行分析和设计与工程实践还存在很多与实际不相符合之处。此外,对于反应地震重要特性的时间问题,反应谱法也无能为力。 人工模拟地震波技术是近年来才发展起来的一项新的结构抗震设计的技术手段,目前主要用于计算机模拟和特别重要结构模型的振动台试验。它能够通过模拟地震波的特性来用于对结构进行时程分析,是~种新兴的、具有革命性意义的试验手段。 图2数值模拟结果2.3计算结果分析 通过数值模拟和试验得到瓦斯管承载力等数值如表2所示。 表2数值模拟和试验结果 I研究方法承载力仆但a最大应变/%最大剪应力/SPaI数值模拟7.14O.0842160室内试验6.620.0964 3结语 通过对丁集煤矿瓦斯管材质和整体抗外压的试验研究以及数值模拟分析,可以获得如下重要结论: 1)通过对管材材质的试验研究表明:工作管材质采用Q345,尺寸为柘30rfllTl×14inln,能够满足强度和稳定性要求。 2)瓦斯管整体抗外压试验结果表明:工作管抗外压承载力为6,62MPa;通过大变形有限元数值计算,采用变形稳定性控制其承载力,结果为7.14MPa,两者数值十分接近,说明用文中方法模拟大直径瓦斯管的承载力是可行的。 参考文献: [1]李正来.瓦斯抽排钻孔定向技术的改进[J].安徽科技,2006(3):49—50. [2]汪东生.瓦斯抽排技术治理本煤层采空区瓦斯涌出的实践[J].煤矿安全,2006(1):13—15. [3]张敦伍,任胜杰.瓦斯抽排钻孔防偏斜实践[J].矿业安全与环保,2005(8):67—68. [4]刘克功,范再良,赵新华.采空区瓦斯抽排法治理综放面瓦斯超限[J].煤,1998(2):48—50. Studyingonradialstabilitynumericalsimulationoflargepipeinmine TONGWen-lin Abstract:TheexperimentalandvaluesimulationmethodshavestudiedtheDingiicoalminelargediametergastubeundermechanicscharacter—istie.Resultindicated:thelargediametergastubeispresentedstabilityfailuremodelinencirclespressesshape,itssafetyfactorreaches3.0,itisdesignthelargediametergastubeandtheconstructpmvidesthereference. Keywords:largediametergastube,experimentalinlab,numericalsimulation,stabilityfailuremodel 收稿日期:2007.04.06 作者简介:邱玉国(1973。),男,工程师,辽宁工程技术大学软件学院,辽宁阜新123000 王玉富(1970.),男,工程师,中铁十九局集团第三工程有限公司,辽宁辽阳111000

人工地震波生成程序简介

姓名:郭勇 学号:022******* 人工地震波生成程序简介 一、程序设计内容及方法 1、程序内容 本程序根据特征周期、水平地震波影响系数最大值和地震波幅值等初始条件生成人工地震波,为结构动力分析的时程分析法提供地震波来源。 2、程序设计方法 (1) 理论依据 本程序采用三角级数法生成人工地震波。 对于给定的功率谱密度函数,按照下面的公式可以方便的生成以为功率谱密度函数、均值为零的高斯平稳过程。 (1) 式中: (2) 为内均匀分布的随机相角;,分别为正域内的上、下限值,即认为的有效功率在范围内,而范围外的值可视为零。 为了反映地面运动的非平稳性,采用包络函数乘以平稳过程, (3) (3)式即为人工地震波模型。 可根据下式确定: (4) 式中:为衰减系数,通常取值范围为0.1~1.0,本程序取0.15;,和根据不同实际情况取值,为地震波持时,本程序取,分别为4s,15s,和均为40s。 本程序采用《建筑抗震设计规范》(GB50011-2001)中的反应谱作为目标谱,通过Kaul 提出的平稳过程反应谱与功率谱的近似关系 (5) 式中:为规范反应谱;为阻尼比;为地震动持时;为反应不超过反应谱值的概率,本程序取0.85。通过(3)式和(5)式即可生成人工地震波。 (2) 程序实现方法 首先建立基于对话框的应用程序框架,添加的主要控件为3个编辑框和4个按钮。3个编辑框分别作为程序中的特征周期(对应成员变量为m_dTg)、水平地震影响系数最大值(对应成员变量为m_dAmax)和地震波幅值(对应成员变量为m_pd)3个数据的交互输入处;4个按钮分别为"生成地震波"、"输出地震波"、"输入地震波"和"退出"。 添加的成员函数有:Wavegener()(生成地震波)、Wavedrawing()(绘制地震波加速度时程曲线)、OnSTART()(对应"生成地震波"按钮,实现生成地震波的功能)、OnOutput()(对应"输出地震波"按钮,实现输出数字化的地震波记录的功能)和OnInput(对应"输入地震波"按钮,实现输入数字化的地震波记录并绘制其加速度时程曲线的功能)。 几点说明: a 生成随机相角的程序如下: srand((unsigned)time( NULL ));

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

反应谱生成人工地震波

反应谱生成人工地震波 一、软件SIMQKE_GR使用说明 1.先安装程序 2.使用方法 双击,打开程序,可以得到如图1界面。 图1 程序开始界面 如图1所示,由于程序本身提供的反应谱是适用于欧洲规范的,不适合于我国的规范反应谱,因此不能通过调整参数来获得符合我国规范的反应谱。可以采用导入的方法来输入反应谱。 3.点击菜单栏“file”—“Import spectra data”,出现打开对话框,如图2所示, 要求打开一个已经存在的反应谱文件(如 1.srf)。

图2 导入反应谱文件对话框 4.文件格式如下所示(红字部分不能修改,注意反应谱单位为g),下面部分 可以替换。 response spectrum time(s) acc(g) 0 0.1215 0.01 0.13635 0.02 0.1512 0.03 0.16605 0.04 0.1809 0.05 0.19575 0.06 0.2106 0.07 0.22545 0.08 0.2403 0.09 0.25515 0.1 0.27 0.15 0.27 0.2 0.27 0.25 0.27 0.3 0.27 0.35 0.27 0.4 0.27 0.45 0.27

0.5 0.243 0.6 0.2025 0.7 0.173571429 0.8 0.151875 0.9 0.135 1 0.1215 1.1 0.110454545 1.2 0.10125 1.3 0.093461538 1.4 0.086785714 1.5 0.081 1.6 0.0759375 1.7 0.071470588 1.8 0.0675 1.9 0.063947368 2 0.06075 2.1 0.057857143 2.2 0.055227273 2.3 0.052826087 2.4 0.050625 2.5 0.0486 2.6 0.046730769 2.7 0.045 2.8 0.043392857 2.9 0.041896552 3 0.0405 3.1 0.039193548 3.2 0.03796875 3.3 0.036818182 3.4 0.035735294 3.5 0.034714286 3.6 0.03375 3.7 0.032837838 3.8 0.031973684 3.9 0.031153846 4 0.030375 4.1 0.029634146 4.2 0.028928571 4.3 0.028255814 4.4 0.027613636 4.5 0.027 4.6 0.026413043 4.7 0.025851064 4.8 0.0253125

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

人工地震动生成程序

clear clc close all hidden %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fni=input('生成人工地震波-输入数据文件名(20041012):','s'); fid=fopen(fni,'r'); fs=fscanf(fid,'%f',1);%采样频率 tu=fscanf(fid,'%f',1);%上升时间长度 %上升时间包络线线形(1-直线、2-抛物线、3-指数曲线) iu=fscanf(fid,'%f',1); %上升时间包络线线形参数(只有指数曲线需要具体参数,其均为1) cu=fscanf(fid,'%f',1); ta=fscanf(fid,'%f',1);%持时时间长度 td=fscanf(fid,'%f',1);%下降时间长度 %下降时间包络线线形(1-直线、2-抛物线、3-指数曲线) id= fscanf(fid,'%f',1); %下降时间包络线线形(只有抛物线,指数曲线需要具体参数,其余为1) cd=fscanf(fid,'%f',1); dp=fscanf(fid,'%f',1);%阴尼比值 p=fscanf(fid,'%f',1);%概率系数(一般可取P=0.85) nn=fscanf(fid,'%f',1);%迭代次数 fno=fscanf(fid,'%f',1);%输出数据文件名

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %对目标反应谱取值 x=fscanf(fid,'%f',[2,inf]);%反应谱频率和幅值数据 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tatus=fclose(fid); %计算生成地震波的数据长度 tl=tu+ta+td; %计算生成地震波的数据长度 nt=round(fs*tl+1); %大于并最接近nt的2的幂次方为FFT长度 nfft=2^nestpow2(nt) %计算频率间隔(Hz) df=fs/nfft %定义反应谱的离散频率向量 f=0:df:(nfft/2-1)*df %计算时间间隔(s) dt=1/fs; %定义的离散时间向量 t=0:dt:(nt-1)*dt %生成0到2PI的随机数为随机相位 g=rand(1,nfft/s)*2*pi; %建立时间包络线 %建立与地震波长度相同元素为1的向量 en=ones(1,nt); %上升时间阶段 %确定上升时间段的长度 l=round(tu*fs)+1 %产生上升时间段的包络线数组元素 switch iu case 1 %直线 en(1:l)=linspace(0,1,1);% y = linspace(a,b,n) generates a row vector y of n points linearly

上海地震波-三向输入选取(说明)m

上海地区抗震设计输入地震时程说明 (共8页) 同济大学房结构工程与防灾研究所 二〇一二年六月

目录 1 天然地震时程选取原则 (3) 2 峰值调整 (3) 3 频谱特性 (3) 4 地震动持时 (3) 5 人造地震动生成的方法 (3) 6 目标反应谱的确定 (4) 7 所选地震时程的基本信息 (4) 8 地震时程反应谱与规范反应谱对比 (5)

上海地区抗震设计输入地震时程说明 1 天然地震时程选取原则 天然地震动具有很强的随机性,随着输入地震波的不同结构的地震响应也会有很大的差异,故要保证时程分析结果的合理性,在选择地震波时必须遵循一定的原则。一般而言,选择输入地震波时应以地震波的三要素(峰值、频谱特性、地震动持时)为主要考虑因素。 2 峰值调整 地震波的峰值一定程度上反应了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当(峰值相当并非峰值相等,而是在峰值相近的情况下所选用地震波的反应谱与规范反应谱基本相符)。 3 频谱特性 频谱是地面运动的频率成分及各频率的影响程度。它与地震传播距离、区域、介质及结构所在的场地土性质有密切关系。一般来说,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距较远或软弱场地土中,地震波的长期成分较多。输入地震波的卓越周期应尽可能与拟建场地的特征周期一致,且在一定的周期段内与规范反应谱尽量接近。对于天然地震记录而言,3个方向地震波同时都与规范反应谱很接近的条件是很难满足的,但应保证至少一个水平向地震波反应谱与规范反应谱基本吻合。 4 地震动持时 地震持时也是结构破坏和倒塌的重要因素,工程实践中确定地震动持续时间的原则是:1)地震记录最强烈部分应包含在所选持续时间内,2)若对结构进行弹塑性地震反应分析(考虑累计损伤效应),持续时间可取长些。另外,在截取地震波时尚需注意尽量在速度/位移零点处截断以尽量避免加速度积分时速度或位移的``漂移''现象。 5 人造地震动生成的方法 工程中较为实用的人造地震动的生成方法主要有两种:一是将不同频率具有随机相位的三角波进行叠加并根据目标反应谱或功率谱进行迭代修正;二是选择满足场地条件等要求的天然地震记录,保留其相位等随机特征,然后修正其不同频段的幅值以逼近目标反应谱或功率谱。由于三个方向地震动间的随机相关性关系很复杂,采用三角波叠加的方法生成地震波时各方向地震波的相关性难以确定,故本文采

地震反应谱

地震反应谱及其应用 在地震中,由于建筑物会产生位移、速度和加速度。人们把不同周期下建筑物反应值的大小画成曲线,这些曲线就称为反应谱。在《工程抗震术语标准》(JGJ/T 97-95)中对反应谱的相关描述如下:反应谱,是指在给定的地震震动作用期间,单质点体系的最大位移反应、最大速度反应或最大加速度反应随质点自振周期变化的曲线。设计反应谱,是指结构抗震设计所采用的反应谱。楼面反应谱,是指对于给定的地震震动,由结构中特定高程的楼面反应过程求得的反应谱。反应谱特征周期,是指与设计反应谱曲线下降段起点对应的周期。 在一般条件下,随周期的延长,位移反应谱为上升的曲线;速度反应谱比较恒定;而加速度的反应谱则大体为下降的曲线。一般说来,设计的直接依据是加速度反应谱。加速度反应谱在周期很短时有一个上升段,对于高层建筑其基本自振周期则一般不在这一区段,当建筑物自震周期与场地的特征周期接近时,出现峰值,随后逐渐下降。出现峰值时的周期与场地的类型有关,按照有关规定:I类场地约为0.1~0.2s;Ⅱ类场地约为0.3~0.4s;Ⅲ类场地约为0.5~0.6s;Ⅳ类场地约为0.7~1.0s。

衡量地震作用强烈程度目前常用地面运动的最大加速度Ama x作为标志,它就是建筑物抗震设计时的基础输人最大加速度,其单位为重力加速度g (9.81m/s)。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应。地震时结构所受的最大水平基底剪力,即总水平地震作用为: F = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a 的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 局限性: 1. 反应谱理论尽管考虑了结构的动力特性,然而在结构设计中,它仍然把地震惯性力作为静力来对待。 2. 表征地震动的三要素是振幅、频谱和持时。在制作反应谱过程中虽然考虑了其中的前两个要素,但始终未能反映地震动持续时间对结构破坏程度的重要影响。 参考文献: 工程结构荷载与可靠度设计原理李国强等编著中国建筑工业出版社

正确选取地震波

地震波的选取方法(MIDAS (2009-05-16 22:51:32) 转载▼ 分类:结构专业 标签: 杂谈 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k 一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5 (1) 有效峰值速度EPV=Sv/2.5 (2) 特征周期Tg = 2π*EPV/EPA (3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功

地震反应谱的特性

地震反应谱的特性 崔济东(JiDong Cui) (华南理工大学土木与交通学院,广东广州,510640) 1反应谱的基本概念(Introduction to Response Spectra) 地震动反应谱:单自由度弹性系统对于某个实际地震加速度的最大反应(可以是加速度、速度和位移)和体系的自振特征(自振周期或频率和阻尼比)之间的关系。前一篇博文《Earthquake Response Spectra地震反应谱》介绍了反应谱和伪反应谱的基本概念,并编制了相应的反应谱计算程序——SPECTR。本文利用该软件,通过几个实测地震记录的反应谱分析,总结地震反应的一般谱特性。 2本文用到的地震加速度记录(Acceleration Time History Records) 2.11999年台湾集集地震记录的加速度记录: (1)加速度记录信息: The Chi-Chi (Taiwan) earthquake of September 20, 1999. Source: PEER Strong Motion database Recording station: TCU045 Frequency range: 0.02-50.0 Hz Maximum Absolute Acceleration: 0.361g (2)加速度时程与相应的速度和位移

图2-1 ChiChi地震加速度时程2.21994年美国北岭地震记录的加速度时程: (1)加速度记录信息: The Northridge (USA) earthquake of January 17, 1994. Source: PEER Strong Motion Database Recording station: 090 CDMG STATION 24278 Frequency range: 0.12-23.0 Hz Maximum Absolute Acceleration: 0.5683g (2)加速度时程与相应的速度和位移 作者:崔济东(1988- ),男,结构工程专业,博士研究生。

地震波描述

1.1设计加速度过程线 依据GB18306-2001《中国地震动参数区划图》,50年超越概率为10%时,工程区地震动峰值加速度为0.15 g,地震动反应谱特征周期为0.45 s,相应地震基本烈度为7度。场地土属中软场地土,场地类别为Ⅱ类。根据(DL5073-2000)《水工建筑物抗震设计规范》的规定,本工程壅水建筑物抗震设防类别为乙类,设计烈度按7度取。 参考工程地质报告,本课题选取美国Taft地震波、人工地震波与实测地震波共三条地震波进行分析。 Taft地震波,1952年7月21日发生于美国的加利弗里亚州地震(California Earthquake,震级7.4级),是位于加州Kern County林肯学校的No.1095地震台测得的地震记录,该记录地距震中约43.5 km。地震仪设于学校附近一隧洞混凝土地板上,测得完整的三向地震波,记录长达54 s,最大地震加速度175.9 cm/s2,最大速度17.7 cm/s,最大位移9.15 cm。Taft地震波由于记录完整、数据可靠,在国际地震工程界被广泛引用。本报告中将其峰值加速度调整至0.15 g得到设计地震加速度过程线进行动力反应分析,通过SHAKE91程序反演后,坝基水平向基岩地震波峰值为0.12 g,竖直向基岩地震波峰值为0.08 g。横河向、顺河向和竖直向输入加速度之比为3:3:2。计算地震时长20 s,时间步长为0.02 s,各方向地震波时程如图1.1-1至图1.1-3所示。 人工地震波,是根据《水工建筑物抗震设计规范》选取规范标准反应谱为目标谱生成。人工波生成时,迭代误差取为5%,其中特征周期T g按照基岩场地取0.3 s,反应谱最大值的代表值βmax取为2,设计加速度代表值为0.15 g。由此得到设计地震加速度过程线进行动力反应分析,通过SHAKE91程序反演后,坝基水平向基岩地震波峰值为0.12 g,竖直向基岩地震波峰值为0.08 g。横河向、顺河向和竖直向输入加速度之比为3:3:2。计算地震时长20 s,时间步长为0.02 s,各方向地震时程如图1.1-4至图1.1-6所示。

人工地震波生成程序简介

姓名:郭 勇 学号:022******* 人工地震波生成程序简介 一、 程序设计内容及方法 1、程序内容 本程序根据特征周期、水平地震波影响系数最大值和地震波幅值等初始条件生成人工地震波,为结构动力分析的时程分析法提供地震波来源。 2、程序设计方法 (1) 理论依据 本程序采用三角级数法生成人工地震波。 对于给定的功率谱密度函数()x S ω,按照下面的公式可以方便的生成以 ()x S ω为功率谱密度函数、均值为零的高斯平稳过程()a t 。 1 ()cos()N k k k k a t C t ω?== +∑ (1) 式中: 1 2 [4()]()/1 ()2k x k u l k l C S N k ωωωωωωωω? ? =?? ?=-??? =+-?? (2) k ?为(0,2)π内均匀分布的随机相角;u ω,l ω分别为正ω域内的上、下限值,即 认为()x S ω的有效功率在(,)u l ωω范围内,而范围外的()x S ω值可视为零。 为了反映地面运动的非平稳性,采用包络函数()f t 乘以平稳过程()a t , ()()()x t f t a t = (3) (3)式即为人工地震波模型。 ()f t 可根据下式确定:

2 221112() 233/01 ()0c t t t t t t t t t f t e t t t t t T --?≤

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化 摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应 谱法。时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。进行 时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。时程曲线的 选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到 其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。本文通过介绍常用 的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。 关键词:时程分析,地震波,反应谱,动力计算 1 地震反应分析方法的发展过程 结构的地震反应取决于地震动和结构特性。因此,地震反应分析的水平也是随着人们对 这两个方面认识的深入而提高的。结构地震反应分析的发展可以分为静力法、反应谱法、动 力分析法这三个阶段。在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。[1] 目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其 中以加速度反应谱应用得最多。反应谱是指:单自由度弹性体系在给定的地震作用下,某个 最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。反应谱理论是指:结 构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体 系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。其优点是物理概念清晰, 计算方法较为简单,参数易于确定。 反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理 来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利 的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时 等无关。[1] 时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。由 于此法是对运动方程直接求解,又称直接动力分析法。可直接计算地震期间结构的位移、速 度和加速度时程反应,从而描述结构在强地震作用下弹性和非弹性阶段的内力变化,以及结 构构件逐步开裂、屈服、破坏甚至倒塌全过程。 根据我国《建筑抗震设计规范》(GB5011-2010)(以下简称《抗规》)第5.1.2-3条要求,特 别不规则的建筑、甲类建筑和表5.1.2-1所列高度范围的高层建筑,应采用时程分析法进行多 遇地震下的补充计算。此外《高层建筑混凝土结构技术规程》(JGJ3-2010) (以下简称《高规》)第4.3.4条也有相关要求。 2 时程分析时地震波的选取要求 在进行时程分析时,首先面临地震波选取的问题。所选的地震波需要符合场地条件、设 防类别、震中距远近等因素。《抗规》对于地震波的选取主要有以下几点要求: 1、当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法 的较大值;当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型分解反 应谱法的较大值(其中实际强震记录的数量不应少于总数的2/3)。 2、弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计 算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计 算结果的80%。 3、多组时程曲线的平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数 曲线在统计意义上相符。根据规范条文说明,所谓“统计意义上相符”指的是,多组时程波的 平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主 要振型的周期点上相差不大于20%。但计算结果也不能太大,每条地震波输入计算不大于135%,平均不大于120%。 4、时程曲线要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间均要符合规

人工波

20120704晚间关于人工波的谈话记录 7月4日晚间,我们在教研室关于人工地震波的一些问题进行了探讨,将一些内容整理如下:在科研和实际工程中会经常用到模拟生成的人工地震波,在实际工程中我们经常采用5 条天然波+2条人工波,或者2 条天然波和1 条人工波。 关于人工地震波最早的流派就是三角级数合成法,即现在我国规范推荐使用的方法。其实际上是假定地震波是一个平稳过程,也就是基于地震波是可以进行Fourier分解的基础上,然后用Fourier反变换来模拟生成。然后乘以一个包络函数来近似非平稳性。这种方法会用到反应谱和功谱的相互转换,然后通过调整功率谱来达到拟合反应谱的目的,其中涉及迭代。 基本过程如下:

我们生成了一条人工地震波如下所示:

从图片中可以看出,其与规范谱拟合的非常好。但是实际工程中反映,人工波和规范谱拟合的虽然很好,但是实际算出来的结果却不一定好,即不满足规范中所说单条地震波计算结果的平均底部剪力一般不能与振型分解反应谱法计算结果相差35%的要求。 我们分析肯能的原因如下: 因为设计反应谱可以分为3段(如下图所示)

如果某结构的主要周期点位于速度敏感段的话,那么我们就要查看人工波的速度谱与规范速度谱的差别情况,如果拟合的不好,其结果也可想而知。其中的难点是我们没有规范速度谱(这也是我们质疑的地方,其实规范给出设计加速度谱的同时,给出速度谱和位移谱也是顺手的事情,但是不知道为什么没有给出)。至少我们计算的速度谱和规范伪速度谱就差别很大,虽然这不能说明问题,但是至少直观地说明了速度谱的波动还是比较大的,下面是现场画出的图形表示(其中“规范谱”表示规范伪速度谱):

人工地震波依据三角级数法

人工地震波依据三角级数法 武汉@桥梁隧道 799084759 采用shinozuka 的方法来模拟平稳化后的随机地面运动加速度 ()()().. g x t f t t ?=? 其中: ()1()cos n k k k k f t C t ω?==+∑ k C =()()()21ln ln 1T k a S S P T ξωωππωω??=??-??-???? 强度包线:()()()()()2000/1exp n n n t t t t t t t t t t c t t t t ? 0???=≤≤??= ≤≤??=-- ≤?????? P ——反应超越概率。 S ——功率谱密度函数。 ?ω——频谱分度(rad/s )。 S a T (ω)——给定的目标加速度反应谱。 φk ——均匀分布在0~2π之间的随机数。 具体matlab 程序如下: %形成人工波主程序 w=[0.04:0.02:0.1,0.15:0.05:3.0,3.2:0.1:5.0]';%频谱范围 wn=length(w); TT=30;%持时 dltw=2*pi/TT;%Δw ag=zeros(30/0.02+1,1); sw=0; kist=0; for n=0:30/0.02 ckn=0; for i=1:wn

ck=sqrt(4*sw1(w(i))*dltw); ckn=ck*cos(w(i)*n*0.02+rand(1)*2*pi)+ckn; end ag1(n+1)=ckn; ag2(n+1)=ft(n*0.02); ag(n+1)=ft(n*0.02)*ckn; end t=0:0.02:30; subplot(221) plot(t,ag) title('地震波') xlabel('t=0:30 (s)') ylabel('ag (m/s2)') subplot(222) plot(t,ag1) title('功率谱密度函数(随机后)') xlabel('t=0:30 (s)') ylabel('∑Ck*cos() (m/s2)') subplot(223) plot(t,ag2) title('强度包线') xlabel('t=0:30 (s)') ylabel('ξ (m/s2)') %强度包线子程序 function ksit=ft(t) t0=2; tn=10; c=0.2; if t>=0&&t<=t0 ksit=(t/t0)^2; elseif t>t0&&t

相关文档
最新文档