数列解题方法总结

数列解题方法总结
数列解题方法总结

第一课 等差数列与等比数列的判断与证明:

证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。

1、定义法

01.证明数列是等差数列的充要条件的方法:

{}1()n n n a a d a +-=?常数是等差数列

{}2222()n n n a a d a +-=?常数是等差数列

{}3333()n n n a a d a +-=?常数是等差数列

02.证明数列是等差数列的充分条件的方法:

{}1(2)n n n a a a d n --=≥?是等差数列

{}11(2)n n n n n a n a a a a +--=-≥?是等差数列

03.证明数列是等比数列的充要条件的方法:

{}1

(00)n n n

a q q a a +=≠≠?1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法:

1

n

n a q a -=(n>2,q 为常数且≠0){}n a ?为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有

1

n

n a q a -==(常

数0≠);②n *

∈N 时,有

1

n n

a q a +==(常数0≠).

2、中项法

(1).(充要条件)

若{}1

22n n n n a a a a ++=+?是等差数列

(注:三个数c b a ,,为等差数列的充要条件是:c a b +=2)

(充分条件)

211-++=n n n a a a (2≥n ){}n a ?是等差数列, (2).(充要条件)

若 2

21(0)n n n n a a a a ++=≠ {}n a ?是等比数列

(充分条件)

1

12-+?=n n n a a a (n ≥1){}n a ?是等比数列,

注:

(0)b a c =?>?是a 、b 、c 等比数列的充分不必要条件

b =?是a 、b 、

c 等比数列的必要不充分条件.

(0)b a c =?>?是a 、b 、c 等比数列的充要条件.

任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个.

3、通项公式与前n 项和法

1. 通项公式法

(1).若数列通项n a 能表示成n a an b =+(a b ,为常数)的形式, 则数列{}n a 是等差数列。(充要条件)

(2).若通项n a 能表示成n n a cq =(c q ,均为不为0的常数,n +∈N )的形式, 则数列{}n a 是等比数列.(充要条件) 2. 前n 项和法

(1).若数列{}n a 的前n 项和S n 能表示成2

n S an bn =+ (a ,b 为常数)的形式,

则数列{}n a 是等差数列;(充要条件)

(2).若S n 能表示成n

n S Aq A =-(A

q ,均为不等于0的常数且q ≠1)的形式, 则数列{}n a 是公比不为1的等比数列. (充要条件)

〖例1〗已知数列{a n }满足a 1=2a ,a n =2a -1

2

-n a a (n≥2).其中a 是不为0的常数,令b n =a

a n -1

。求证:数列{b n }是等差数列。

〖例2〗已知公比为3的等比数列{}n b 与数列{}n a 满足*

,3N n b n a

n ∈=,且11=a ,判断

{}n a 是何种数列,并给出证明。

例 3.已知数列{}n a 是等比数列(1q ≠-),n S 是其前n 项的和,则

232k k k k k S S S S S --,,,…,仍成等比数列。

第二课:等差、等比数列的基本运算

〖例1〗已知数列}{n a 是等比数列,且4622a a a =,则=53a a A .1

B .2

C .4

D .8

〖例2〗(2010浙江)设1S 为等比数列{}n a 的前n 项和,1

222

80S a a S -==,则 A .-11

B .-8

C .5

D .11

〖例3〗数列{}n a 满足122,1,a a ==并且11

11

(2)n n n n n n n n a a a a n a a a a -+-+--=≥??,则数列{}n a 的第

100项为 A .

10012 B .5012 C .1100 D .1

50

〖例4〗黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案

则第n 个图案中有白色地面砖的块数是( )

A. 33n +

B.42n -

C.24n +

D. 42n +

第1个 第2个 第3个

第三课 通项公式的求法

一、公式法 ①??

?≥-==-)2()

111n S S n S a n n

n (;

②{}n a 等差、等比数列{}n a 公式.

例1 已知数列{}n a 满足1232n

n n a a +=+?,12a =,求数列{}n a 的通项公式。

二、累加法

例 已知数列{}n a 满足1121

1n n a a n a +=++=,,求数列{}n a 的通项公式。

例 已知数列{}n a 满足112313n

n n a a a +=+?+=,,求数列{}n a 的通项公式。

三、累乘法

例 已知数列{}n a 满足112(1)53n

n n a n a a +=+?=,,求数列{}n a 的通项公式。

四、取倒数法

例 已知数列{n a }中,其中,11=a ,且当n ≥2时,1

211

+=

--n n n a a a ,求通项公式n a 。

五、待定系数法

例 已知数列{}n a 满足1135241n

n n a a a +=+?+=,,求数列{}n a 的通项公式。

评注:本题解题的关键是把递推关系式13524n

n n a a +=+?+转化为

115223(522)n n n n a a +++?+=+?+,从而可知数列{522}n n a +?+是等比数列,进而

求出数列{522}n

n a +?+的通项公式,最后再求数列{}n a 的通项公式。

六、构造法

① q pa a n n +=+1;②n

n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12.

例 已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.

【解析】∴)3(231+=++n n a a ∴.322431

1-=??=++-n n n n a a

【反思归纳】递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法: ①令)(1λλ-=-+n n a p a ;

② 在q pa a n n +=+1中令p

q

x x a a n n -=

?==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .

例 已知数列{}n a 中,n

n n a a a 32,111+==+,求数列{}n a 的通项公式. 【解析】 n

n n a a 321+=+,∴

n

n n n n a a )23(2211+=-+,令n n n b a =-1

2

∴112211)()()(b b b b b b b b n n n n n +-++-+-=--- 2)2

3

(2-?=n ∴n n n a 23-=

【反思归纳】递推关系形如“n

n n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“n

n n n f a a )(1+=+求解.

第四课 数列求和的方法

一、利用常用求和公式求和 1、 等差数列求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

2、等比数列求和公式:?????≠--=--==)

1(11)1()1(111

q q q a a q q a q na S n n

n

前n 个正整数的和 2

)

1(321+=

++++n n n 前n 个正整数的平方和 6)

12)(1(3212222++=

++++n n n n

前n 个正整数的立方和 2

3333]2

)1([321+=++++n n n

公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。

例 已知3

log 1log 23-=

x ,求???++???+++n

x x x x 32的前n 项和. 例 设S n =1+2+3+…+n ,n ∈N *,求1

)32()(++=

n n

S n S n f 的最大值.

二、错位相减法求和

这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比

q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和。

例:在数列{}n a 中,1111

1,(1)2

n n n n a a a n ++==++ (I )设n

n a b n

=,求数列{}n b 的通项公式(II )求数列{}n a 的前n 项和n

S

三、 倒序相加法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例1] 求数列的前n 项和:231

,,71,41,1112-+???+++-n a

a a n ,…

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例1] 求数列的前n 项和:231

,,71,41,1112-+???+++-n a

a a n ,…

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

常见的裂项公式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k

=-++;

)1

21

121(21)12)(12(1+--=+-n n n n

1111

[](1)(2)2(1)(1)(2)

n n n n n n n =-+++++ ;

)(1

1n k n k

n

k n -+=

++

例 求数列

???++???++,1

1,

,3

21,

2

11n n 的前n 项和.

n n n n a n -+=++=

111

则 1

13

212

11+++???+++

+=

n n S n =11-+n

例 在数列{a n }中,1

1211++

???++++=

n n

n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

六、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

例 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.

例 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的

值.

七、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.

例 求

1

1111111111个n ???+???+++之和.

数列求和知识点总结(学案)

数列求和 1.求数列的前n项和的方法 (1)公式法 ①等差数列的前n项和公式②等比数列的前n 项和公式 (2)分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (5)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广

2.常见的裂项公式 (1)1n (n +1)=1n -1n +1 . (2)1(2n -1)(2n +1)=12? ?? ???12n -1-12n +1. (3)1n +n +1=n +1-n . 高频考点一 分组转化法求和 例1、已知数列{a n }的前n 项和S n = n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{ b n }的前2n 项和. 【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列{a n }的通项公式是a n =2·3n

-1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 高频考点二 错位相减法求和 例2、(2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式; (2) 当d >1时,记c n =a n b n ,求数列{c n }的前n 项和T n . 【感悟提升】用错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式; (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

几种常见数列求和方法的归纳

几种常见数列求和方法的归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

几种常见数列求和方法的归纳 1.公式法:即直接用等差、等比数列的求和公式求和。主要适用于等差,比数列求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (等差数列推导用到特殊方法:倒序相加) (2)等比数列的求和公式??? ??≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定 要讨论) (3)222221(1)(21) 1236n k n n n k n =++=++++=∑(不作要求,但要了解) 例:(1)求=2+4+6+ (2) (2)求=x+++…+(x ) 2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。 例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)222 2sin 1sin 2sin 3sin 89+++ + . 3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 例:(1)求和:(1) 个 n n S 111111111++++= 81 10 9101--+n n (2)2 2222)1 ()1()1(n n n x x x x x x S ++++++=

当1±≠x 时, n x x x x S n n n n 2) 1()1)(1(2 2222+-+-=+ 当n S x n 4,1=±=时 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。(分式求和常用裂项相消) 常见的拆项公式: 111)1(1+-=+n n n n ,) 121 121(21)12)(12(1+--=+-n n n n , 1111 ()(2)22 n n n n =-++, ) 12)(12(1 1)12)(12()2(2+-+=+-n n n n n , 2= 例:(1)求和:111 1 ,,,,, 132435 (2) n n ???+ . (2)求和)12)(12()2(5343122 22+-++?+?=n n n S n 1 2)1(2++= n n n S n 5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和) 例:求和:23,2,3, ,, n a a a na

数列求和方法小结

数列求和方法小结 等差数列、等比数列的求和是高考常考的内容之一,一般数列求和的基本思想是将其通项变形,化归为等差数列或等比数列的求和问题,或利用代数式的对称性,采用消元等方法来求和. 下面我们结合具体实例来研究求和的方法. 一、直接求和法(或公式法) 将数列转化为等差或等比数列,直接使用等差或等比数列的前n 项和公式求得. 常用公式:等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= , 等比数列的求和公式?????≠--==) 1(1)1() 1(11q q q a q na S n n (切记:公比含字母时一定要讨论), 另 外 222221 (1)(21) 1236 n k n n n k n =++=+++ += ∑ , 2 3 333 3 1 (1)1232n k n n k n =+?? =+++ +=???? ∑ 例1 . 二、倒序相加法 此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和. 例2已知函数()x f x = (1)证明:()()11f x f x +-=; (2)求128910101010f f f f ?? ?????? + +++ ? ? ? ??? ?? ?? ?? 的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知, 1928551101010101010f f f f f f ????????????+=+==+ = ? ? ? ? ? ??? ???? ?? ???? 128910101010S f f f f ?? ?? ????=+ +++ ? ? ? ?????????令 982110101010S f f f f ?? ??????=+ +++ ? ? ? ??? ?? ?? ?? 则

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列求和知识点总结.doc

数列求和 1.求数列的前 n 项和的方法 (1) 公式法 ①等差数列的前 n 项和公式 ②等比数列的前 n 项和公式 (2) 分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和, 即等比数列求和公式的推导过程的推广. (5) 倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广 2.常见的裂项公式 1 1 1 (1) n (n +1)= n -n +1 . (2) 1 1 1 1 . n - )( n + ) = 2 n - - n + 1 2 1 2 (212 1 1 = n + - n (3) 1. n + n +1 高频考点一 分组转化法求和 例 1、已知数列 { a n } 的前 n 项和 S n = n 2+ n , n ∈ N * . 2 (1) 求数列 { a n } 的通项公式; (2) 设 b n = 2a n + ( - 1) n a n ,求数列 { b n } 的前 2n 项和.

【感悟提升】 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差, 从 而求得原数列的和, 这就要通过对数列通项结构特点进行分析研究, 将数列的通项合理分解 转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列 { a n } 的通项公式是 a n =2·3n - 1+ ( - 1) n ·(ln2 - ln3) + ( - 1) n ln3 ,求其前 n 项和n . n S 高频考点二 错位相减法求和 例 2、(2015 ·湖北 ) 设等差数列 { a n } 的公差为 d ,前 n 项和为 S n ,等比数列 { b n } 的公比为 q ,已知 b 1= a 1 ,b 2= 2, q = d , S 10= 100. (1) 求数列 { a n } , { b n } 的通项公式; n a n n n (2) 当 d>1 时,记 c = ,求数列 { c 的前 n 项和 T . b n 【感悟提升】用错位相减法求和时,应注意: (1) 要善于识别题目类型,特别是等比数列公比为负数的情形; (2) 在写出“ S n ”与“ qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ S n - qS n ”的表达式; (3) 在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解. 【变式探究】已知数列 n 满足首项为 1 n + 1 n * n 2 n { a } a = 2, a = 2a ( n ∈ N ) .设 b = 3log a - * n n n n 2( n ∈ N ) ,数列 { c } 满足 c = a b . (1) 求证:数列 { b n } 为等差数列; (2) 求数列 { c n } 的前 n 项和 S n . 高频考点三 裂项相消法求和 例 3、设各项均为正数的数列 2 2 2 { a n } 的前 n 项和为 S n ,且 S n 满足 S n -( n + n - 3) S n - 3( n +n ) = 0, n ∈ N * . (1) 求 a 1 的值; (2) 求数列 { a n } 的通项公式;

数列解题技巧

数列解题技巧 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

第四讲数列与探索性新题型的解题技巧 【命题趋向】 从2007年高考题可见数列题命题有如下趋势: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等. 4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳. 5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.

6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果. 7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用. 【考点透视】 1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【例题解析】

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

数列求和7种方法(方法全-例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21

数列解题技巧归纳总结-打印

数列解题技巧归纳总结-打印

等差数列前n 项和的最值问题: 1、若等差数列{}n a 的首项1 a >,公差0d <,则前n 项和n S 有 最大值。 (ⅰ)若已知通项n a ,则n S 最大?1 n n a a +≥?? ≤? ; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p -的非零自然数 时n S 最大; 2、若等差数列{}n a 的首项1 0a <,公差0d >,则前n 项和n S 有 最小值 (ⅰ)若已知通项n a ,则n S 最小?1 n n a a +≤?? ≥? ; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p -的非零自然数 时n S 最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即1 2 ()n a a a f n +++=)求n a ,用作差法:{1 1 ,(1),(2) n n n S n a S S n -==-≥。 已知1 2() n a a a f n =求n a ,用作商法: (1),(1)() ,(2) (1)n f n f n a n f n =??=?≥?-? 。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时 也可直接求n a 。 ⑷若1 ()n n a a f n +-=求n a 用累加法:1 1 2 2 1 ()()()n n n n n a a a a a a a ---=-+-++- 1 a +(2)n ≥。 ⑸已知1()n n a f n a +=求n a ,用累乘法:12 1 121 n n n n n a a a a a a a a ---=????(2)n ≥。 ⑹已知递推关系求n a ,用构造法(构造等差、等比

数列解题技巧

数列解题技巧 Revised by Liu Jing on January 12, 2021

第四讲数列与探索性新题型的解题技巧 【命题趋向】 从2007年高考题可见数列题命题有如下趋势: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等. 4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳. 5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.

6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果. 7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用. 【考点透视】 1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【例题解析】

数列求和优秀教案设计

题组教学:“探索—研究—综合运用”模式 ——“数列的裂差消项求和法解题课”教学设计 【课例解析】 1 教材的地位和作用 本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。通过本节课的教学让学生感受裂差消项求和法在数列求和中的魅力,体会裂项相消的作用,达到提高学生运用裂项相消求和的能力,并把培养学生的建构意识和合作,探索意识作为教学目标。 2 学情分析 在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时用到了错位相减法、倒序相加法和裂差消项求和法,本节课在此基础上进一步对裂差消项求和法做深入的研究。本节课的容和方处于学生的认知水平和知识结构的最近发展区,学生能较好的完成本节课的教学任务。【方法阐释】 本节课的教学采用心智数学教育方式之“题组教学”模式,分为“创设情景、导入新课,题组探索、自主探究,题组研究、汇报交流,题组综合、巩固提高,归纳总结、提升拓展”五个教学环节. 本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法引入,从课本习题的探究入手展开教学,学生能自主发现裂差消项求和法,并很快进入深层次思维状态。接下来的研究性题组和综合性题组又从更深更广的层面加强裂差消项求和法的应用。 【目标定位】

1 知识与技能目标 掌握裂项相消法解决数列求和问题的基本思路、方法和适用围。进一步熟悉数列求和的不同呈现形式及解决策略。 2 过程与方法目标 经历数列裂差消项求和法的探究过程、深化过程和推广过程。培养学生发现问题、分析问题和解决问题的能力。体会知识的发生、发展过程,培养学生的学习能力。 3 情感与价值观目标 通过数列裂差消项求和法的推广应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。 4教学的重点和难点 本节课的教学重点为裂项相消求和的方法和形式。能将一些特殊数列的求和问题转化为裂项相消求和问题。 本节课的教学难点为用裂项相消的思维过程,不同的数列采用不同的方法,运用转化与化归思想分析问题和解决问题。 【课堂设计】 一、创设情景、导入新课 教师:请同学们回忆一下,我们在推导数列求和公式时,先后发现了哪几种数列求和的方法? 学生1:在等差数列求和公式的推导时我们用到了倒序相加法。在等比数列求和公式的推导中我们发现了错位相减法、裂差消项求和法。 学生2:在学习求和过程中,我们还发现了分组求和法和通项转换法。

数列解题技巧归纳总结_打印

数列解题技巧归纳总结 基础知识: 1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列 ,其中的每一个数叫做数列的项 . 2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 . 3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号,因此数列的一般形 式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第 n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法. 4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类: ①按项的数量分: 有穷数列 、 无穷数列 ; ②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他; ③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化范围分:有界数列、无界数列. 6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数关系可以用一个公式a n =f (n )(n ∈N + 或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数列的通项公式在形式上未必唯一. 7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一项a n -1(或前几项a n-1, a n -2,…)间关系可以用一个公式 a n =f (a 1n -)(n =2,3,…) (或 a n =f (a 1n -,a 2n -)(n=3,4,5,…),…) 来表示,那么这个公式叫做这个数列的 递推公式 . 8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n = 1 n i i a =∑=a 1 +a 2 +…+a n ,如果S n 与项数n 之间的函数 关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系: 通项公式a n 与求和公式S n 的关系可表示为:11(1) (n 2) n n n S n a S S -=?=? -≥? 等差数列与等比数列: 等差数列 等比数列 文字定义 一般地,如果一个数列从第二项起,每一项与它的前一项的差是同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。 一般地,如果一个数列从第二项起,每一项与它的前一项的比是同一个常数,那么这个数列就叫等比数列,这个常数叫等比数列的公比。 符号定义 1n n a a d +-= 1 (0)n n a q q a +=≠ 分类 递增数列:0d > 递减数列:0d < 递增数列:1101001a q a q >><<<,或,

(新课标)2020年高考数学 题型全归纳 数列求和的若干常用方法

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{an}的前n 项和12-=n n a S ,数列{bn}满 )(,311* +∈+==N n b a b b n n n . (Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n 项和Tn 。 解析:(Ⅰ)由 12,,1211-=∴∈-=++* n n n n a S N n a S , 两式相减得: ,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, , 21 =∴ +n n a a 同定义知}{n a 是首项为1,公比为2的等比数列. (Ⅱ) ,22,2111 11-+-+-=-+==n n n n n n n n b b b b a Λ ,2,2,2234123012=-=-=-b b b b b b , 221--=-n n n b b 等式左、右两边分别相加得: , 222 12132 2211 2 1 1+=--+=++++=---n n n n b b Λ n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴--ΛΛ =. 12222121-+=+--n n n n 已知等差数列 {}n a 的首项为1,前10项的和为145,求:. 242n a a a +++Λ 解析:首先由 3145291010110=?=??+ =d d a S 则: 6 22322 1) 21(232)222(322323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n ΛΛ 二、裂项求和法 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,

相关文档
最新文档