数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略
数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略

Last revised by LE LE in 2021

数学竞赛中代数式最值问题的解题策略

邮编:422200 作者:湖南隆回一中 邹启文

数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x ,1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年自编题)

分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。

解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可得()200521=+n n ,解得63≈n ,但当63=n 时()()201632632

1636321=?=+=+n n 当62=n 时()()195363312

1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211

40152005?=,且5

和401都是质数,显然n 不可能是401,∴n 只可能是5,故有1x +2x +3x +……+5x =2005又∵平均数51

(1x +2x +3x +……+5x )=20055

1?=401,且1x 、2x 、3x 、……n x 均为连续正整数和1x <2x <3x <……<5x ,即4013=x ∴当3991=x ,4035=x 时,恰有2005403402401400399=++++,于是n x 的最大值是403,最小值399。

【注】:由于本题中关键的是平均数与中位数关系的合理运用,1x 、2x 、3x 、……n x 是按从小到大的顺序排列的,在否定了1x 、2x 、3x 、……n x 是从1起的整数后,我们也可观察到1x +2x +3x +4x +5x =2005的平均数与中位数相等,所以也可以用枚举法确定5x =403与1x =399的大小,

例2、若x 、y 、z 是实数,满足x +y +z =5,3=++zx yz xy ,则z 的最大值是_(2004年全国希望杯初中数学邀请赛试题)

分析:这是一道已知条件中含有二次项的求其中某未知量最大值的典型题,因为本题已知x 、y 、z 是实数,那么由实数的意义可联想到x 、y 、z 是可开方的,因此应该想到x 、y 、z 在某一未知数为主元的一元二次方程的判别式△≥0,于是应想办法将两个等式转化为一元二次方程。

解:∵x +y +z =5, 3=++zx yz xy 则x =5-z -y ,

∴()()355=--++--y z z zy y y z ,即()0)35(522=+-+-+z z y z y

又∵y 、z 是实数,

∴△=()()()()13311310335145222

+-+=++-=+-??--z z z z z z z ≥0 ∴???≤-≥3

131z z , 即得-1≤z ≤313, 于是z 的最大值为313 【注】:本题中虽然只要求同学们求z 的最大值,但实际上z 还存在最小值,同时其它未知量也可用同样的方法求出它们的最值。

例3、若()()()36131221=++-++--++z z y y x x ,则z y z 32++的最小值是__,最大值是__(2004年全国希望杯初中数学邀请赛试题)

分析:本题是含有绝对值符号的最值题,要求z y z 32++的最大值,一般来说应有x 、y 、z 的其它条件存在,但题中并没有反映出来,所以我们必需用函数的有关知识在这个等式中寻找x 、y 、z 的条件。 解:∵()()()??

???≥-≤≤--≤+-=-++21221311221x x x x x x x ,同理有()()()?????≥-≤≤--≤+-=-++21221311221y y y y y y y , 同样有()()()??

???≥-≤≤--≤+-=++-32231412213z z z z z z z ,

E F 又∵()()()13,12,21++-++--++z z y y x x 的积为36=433??

∴应取??

???=-++=-++=-++431321321z z y y x x ,相应的取值范围是?????≤≤-≤≤-≤≤-312121z y x ,

∴其最小值为z y z 32++=()()()13121-+-+-=-6

其最大值为z y z 32++=1533222=?+?+

【注】:本题实际上是根据一次函数的取值范围求代数式z y z 32++最值的,题目把它们的取值范围隐藏在等式的绝对值中,如

21-++=x x X ,21-++=y y Y ,31-++=z z Z ,因此拓展了求最值的

思维。 例4、已知a <0,b ≤0,c >0,且ac b ac b 242-=-,求ac b 42-的最小值。(2004年“TRULY 信利杯”全国初中数学竞赛试题)

分析:本题是一道利用完全平方的性质求解的典例,虽然根据平方根的意义只要ac b 42-≥0,但有了等式右边ac b 2-就不一定是以0为最小值了,所以必须将ac b 42-转换为完全平方的形式。

解:∵ac b ac b 242-=-,两边同时平方得()2

224ac b ac b -=- 展开得2222444c a abc b ac b +-=-,化简后从而有1-=b ac

又∵ac b 42-=()()22214-=--b b b ,由于b ≤0,当b 取最大值0时,()22-b 值最小,且最小值是()22-b =()4202

=-,于是ac b 42-的最小值为4 【注】:本题很容易被二次根式

ac b 42-中必有ac b 42-≥0所迷惑,以为ac b 42-≥0中0就是它的

最小值,其实不然。 例5、若y x ,为正实数,且4=+y x ,那么4122+++y x 的最小值是____(首届创新杯全国数学邀请赛第二试试题)

分析:从代数式4122+++y x 的形式可知,求它们的和实际上是求两个Rt △的斜边的和,所以可转化为几何图形进行分析,是转化为几何图形求解。

解:设AB=4,AP=x ,PB=y ,AE=1,BD=2

∵CE=12+x ,CD=42+y

∴4122+++y x =PE+PD ≥

故4122+++y x 的最小值是5

【注】:有时还可将在直线同旁的点通过反射变换,将点描在直线的两旁求和的大小。

综上所述,尽管竞赛题在题型上呈现出了一个崭新的景象,涉及面广、形式灵活、且变化莫测,使人感到难以捉磨。即使题目中的最值求法实现了极大的拓展,我们也不能感到畏惧,只要我们在平时养成全面且严密的逻辑思维习惯,解题时持谨慎的态度,那么问题就会在你的努力下成功地获得解决。

有兴趣吗试试看,请作下例各题。

1、设1x 、2x 、3x 、……9x 均为正整数,且1x <2x <3x <……<9x ,1x +2x +, 3x +……+9x =220,当1x +2x +3x +4x +5x 的值最大时,求1x -9x 的最小值。(2004年全国初中数学联赛试题)

2、若x 、y 、z 为实数,且x 2—xy +y 2=z ,x 3+y 3=z 2,求z 可能取的最大值。(希望杯全

国数学邀请赛试题)

3、设x 为实数,求54321+++++++++x x x x x 的最小值(选编)

4、已知1222=+y x ,求252y x +的最大值与最小值。(选编)

5、若x 、y 为正实数,且3=-y x ,那么25422+++y x 的最小值是_(选编) 答案与提示:(1)、因为1x +2x +3x +……+9x =220,所以其平均数为

91(1x +2x +3x +……+9x )=9

1?220,即44.24=x 。又因有1x <2x <3x <……<9x 存在,即1x 、2x 、3x 、……9x 是按从小到大的顺序排列的,故其中位数为5x 应当满足24≤5x ≤25且5x 是整数,所以5x =24或25,当5x =24时,因为1x <2x <3x <……<9x ,所以1x 有最大值为20,9x 有最小值为29,恰有20+21+22+23+24+25+……+29=220,于是9x -1x 的最小值为9x -1x =9。显然5x =25是不合题意的,于是5x 只能等于24。

(2)、想办法消去X (或Y )变为以Y (或X )为主元的一元二次方程,再用判别式△≥0求之,答案为4。

(3)、当5-≤x ≤1-,51+++x x 的最小值为4,当-4≤x ≤-2,42+++x x 的最小值为2,当x =-3时3+x 的最小值为0。故当x =-3时,原式的最小值为min y =4+2+0=6

(4)、∵1222=+y x

,∴102≤≤x ,102≤≤y ,即11≤≤-x ,11≤≤-y , ∴()()102925225

22521252+--=-+=+x x x y x ,当52=x 时,有最大值1029当1-=x 时,有最小值2-

(5)、本题的两个点都在一条直线的同旁,故应将其中一点进行轴反射变换到直线的两旁后,按例5方法求解线段的和。答案为58。

说明:

编辑老师:如果您认为本文还有点价值可编,但觉得略长,则可把题注部分和习题的解答过程删除,只保留答案部分。谢谢!

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学竞赛解题策略几何分册勃罗卡定理

第32章勃罗卡定理 勃罗卡()Brocard 定理凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O e 的幂,O e 的半径为R ,则22EG EN EC ED OE R ?=?=-. 22EG GN BG GD R OG ?=?=-. 以上两式相减得() 22222EG OE R R OG =---, 即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-. 又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O e 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠, 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 11180909022BOD BOD BOD ??=?-∠-?=?-∠=∠ ??? , 即知点M 在OBD △的外接圆上. 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD e 与OAC e 的公共弦. 由于三圆O e ,OBD e ,OAC e 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论 推论1凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合. 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心. 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例. 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1 2 12...n r r n r S a b a b a b =+++。 不等式 1 2 12...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到 最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不 变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理

第32章勃罗卡定理 1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四 4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 5 图321 F O L G N E D C B A 6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ?=?=-. 7 22EG GN BG GD R OG ?=?=-. 8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-. 11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥. 13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥. 16

同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥. 18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 23 90(180)90BCD BCD =?-?-∠=∠-? 24 11180909022BOD BOD BOD ?? =?-∠-?=?-∠=∠ ??? , 25 即知点M 在OBD △的外接圆上. 26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论 30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合. 35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 36

解决平面解析几何问题的思维策略研究

解决平面解析几何问题的思维策略研究 成都市武侯区四川大学附属中学数学组简洪权 摘要 本研究把解决平面解析几何问题的思维过程划分为理解问题、转化问题、解答问题、反思问题四个阶段,运用“专家”与“新手”对比分析的方法,探讨了解决平面解析几何问题的思维过程各阶段的思维策略:运用恰当的语句表述问题的条件、运用正确的方法指导解题的思路、运用基本的知识和技能简化运算过程、运用恰当的思维方法提炼解答过程中的一般规律。 关键词:问题解决,平面解析几何问题,思维过程,思维策略 1.问题的提出 学数学离不开解题。解题就是“解决问题”,即求出数学题的答案,这个答案在数学上也叫做“解”,所以,解题就是找出问题的解的活动。小至一个学生算出作业的答案、一个教师讲完定理的证明,大至一个数学课题得出肯定或否定的结论、一个数学技术应用于实际构建出适当的模型等,都叫做解题。美国数学家保罗哈尔莫斯(Paul Halmos)认为:“数学家存在的主要理由就是解问题”,“数学的真正的组成部分是问题和解” [1]。数学家的解题是一个创造和发现的过程,教学中的解题则是一个再创造或再发现的过程。 美籍匈牙利数学教育家乔治波利亚(George Polya) 在《数学的发现》序言中说:“中学数学教学的首要任务就是加强解题训练”,“掌握数学就是意味着善于解题” [1]。他认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。在数学教学中,“解题”是一种最基本的活动形式,无论是数学概念的形成、数学命题的掌握、数学方法与技能的获得,还是学生能力的发展与提高,都要通过解题活动来完成。同时,“解题”也是评价学生认知水平的重要手段。 为此,研究者把解决平面解析几何问题的思维过程划分为几个阶段,运用“专家”与“新手”对比分析的方法,探讨解决平面解析几何问题的思维过程各阶段的思维策略,旨在用以指导具体解题的方法。 2.解决平面解析几何问题的思维过程 数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。对于数学解题思维过程,乔治波利亚提出了四个阶段:弄清问题、拟定计划、实现计划和回顾[2]。平面解析几何是用代数方法研究几何问题的一门学科。坐标法是平面解析几何最基本的方法,它是利用“曲线的方程”和“方程的曲线”这两个重要概念,借助于平面坐标系(直角坐标系或极坐标系等),用坐标表

初中数学竞赛题中方程解的讨论问题解题策略(一)

- 1 - 初中数学竞赛题中方程解的讨论问题解题策略(一) 安徽省巢湖市教学研究室 张永超 (本讲适合初中) 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 一、知识要点 1.形如 方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为=。 2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关 知识。 ⑴若 ,则它有一个实数根=1;若 ,则它有一个实数根=-1。 ⑵运用数形结合思想将方程(≠0)根的讨论与二次函数 (≠0)的图象结合 起来考虑是常用方法。 3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。 4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。 5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。 二、例题选讲 1.方程整数根的讨论 例1.已知 ,且方程 的两个实数根都是整数,则其最大的根是 。 解:设方程的两个实数根 为 、 , 则 ,所 以 。因为 、都是整数,且97是质数,若设 < ,则 , ,或 , ,因此最大的根是98。 评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:

- 2 - 类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数 根,则-等于( ) A.1; B.2; C.±1; D.±2. 分析:依题意得⊿=,所以 ,由,为整 数得 ,或 ,或 ,或 , 所以-=± 1。 例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数 有______个。 解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。 ①当时, ,符合题意; ②当 时,原方程是一元二次方程,易知 是方程的一个整数根。设是方程的另一个整数根, 由一元二次方程根与系数的关系得。因为 是整数,所以 ±1,或±2,∴ =-1,0,2, 3。 结合①、②得,本题符合条件的整数有5个。 评注:本例首先对项的系数是否为零进行了分类讨论。对于 时方程解的讨论方法具有一般性, 即由 是整数判断得 ±1,或±2。 延伸拓展:例2关于一元二次方程整数解的讨论方法应用到整除知识与分解变形技巧,是初中数学竞赛常考的内容,如: (2004年信利杯)已知、是实数,关于、的方程组有整数解(,),求、满 足的关系式。 解:原方程组可化 为 ,所 以 ,显然方程中≠-1,因 此 。因为、是整数,所以 ,即=0,或-2。 当=0时,=0,此时、满足的关系式是=0(为任意实数); 当=-2时,=8,此时、满足的关系式。 例3.(2004年全国联赛)已知方程 的根都是整数,求整数的值。

山西省太原市高中数学竞赛解题策略-几何分册第25章九点圆定理汇总

第25章 九点圆定理 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆. 如图25-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D 、E 、F ,三边BC 、CA 、AB 的中点分别为L 、M 、N ,又AH 、BH 、CH 的中点分别为P 、Q 、R ,则D 、E 、F 、L 、M 、N 、P 、O 、R 九点共圆. H O Q L R N M P F E D C B A 图25-1 证法1联结PQ ,QL ,LM ,MP ,则1 2 L M B A Q P ∥∥,即知L M P Q 为平行四边形,又LQ CH AB LM ⊥∥∥,知LMPQ 为矩形.从而L 、M 、P 、Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L 、M 、N 、P 、Q 、R 六点共圆,且PL ,QM ,NR 均为这个圆的直径. 由90PDL QEM RFN ∠∠=∠=?=,知D ,E ,F 三点也在这个圆上,故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法2如图25-1,由1 1801802NQD BQD BHD ∠=?-∠=?-∠,以及注意到DE 是N 与R 的公共弦, 知 NR DE ⊥,有1 2 N R D D R E C ∠= ∠=∠,亦即180NRD EHD ∠=?-∠,从而知 ()360180NQD NRD BHD EHD ∠+∠=?-∠+∠=?. 因此,N 、Q 、D 、R 四点共圆. 同理,Q 、L 、D 、R 四点共圆.即知N 、Q 、L 、D 、R 五点共圆. 同理,L 、D 、R 、M 、E 以及R 、M 、E 、P 、F ;E 、P 、F 、N 、Q ;F 、N 、Q 、L 、D 分别五点共圆. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法3如图25-1.联结PL 、PN 、PQ 、PF 、LQ 、LF 、QN 、FL ,则90PDL ∠=?.注意到PN BH ∥,NL AC ∥,BE AC ⊥,则PN NL ⊥,即90PNL ∠=?. 又PQ AB ∥,QL CH ∥,而CH AB ⊥,则QL PQ ⊥,即90PQL ∠=?. 注意到PF PH =,则PFH PHF CHD ∠∠∠==. 由LF LC =,有CFL HCD ∠∠=. 因90CHD HCD ∠+∠?=,则90PFL PFH CFL ∠∠+∠?==. 同理,PM L ∠、PEL ∠、PRL ∠皆等于90?.即D 、N 、Q 、F 、M 、E 、R 各点皆在以PL 为直径的圆周上. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法4如图25-1,注意到LQHR 为平行四边形,QP BA ∥,RP CA ∥,则么180180QLR QHR A QPR ∠=∠?-∠?∠==-,即知L 、Q 、P 、R 四点共圆. 又180180QDR QDH RDH QHD RHD QHR A QPR ∠∠+∠∠+∠∠?∠?-∠====-=(注意QP BA ∥,

小学数学竞赛一几种解题方法

一几种解题方法 1.28分。提示:按从多到少顺序枚举。如果小军是两个1角硬币,那么小红的三枚硬币不可能是18分;当小军是一个1角一个5分时,小红是一个1角,一个2分,一个1分。 2.5种。 3.495。解:因为93>700,所以只有下面三种可能: 13+33+53=153 13+33+73=371, 33+53+73=495,其中只有495是11的倍数。 4.286。解:此数是13的偶数倍,必能被26整除。由260依次往小试验,260-26=234,234-26=208,都不符合题意。再由260往大试验,260+26=286符合题意。 5.15。解:1与不小于4的任何自然数都不满足题意,所以四个数中没有1。取2,3,4,a,前三个数满足条件,a=5不满足条件,a=6满足条件。所求数为2+3+4+6=15。 6.8种。解:将四个瓶子依次记为A,B,C,D,将四张标签依次记为a,b,c,d。假设A贴对了,其余的都贴错了,有两种情况: ①Aa,Bc,Cd,Db;②Aa,Bd,Cb,Dc。 同理B,C,D贴对了,其余的都贴错了,也各有两种情况。共8种。 7.10种。提示:有0,0,3;0,1,2;0,2,1;0,3,0;1,0,2;1,1,1;1,2,0;2,0,1;2,1,0;3,0,0十种方法。 8.7。解:不拆盒可买的节数有3,5,8,9,10,…因为超过10的数都可以由8,9,10中的某个数加3的倍数形成,而8,9,10都可以不拆盒,所以买7节以上(不含7)都不必拆盒。 9.11。提示:与第8题类似。 10.18支、10支、6支、4支。提示:因为总的铅笔数不多,故可依次假设丁有2支、3支、4支……铅笔。 11.21个。 提示:乙的红球、白球都是偶数。因为甲的红球数是乙的白球数的2倍,并且不超过10,所以乙的白球数只能是2或4。

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

解析几何种技巧(终审稿)

解析几何种技巧 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

本文节选自《试题调研》数学第2辑的“热点关注”,敬请品读(版权所有,转载请注明出处)。 陕西胡波 从近几年全国各省市新课标高考试题来看,解析几何主要考查直线与圆、直线与圆锥曲线的基本知识等,在选择题、填空题、解答题中都有出现,一般试卷出现3小题1大题.综合类试题多涉及函数、导数、方程、不等式、平面向量、平面几何等知识,所考查的知识点较多,试题难度中等偏上.试题往往会出现计算量较大的情况,怎样在解题中巧妙地降低计算量、减少运算错误是我们广大考生在学习中要体会和感悟的.下面通过一些典型例题的解析,说明解析几何中的解题技巧,以供读者参考学习. 1.活用定义返璞归真 圆锥曲线的定义是圆锥曲线的本质属性.许多性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简. 2.活用平几 峰回路转 解决解析几何问题时,往往需要求解涉及含多个参数的两个以上方程组成的方程组,运算较为复杂,这对于运算能力稍差的同学,很难准

确迅速求解.若能联想题目所涉及图形的几何性质,并利用相关性质来解决问题,常常可以峰回路转,达到巧妙解题的效果. 【点评】本题重点考查运算能力,这对考生提出了较高的要求.通过对比上述通法与巧法,读者很容易看出:运用平面图形的有关几何性质来解决一些解析几何问题,可以有效地避免复杂的代数运算,达到简捷解题的目的. 3.巧设坐标?水到渠成 【点评】本题如果按常规设点Q(x,y),必将得到一个二元二次方程组,这将加大计算量,使问题复杂化. 4.数形结合一目了然】 … 5.引进参数柳暗花明 … 6.设而不求欲擒故纵 … 7.整体代换绝处逢生 … 8.引入向量轻车熟路 … 更多有关解析几何的解题技巧详见《试题调研》第2辑—三角函数、平面向量、解析几何。本辑定会让你识得了三角、解得了几何、破得了向量,真正做到好题先体验,笑在百花前!

山西太原市高中数学竞赛解题策略-几何分册第1章直角三角形

第一编 点击基本图形 第1章 直角三角形 直角三角形是含有内角为90?的特殊三角形,它是一类基本图形. 直角三角形的有趣性质在处理平面几何问题中常发挥重要作用. 性质1 一个三角形为直角三角形的充要条件是两条边长的平方和等于第三条边长的平方(勾股定理及其逆定理). 性质2 一个三角形为直角三角形的充要条件是一边上的中线长等于该边长的一半. 推论1 直角三角形的外心为斜边的中点. 性质3 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为D 时,下列五个等式之一成立. (1)2AC AD AB =?. (2)2BC BD AB =?. (3)2CD AD DB =?. (4)22 BC AB CD AD =. (5)22AC AB CD DB = . 事实上,由2AC AD AB =?,有 AB AC AC AD = .注意到A ∠公用,知ACB △∽ADC △.而90ADC ∠=?,故90ACB ∠=?.即可得(1)的充分性. 我们又由 22222BC AB BC CD AB AD CD AD CD AD --=?= 22 DB DB CD AD ?=,即2CD AD DB =?. 即可证得(4)的充分性. 其余的证明略. 推论2 非等腰ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射 影为D 时,22AC AD BC DB = . 事实上,由性质3中的(1)、(2)相除或(4)、(5)相除即证.下面,另证充分性.由 222 222 AD AC AD CD DB BC CD DB +== +, 有 2()()0CD AD DB AD DB -?-=. 而AD DB ≠,即有2CD AD DB =?.由此即可证. 性质4 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为点D ,过CD 中点P 的直线AP (或BP )交BC (或AC )于E ,E 在AB 上的射影为F 时,2EF CE EB =?(或2EF = CE EA ?) . 证明 必要性.如图11-,过D 作DG AE ∥交BC 于G ,则

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (2) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (3) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在抛物 线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求的。对于 一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为 或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。三、代数运算转化完条件只需要算数了。很多题目都要将直线与圆锥曲线联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都需要联立。 (1)求弦长解析几何中有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 (2)求面积 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为AB与x轴交于D,则(d是点O到AB的距离;第三个公式教材没 有,解要用的话需要把下面的推导过程抄一下,理解一下。)。

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识

第六章几何基础知识 第一节线段与角的推理计算 【知识点拨】 掌握七条等量公理: 1、同时等于第三个量的两个量相等。 2、等量加等量,和相等。 3、等量减等量,差相等。 4、等量乘等量,积相等。 5、等量除以等量(0除外),商相等。 6、全量等于它的各部分量的和。 7、在等式中,一个量可以用它的等量来代替(等量代换)。 【赛题精选】 例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。 例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。 例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠ AOC和∠BOC的平分线。问图中互为补角关系的角共有多少对? 例4、已知B、C是线段AD上的任意两点,M是AB的中 点,N是CD的中点,若MN=a,BC=b,求CD的长。

例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。求∠MON的度数。 例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。 例7、如图,AE=8.9CM,BD=3CM。求以A、B、C、D、 E这5个点为端点的所有线段长度的和是多少? 例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM, PQ=11CM。求线段BQ的长。 例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。

求∠BOC的度数。 例10、已知C是AB上的一点,D是CB的中点。若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。求线段AC的长度是多少厘米?

【针对训练】

相关文档
最新文档