食品工程原理重点

食品工程原理重点
食品工程原理重点

食品工程原理复习

第一章 流体力学基础

1.单元操作与三传理论的概念及关系。

不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉

碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元

操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作,

均可用动量传递的理论去研究。

热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡

是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。

质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质

基本规律的单元操作,均可用质量传递的理论去研究。

单元操作与三传的关系

“三传理论”是单元操作的理论基础,单元操作是“三传理论”

的具体应用。

同时,“三传理论”和单元操作也是食品工程技术的理论和实践

基础

2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。

μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈

大。所以称为粘滞系数或动力粘度,简称为粘度

3.理想流体的概念及意义。

理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工

程研究带来方便。

4.热力体系:指某一由周围边界所限定的空间内的所有物质。边

界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为

外界。

5.稳定流动:各截面上流体的有关参数(如流速、物性、压强)

仅随位置而变化,不随时间而变。

6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。

7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。

8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。

柏努利方程的三种表达式

p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2

p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2

9.管中稳定流动连续性方程:在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积成反比。截面积愈大之处流速愈小,反之亦然。对于圆形管道,不可压缩流体在管道中的流速与管道内径的平方成反比。

10.雷诺准数和影响流体流动类型的因素:u 、d 、ρ越大,μ越小,就越容易从层流转变为湍流。上述中四个因素所组成的复合数群du ρ/μ,是判断流体流动类型的准则。

Re < 2000 稳定的层流区

2000 < Re < 4000 由层流向湍流过渡区

Re > 4000 湍流区

11.

12.布拉修斯公式(Re 大于4000):

12.冲层和湍流中心。10.流体在光滑管内作湍流流动时,摩擦系数λ与Re 和Δ/d 有关。

13. 13.管路计算的目的是确定流量、管径和能量之间的关系。管路计算包括设计型计算和操作型计算两种类型。

管路计算是连续性方程、柏努利方程、摩擦阻力计算式三式的具体应用。

14.流体流经并联管路系统时,遵循的原则是各并联管段的压强降相等、主管总流量等于各并联管段之和。

15.离心泵叶轮按有无挡板可分为闭式 ,半闭式 ,开式 。离心泵按叶轮

串联的多少可分为单级泵 ,多级泵。

16.离心泵多采用后弯叶片是因为输送液体希望获得的是静压头。

17.离心泵在启动前应灌泵,否则会发生气缚现象;离心泵的安装高度应小于允许安装高度, 否则会发生汽蚀现象。

18.离心泵容易产生气蚀的的原因有液体温度过高;管道阻力过大;流体沸点低等。

19.离心泵的工作点是泵的特性曲线与管路特性曲线的交点。

20.离心泵的流量调节,通常在排出管线上装适当的调节阀改变离心泵

的转速或改变叶轮外径。

21. 离心泵的气蚀余量减小,则其抗气蚀能力增大。

22.造成离心泵的有效功率小于轴功率的原因。

轴功率指泵轴所获得的功率。由于有容积损失、水力损失与机械损失,故泵的轴功率要大于液体实际得到的有效功率

容积损失是由于泵的泄漏造成的。离心泵在运转过程中,有一部分获得能量的高压液体,通过叶轮与泵壳之间的间隙流回吸入口

水力损失是由于流体流过叶轮、泵壳时,由于流速大小和方向要改变,且发生冲击,而产生的能量损失。

机械损失是泵在运转时,在轴承、轴封装置等机械部件接触处由于机械磨擦而消耗部分能量。

泵的转速是指离心泵、旋转泵的泵轴的转速或往复泵曲轴的转速,单位:r/min

23.正位移泵的流量与泵的压头及管路情况无关,因此不能简单的用调节排出管路的阀门来调节。正位移泵的流量调节方法有两种:一种是回路调节;一种是改变曲轴的冲程大小。

24.泵的特性曲线:

H —Q 曲线代表的是在一定转速下流体流经离心泵所获得的能量与流量的关系,是最为重要的一条特性曲线。

P -Q 曲线表示泵的流量Q 和轴功率P 的关系,P 随Q 的增大而增大。显然,当Q=0时,泵轴消耗的功率最小。启动离心泵时,为了减小启动功率,应将出口阀关闭

η—Q 曲线最大值相当于效率最高点。泵在该点所对应的压头和流量下操作,其效率最高,故该点为离心泵的设计点。

特性曲线 :在固定的转速下,离心泵的基本性能参数(流量、压头、功率和效率)之间的关系曲线。

强调:特性曲线是在固定转速下测出的,只适用于该转速,故特性曲线图上都注明转速n 的数值。

图上绘有三种曲线 H-Q 曲线

N-Q 曲线

η-Q 曲线

第二章 传 热

傅立叶定律是热传导的基本定律,其表达式为

q —热流密度,简称传热速率,w/m2 —导热面积,即垂直于热流方向的表面积,k/m

λ—比例系数,热导率,w/m.k 。

1.传热的概念:传热是由于温度差而引起的能量转移。热量总是自动地由高温区传递到低温区。热量传递是自然界中普遍存在的物理现象,在工程技术、工业生产及日常生活中都有着广泛的应用。

q --热流密度,w/m 2

λ--导热系数(或热导率),w/m.k 。 式中的负号指热流方向和温度梯度方向相反。 傅立叶定律 傅立叶定律是热传导的基本定律,它指出:热流密度与温度梯度成正比。

2.传热在食品工程中的应用:食品加工过程中的温度控制、灭菌过程以及各种单元操作(如蒸馏、蒸发、干燥、结晶等)对温度有一定的要求。

3.传热的基本方式及特点。

热传导物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导

热对流流体各部分之间发生相对位移所引起的热传递过程称为热对流。热对流仅发生在流体中热对流的两种方式:强制对流:因泵、风机或搅拌等外力所导致的对流称为强制对流自然对流:由于流体各处的温度不同而引起的密度差异,致使流体产生相对位移,这种对流称为自然对流

热辐射因热的原因而产生的电磁波在空间的传递,称为热辐射。所有物体都能将热以电磁波的形式发射出去,而不需要任何介质。任何物体只要在绝对零度以上都能发射辐射能,但是只有在物体温度较高的时候,热辐射才能成为主要的传热形式。

4.在食品生产中,物料在换热器内被加热或冷却时通常需要用另一种流体供给或取走热量,此种流体称为载热体。

5. 热传导:物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。

6.傅立叶定律中的负号是指热流方向和温度梯度方向相反。

7.对流传热:是在流体流动进程中发生的热量传递现象,它是依靠流体

质点的移动进行热量传递的,与流体的流动情况密切相关。

8. 影响对流传热系数的因素流体的状态、流体的物理性质、流体的运动状况、流体对流的状况、传热表面的形状、位置及大小等。

9.对流传热系数关联式中准数的符号及意义。

在数值上等于单位温度差下、单位传热面积的对流传热速率,其单位为W/(m2·℃),它反映了对流传热的快慢,α愈大表示对流传热愈快。

10. 蒸汽冷凝有膜状冷凝和滴状冷凝两种方式。

膜状冷凝:由于冷凝液能润湿壁面,因而能形成一层完整的液膜。在整个冷凝过程中,冷凝液膜是其主要热阻

滴状冷凝:若冷凝液不能润湿冷壁面,由于表面张力的作用,冷凝液在壁面上形成许多液滴,并沿壁面落下,该种冷凝称为滴状冷凝。

11.冷、热流体通过间壁两侧的传热过程包括热流体以对流方式将热量传递给管壁、热量以热传导方式由管壁的一侧传递至另一侧、传递至另一侧的热量又以对流方式传递给冷流体三个步骤。

12.总传热系数K 的数值取决于流体的物性、传热过程的操作条件及换热器的类型。

K

——换热器的平均总传热系数, w/(m2·k )

S ——换热器的总传热面积, m2

ΔT-- 换热器间壁两侧流体的平均温差

逆流和并流时的平均温度差

ΔTm 称为对数平均半径。当ΔT2/ ΔT1≤ 2时,可用(ΔT2+ ΔT1)/2代替对数平均温度差。

13.间壁式换热器换热操作中,壁温总是接近对流传热系数较大 一侧流体的温度。

14.强化传热的途径有增大传热面积、降低加热介质温度、增加平均温度差、减少传热阻力等。

●不凝性气体的影响: 在蒸汽冷凝时不凝性气体在液膜表面形成一层气膜,使传热阻力加大,冷凝对流传热系数降低。 ●蒸汽流速和流向的影响:

●冷却壁面的高度及布置方式:

●流体物性:冷凝液的密度越大,粘度越小,则液膜厚度越小,a 越大。

Q KS T =?

15.在空气-蒸汽间壁换热过程中可采用提高空气流速方法来提高传热速率最合理。

16.蒸汽冷凝时的热阻决定于液膜厚度。

第四章颗粒与流体之间的相对运动

1.单颗粒的特性主要是颗粒的大小、形状、和表面积。

2. 颗粒的当量直径的三种表示方法。

等体积当量直径:颗粒的等体积当量直径为与该颗粒体积相等的

直径。

m;V―颗粒的体积,m3。

等比表面积当量直径: 与非球形颗粒比表面积相等的直径为该

颗粒的等比表面积当量直径。

m;

等表面积当量直径: 与非球形颗粒表面积相等的直径为该颗

粒的等表面积当量直径。

3. 床层的空隙率ε的概念及影响因素。空隙率的大小与颗粒形状、粒度分布、颗粒直径与床层直径的比值、床层的填充方式等因素有关。

4. 影响床层压降的因素有三个 ,即操作因素

u ,流体物性ρ和μ,床层特性ε和a 。所有这些因素中,影响最大的是床层空隙率ε 。

流体通过一组平行细管流动的压降为

ΔP---流体通过床层的压降,Pa; L

—床层高度,m ;

de -床层流道的当量直径,m ;

u1-流体在床层内的实际流速,m/s

欧根方程,其实验范围为 Rep =0.17~420

当(Re)p ﹤20时,等式右边第二项可忽略。

当(Re)p ﹥1000时,等式右边第一项可略去。

5.在重力沉降操作中,影响沉降速度的因素主要有颗粒体积分数、 器壁效应和颗粒形状。

沉降速度 则可得沉降速度计算式

≤ 2×105 牛顿区)

影响沉降速度的因素(

1) 颗粒直径dp:2) 连续相的粘度μ 3) 两相密度差(ρ p-ρ):

4) 颗粒形状 5) 壁效应:当颗粒在靠近器壁的位置沉降时,由于器壁的影响,其沉降速度较自由沉降速度小,这种影响称为壁效应。

6)干扰沉降:当非均相物系中的颗粒较多,颗粒之间相互距离较近时,颗粒沉降会受到其它颗粒的影响,这种沉降称为干扰沉降。干扰沉降速度比自由沉降的小。

流化床的主要特性:

过滤:以某种多孔物质为介质,在外力的作用下,使悬浮液中的液体通过介质的孔道,而固体颗粒被截留在介质上,从而实现固液分离的单元操作。过滤介质: 过滤采用的多孔物质。滤浆: 所处理的悬浮液。滤液: 通过多孔通道的液体。滤饼或滤渣: 被截留的固体物质

过滤介质的作用(滤饼过滤):促使滤饼的形成,并支承滤饼。

过滤介质应具有如下性质:

●多孔性,液体流过的阻力小。

●有足够的强度。

●耐腐蚀性和耐热性。

●孔道大小适当,能发生架桥现象。

无毒,易清洗消毒,不易滋生微生物等。

6.板框过滤机的操作是间歇式的,每个操作循环由装合、过滤、洗涤、卸渣、整理五个阶段。

7.板框压滤机滤板的作用是提供滤液通道,支撑滤布。

8.利用流动流体的作用,将大量固体颗粒悬浮于流体中并使之呈现出类似于流体的某些表现特性,这就是固体流态化。

9.当流体以不同速度由下向上通过固体颗粒床层时,根据流速的不同,可能出现以下几种情况: 固定床阶段、流化床阶段、气力输送阶段。

10.流化床的不正常现象。

(1).腾涌现象:腾涌现象主要出现在气-固流化床中。若床层高度与直径之比值过大,或气速过高,或气体分布不均时,会发生气泡合并现象。当气泡直径长到与床层直径相等时,气泡将床层分为几段,形成相互间隔的气泡层与颗粒层。颗粒层被气泡推着向上运动,到达上部后气泡突然破裂,颗粒则分散落下,这种现象称为腾涌现象流化床发生腾涌时,不仅使气-固接触不均,颗粒对器壁的磨损加剧,而且引起设备振动。

(2).沟流现象沟流现象是指气体通过床层时形成短路,大部分气体穿过沟道上升,没有与固体颗粒很好地接触。粒度过细、密度大、易于粘连的颗粒,以及气体在分布板处的初始分布不均,都容易引起沟流。

11.临界流化速度的概念及确定。

确定临界流化速度主要有两种方法:实验测定法和关联式计算法设以空气为流化介质时测定的临界流化速度umf′,则实际生产中的临界流化速度umf可用下式推算:

ρ -实际流化介质密度,kg/m3;

ρ′-空气密度,kg/m3;

μ -实际流化介质粘度,Pa·s;

μ′-空气的粘度,Pa·s。

对于单分散性固体颗粒,其临界流化速度为对于多分散性粒子床层,则需通过关联式计算由于临界点是固定床到流化床的转折点,所以,临界点的压力降既符合流化床的规律也符合固定床的规律。

12. 为什么板框过滤机洗涤速率等于过滤终了速率的1/4。

洗涤时洗液穿过二层滤布和整层滤饼,其路径为过滤终了时滤液路径的二倍,此外因过滤面积是洗涤面积的二倍,故当洗液粘度与滤液相近,且洗涤时所用压力与过滤终了时压力相同时,洗涤速率约为最终过滤速率的四分之一。

恒压过滤的特点:滤饼不断变厚、阻力逐渐增加、推动力Δp 恒定、过滤

速率逐渐变小

恒速过滤:对于不可压缩滤饼进行恒速过滤时,其压强差随过滤时间成直线增加。所以,在实践中很少采用完全恒速过滤的方法。

第七章吸收与蒸馏

1菲克(Fick )定律:

当物质A 在介质B 中发生扩散时,任一点处物质A 的扩散通量与该位置上A 的浓度梯度成正比,即:dz dc D J A AB A -=

JA ——A 组分在z 方向上的扩散通量kmol/m2·s;

cA ——A 组分的摩尔浓度kmol/m3;

DAB ——A 组分在A 、B 的混合物中扩散时的扩散系数m2/s

“-”——表示扩散沿着浓度降低方向进行。

同理 ,对B 组分dz dc D J B BA B -=

JB ——B 组分在z 方向上的扩散通量kmol/m2·s;

cB ——B 组分的摩尔浓度kmol/m3;

DBA ——B 组分在A 、B 的混合物中扩散时的扩散系数m2/s 1.等摩尔逆向扩散: 两容器内总压相同,

组分A 的传质通量与组分B 的传质通量相等,但传质方向相反.

1122A B A B p p p p p +=+=

等摩尔扩散速率

对于气体:

对于液体: 2.传质速率NA 等于分子扩散速率JA 的条件:单纯的等摩尔反向扩散.

3.单向扩散:气体:

液体:

4.P/PBm 总是大于1,称为“漂流因子”或“移动因子”,其值越大,表明整体移动在传质中所占分量越大.

5.对吸收而言,传质过程的限度:若保持液相浓度不变,气相浓度最低只能降到与之相平衡的浓度。若保持气相浓度不变,则液相浓度最高只能升高到与气相浓度相平衡的浓度。

6.吸收塔内填装一定高度的料层,其作用是提供足够的气液两相传质面积。

7.传质速率是将一相主体浓度和界面浓度之差为对流传质推动力 ,而将其它影响对流传质的因素均包含在传质系数中。

8.在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用

A B J J =-

9.双膜理论的基本论点:(1)在气液两相接触面附近,分别存在着呈滞流流动的稳态气模与液膜,在此滞膜层内传质严格按分子扩散方式进行,膜的

(2)相界面没有传质阻力,即气液两相在相

膜层以外的气液相主体,由于流体的湍动剧烈,质速率高,传质阻力可以忽略不计,分压或浓度均匀化,无分压或浓度梯度。

10.在吸收塔的设计计算中,选取的液气比L/V变化,会导致其他参数怎样变化?

(1)选取的 L/V 大,操作线斜率大,操作线与平衡线的距离大,塔内传质推动力大,完成一定分离任务所需塔高小;(2)L/V 大,吸收剂用量多,吸收剂出塔浓度 X1 减小,循环和再生费用增加;(3)若L/V 减小,吸收剂出塔浓度 X1 增加,塔内传质推动力减小,完成相同任务所需塔高增大,设备费用增多。

11.升温会使气体在液体中的溶解度变小,对吸收操作不利。

12.在分子传质中,总体流动是如何形成的?

13.在吸收过程中,气液平衡关系对各传递步骤阻力的大小及传质总推动力的分配有极大的影响:易溶气体溶解度大而平衡线斜率小,吸收过程通常为气相阻力控制;难溶气体溶解度小而平衡线斜率大,吸收过程通常为

液相阻力控制。

14.精馏过程的基本原理:液体混合物经多次部分汽化和冷凝后,便可得到几乎完全的分离。

15.精馏与简单蒸馏的区别:(平衡蒸馏和简单蒸馏为单级分离过程,即仅对液体混合物进行一次部分汽化和冷凝,故只能对液体混合物进行初步地分离。若使液体混合物得到几乎完全的分离,必须进行多次部分汽化和冷凝,该过程即所谓的精馏。)汽相和液相的部分回流也是精馏操作的基本条件。它是两相不断进行物质传递从而实现高纯度分离的充分必要条件,而这种传递和分离的依据则仍然是各组分挥发度的不同。

16.理论板的概念:指离开该板的汽液两相互成平衡,塔板上各处的液相组成均匀一致的理想化塔板。

17.恒摩尔流假定:(1)恒摩尔汽化:每层塔板上升的蒸汽的摩尔流量相等。

精馏段: V1=V2=V3=…Vn=V=定值

提馏段: V1′=V2′=V3=…V′m=V′=定值但V与V′不一定相等。

(2)恒摩尔溢流:在精馏塔内,从精馏段或提馏段每层塔板下降的液相摩尔流量分别相等,但两段下降的液相摩尔流量不一定相等。

精馏段: L1=L2=L3=…Ln=L=定值

提馏段: L1′=L2′=L3′=…Lm′=L′=定值

但L与L'不一定相等。

19. q值称为进料的热状况参数:

20.完成一个精馏操作的两个必要条件是塔顶液相回流和塔底上升蒸气。

21.进入精馏塔的原料液可能有的五种热状况:

冷液进料 q>1

饱和液体(泡点)进料q=1

汽液混合物进料 0

饱和蒸汽(露点)进料q =0

过热蒸汽进料q <0

22.温度--组成(t-x-y)图的上下两曲线将图分成液相区、过热蒸汽区和汽液共存区三个区域。

23.对于二元理想溶液, 相对挥发度α大, 说明该物系容易分离。

24.再沸器的作用:加热液体产生蒸气,蒸气沿塔上升,与下降的液体逆

25.

若在塔顶进料则只有塔底的重组分产品可达高纯度,塔顶引出的蒸汽因没有经过精馏段的精制,纯度一般不会高。

若在塔底进料则只有塔顶的轻组分产品可达高纯度,塔底的液体因未经提馏段提浓,纯度一般也不会高。

只有包括了精馏段和提馏段的精馏塔才可能由塔顶和塔底连续地分别得到高纯度的轻、重组分产品。

26.为什么精馏的操作线为直线?

根据恒摩尔流假设,L 为定值,且在稳定操作时,D 及xD 为定值,故R 为常量。它描述了任一板(第n 层板)的液体组成Xn 与此相邻的下一塔板(第n+1层)上升的蒸汽组成之间的关系,为一线性关系。

27..恒摩尔流假定成立的条件:气液两相接触时,若有1kmol 蒸气冷凝使1kmol 的液体汽化,这时气液流符合恒摩尔流假定。

28.最小回流比的计算:q D q D x x y x R R --=+1min min 整理得

第12章 干燥原理

一.相对湿度(湿度比)φ:在一定温度及总压下,湿空气的水汽分压 pv 与同温度下水的饱和蒸汽压 pS 之比,称为相对湿度,用符号φ表示,即

①相对湿度可以说明湿空气偏离饱和空气的程度,能用于判定该湿空气能否作为干燥介质,φ值越小,则吸湿能力越大。

②在干燥操作中,总是先将空气加热后再送入干燥器内,其目的是降低相对湿度以提高吸湿能力。

二.干球温度T:用普通温度计直接测得的湿空气的温度,它是空气的真实温度。

湿球温度TM:用湿纱布包裹温度计的感温部分(水银球),纱布下端浸在水中,以保证纱布一直处于充分润湿状态,这种温度计称为湿球温度计。对于不饱和空气,该空气的三个温度干球温度t,湿球温度Tm和露点Td 的关系是:在不饱和空气中湿球温度TM低于干球温度T。

原理图如下:(形成过程见课本348页)

强调:①湿球温度实际上是湿纱布中水分的温度,而并不代表空气的真实温度,由于此温度由湿空气的温度、湿度所决定,故称其为湿空气的湿球温度,所以它是表明湿空气状态或性质的一种参数。②对于某一定干球温度的湿空气,其相对湿度越低,湿球温度值越低。对于饱和湿空气而言,其湿球温度与干球温度相等。③湿球温度的高低不仅与空气的干球温度t 有关,还与空气的湿含量d有关,所以他是湿空气的一项状态函数。

食品工程原理重点

食品工程原理复习 第一章 流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉 碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元 操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作, 均可用动量传递的理论去研究。 热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡 是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质 基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实践 基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈 大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工

程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。边 界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为 外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压强) 仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。 7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。 8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。 柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2 p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2

食品工程原理实验报告

姓名:陈蔚婷 学号:1363115 班级:13级食安1班 实验一:流体流动阻力的测定 、实验目的 1 ?掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。 2?测定直管摩擦系数 入与雷诺准数Re 的关系,验证在一般湍流区内 入与Re 的关系曲线。 3?测定流体流经管件、阀门时的局部阻力系数 。 4?学会倒U 形压差计和涡轮流量计的使用方法。 5?识辨组成管路的各种管件、阀门,并了解其作用。 、基本原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流 应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过 管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1 ?直管阻力摩擦系数入的测定 流体在水平等径直管中稳定流动时,阻力损失为: P f P 1 P 2 l U 2 W f d 2 即, 2d p f l u (1) (2) 式中:入一直管阻力摩擦系数,无因次; d —直管内径,m ; P f —流体流经I 米直管的压力降,Pa ; w f —单位质量流体流经I 米直管的机械能损失,J/kg ; p —流体密度,kg/m 3 ; l —直管长度,m ; u —流体在管内流动的平均流速, m/s 。

式中:Re —雷诺准数,无因次; 卩一流体粘度,kg/(m s )。 湍流时入是雷诺准数Re 和相对粗糙度(& /d 的函数,须由实验确定。 由式(2)可知,欲测定 入需确定I 、d ,测定 p f 、u 、p □等参数。I 、d 为装置参数(装置 参数表格中给出), P □通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径 计算得到。 2 ?局部阻力系数 的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法 流体流过某管件或阀门时造成的机械能损失看作与某一长度为 l e 的同直径的管道所产生的机械 (2)阻力系数法 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数, 局部阻力的这种计算方法,称为阻力系数法。即: ,P f u 2 w' f 故 式中: 一局部阻力系数,无因次; P f —局部阻力压强降,Pa ;(本装置中,所测得的压降应扣除两测压口间直管段的压降, 直管段的压降由直管阻力实验结果求取。) p —流体密度,kg/m 3 ; 滞流(层流) 时, 64 Re Re du (3) (4) 能损失相当,此折合的管道长度称为当量长度,用符号 l e 表示。这样,就可以用直管阻力的公式来计 算局部阻力损失,而且在管路计算时可将管路中的直管长度与管件、 则流体在管路中流动时的总机械能损失 W f 为: 阀门的当量长度合并在一起计算, l e W f (8) (9) 2 P f

食品工程原理试题

食工原理复习题及答案(不含计算题) 一、填空题: 1. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为15.7kg.s-1,其体积流量为_________.平均流速为______。 ***答案*** 0.0157m3.s-1 2.0m.s-1 2. 流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的____倍; 如果只将管径增加一倍,流速不变,则阻力损失为原来的_____倍。 ***答案*** 2;1/4 3. 离心泵的流量常用________调节。 ***答案*** 出口阀 4.(3分)题号2005 第2章知识点100 难度容易 某输水的水泵系统,经管路计算得,需泵提供的压头为He=25m水柱,输水量为20kg.s-1,则泵的有效功率为_________. ***答案*** 4905w 5. 用饱和水蒸汽加热空气时,换热管的壁温接近____________的温度,而传热系数K值接近____________的对流传热系数。 ***答案*** 饱和水蒸汽;空气 6. 实现传热过程的设备主要有如下三种类型___________、_____________、__________________. ***答案*** 间壁式蓄热式直接混合式 7. 中央循环管式蒸发器又称_______________。由于中央循环管的截面积_______。使其内单位容积的溶液所占有的传热面积比其它加热管内溶液占有的

______________,因此,溶液在中央循环管和加热管内受热不同而引起密度差异,形成溶液的_______________循环。 ***答案*** 标准式,较大,要小,自然 8. 圆管中有常温下的水流动,管内径d=100mm,测得中的体积流量为0.022m3.s-1,质量流量为_________,平均流速为_______。 ***答案*** 22kg.s-1 ; 2.8m.s-1 9. 球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零24/ Rep 10. 某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w.m-1.K-1,此时单位面积的热损失为_______。(注:大型容器可视为平壁) ***答案*** 1140w 11. 非结合水份是__________________。 ***答案*** 主要以机械方式与物料相结合的水份。 12. 设离心机转鼓直径为1m,转速n=600 转.min-1,则在其中沉降的同一微粒,比在重力沉降器内沉降的速度快____________倍。 ***答案*** 201 13. 在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。 本题目有题图:titu081.bmp

食品工程原理重点

食品工程原理复习 第一章 流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉 碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元 操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作, 均可用动量传递的理论去研究。 热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡 是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质 基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实践 基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈 大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工 程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。边

界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为 外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压强) 仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。 7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。 8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。 柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2 p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2 9.管中稳定流动连续性方程:在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积成反比。截面积愈大之处流速愈小,反之亦然。对于

食品工程原理课程教学基本要求

食品工程原理课程教学基本要求(征求意见稿) 一、本课程的地位、作用和任务 食品工程原理是食品科学与工程专业的一门主干课程和专业基础课程,具有较强的理论性,且与生产实际紧密相联系。学习本课程要求学生具备一定的物理学知识和物理化学知识。食品工程原理以食品加工单元操作为主要对象,研究食品物料在加工过程中的动量、能量、质量的传递与守恒关系。通过本课程的学习,掌握食品加工常见单元操作的基本原理与工艺计算,典型设备的设计计算。综合利用所学知识与食品工程生产实际相结合,着重培养分析与解决工程问题的方法和能力,为进一步学习食品领域的专业课程或从事食品工业生产及相关领域的工作打下扎实基础。 二、本课程的教学基本内容与要求 (一)理论教学部分 0. 绪论 (基本内容) 1)单元操作的基本概念;三种传递过程及其物理量的守恒 2)本课程的研究方法、学习要求 3)物理量的量纲与单位换算 (可选内容) 食品工程发展现状及趋势 1.流体流动 (基本内容) 1)流体静力学:流体的物理性质,流体静力学基本方程及其应用; 2)流体流动的守恒原理:流体流动的基本概念,质量守恒----连续性方程式,机械能守恒----伯努利方程式,动量守恒及其与机械能守恒之间的关系; 3)流体流动的内部结构:雷诺实验与流体流动类型,直圆管内流体的流速分布,流动边界层; 4)流体在管内的流动阻力:沿程阻力,局部阻力; 5)简单管路的计算 6)流量测量:测速管,孔板流量计,转子流量计; (可选内容) 非牛顿流体的流动阻力; 复杂管路(并联/分支)的计算; 2. 流体输送 (基本内容) 1)液体输送机械:离心泵;其他类型泵(容积泵、浓浆泵、磁力驱动泵); 2)气体输送机械:离心式风机,鼓风机和压缩机,真空泵及真空管路; 3)流体输送设备的种类特点及选型

食品工程原理期末复习单项选择题

食品工程原理期末复习 单项选择题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

单项选择题:(从每小题的四个备选答案中,选出一个正确答案,并将正确答案的号码写在题干后面的括号内) 1、一个标准大气压,以mmHg为单位是( B ) (A) 761 (B) 760 (C) (D) 9、一个标准大气压,以mH2O柱为单位是( B ) (A) (B) (C) (D) 2、表示流体流动形态类型可用雷诺数来表示,当流体流动属于层流时,雷诺数为( D ) (A) Re ≤ 1500 (B) Re ≤ 1600 (C) Re ≤ 1800 (D) Re ≤ 2000 10、表示流体流动形态类型可用雷诺数来表示,当流体流动属于湍流时,雷诺数为( C ) (A) Re >3500 (B) Re >3800 (C) Re >4000 (D) Re >4200 16、一个标准大气压,以cm2为单位是( B ) (A) (B) (C) (D) 25、一个标准大气压,以Pa为单位应为( B ) (A) ×104 (B) ×105 (C) ×106 (D) ×105 3、流体内部流动时产生的摩擦力,对流体的流动有阻碍的作用,称为流体的 ( D ) (A) 比热 (B) 密度 (C) 压力 (D) 粘性 5、流体流过任一截面时,需要对流体作相应的功,才能克服该截面处的流体压力,所 需的功,称为( C ) (A) 位能 (B) 动能 (C) 静压能 (D) 外加能量 6、流体流动时,上游截面与下游截面的总能量差为( D ) (A) 外加能量减动能 (B) 外加能量减静压能 (C) 外加能量减位能 (D) 外加能量减能量损失 7、输送流体过程中,当距离较短时,直管阻力可以( C ) (A) 加倍计算(B) 减半计算(C) 忽略不计(D) 按原值计算 8、泵在正常工作时,实际的安装高度要比允许值减去( B ) (A) 0.3m (B) 0.5-1m(C) 1-1.5m(D) 2m 12、流体流动时,由于摩擦阻力的存在。能量不断减少,为了保证流体的输送需要( D ) (A) 增加位能 (B) 提高动能 (C) 增大静压能 (D) 外加能量 13、利用柏努利方程计算流体输送问题时,需要正确选择计算的基准面,截面一般与 流动方向(C) (A) 平行(B) 倾斜(C) 垂直(D) 相交 14、输送流体时,在管道的局部位置,如突扩,三通,闸门等处所产生的阻力称为( B) (A) 直管阻力(B) 局部阻力(C) 管件阻力(D) 输送阻力 15、泵在正常工作时,泵的允许安装高度随着流量的增加而( B ) (A) 增加(B) 下降(C) 不变(D) 需要调整 17、离心泵启动时,泵内应充满输送的液体,否则会发生( A ) (A) 气缚 (B) 汽蚀 (C) 气阻 (D) 气化 19、流体内部的压强,以绝对零压为起点计算的是( C ) (A) 真空度 (B) 表压 (C) 真实压强 (D) 流体内部的静压 20、流体流动时,如果不计摩擦损失,任一截面上的机械能总量为( D ) (A) 动能加位能 (B) 动能加静压能 (C) 位能加静压能 (D) 总能量为常量 21、利用柏努利方程计算流体输送问题时,要正确的选择合理的边界条件,对宽广水 面的流体流动速度,应选择(C) (A) U = 1 (B) 0 < u < 1 (C) u = 0 (D) u < 0 22、输送流体时,泵给予单位质量流体的能量为( C ) (A) 升扬高度(B) 位压头 (C) 扬程(D) 动压头 23、往复式泵的分类是依据不同的(A) (A) 活塞(B) 连杆(C) 曲柄(D)汽缸 26、离心泵的实际安装高度,应该小于允许安装高度,否则将产生( B ) (A) 气缚 (B) 汽蚀 (C) 气阻 (D) ) 气化

《食品工程原理》试题

2004 – 2005 学年第二学期食品科学与工程专业 食品工程原理试卷(A)卷 题号一二三四五…合计 得分 阅卷人 一、填空题(20分) 1. 71dyn/cm= N/m(已知1N=105 dyn); 2. 给热是以和的差作为传热推动力来考虑 问题的; 3. 金属的导热系数大都随其温度的升高而 , 随其纯度 的增加而 ; 4. 能够全部吸收辐射能的物体(即A=1)称为 体; 5. 蒸发操作中,计算由于溶液蒸汽压下降而引起的温度差损失 的方法有 、 ; 6. 蒸发器主要由 室和 室组

成; 7. 喷雾干燥中,热空气与雾滴的流动方式有 、 、 三种; 8. 形状系数不仅与 有关,而且 与 有关; 9. 粉碎的能耗假说比较著名的三种是 、 、 ; 10. 圆形筛孔主要按颗粒的 度进行筛分,长形筛孔主要按颗粒 的 度进行筛分。

二、选择题(10分)(有一项或多项答案正确) 1. 揭示了物体辐射能力与吸收率之间关系的定律是( ) (A)普朗克定律;(B)折射定律;(C)克希霍夫定律; (D)斯蒂芬-波尔兹曼定律 2. 确定换热器总传热系数的方法有() (A)查样本书;(B)经验估算;(C)公式计算;(D)实 验测定 3. 为保证多效蒸发中前一效的二次蒸汽可作为后一效的加热蒸 汽,前一效的料液的沸点要比后一效的() (A)高;(B)低;(C)相等;(D)无法确定; 4. 对饱和湿空气而言,下列各式正确的是() (A)p=p S,φ=100%,;(B)p=p S,φ=0;(C)p=0,φ=0; (D)t=t w=t d=t as 5. 粉碎产品粒度分析中,一般认为,筛分法分析的下限是( ) (A)100μm;(B)50μm;(C)10μm;(D)5μm。 三、判断题(10分)(对者打“”号,错者打“”号。) 1. ()算术平均温度差是近似的,对数平均温度差才是准确的; 2. ()两固(灰)体净辐射传热的热流方向既与两者温度有关, 又与其黑度有关; 3. ()NaOH溶液的杜林线不是一组相互平行的直线; 4. ()恒速干燥阶段干燥速率的大小决定于物料外部的干燥条 件; 5. ()泰勒标准(Tyler Standard)筛制中,相邻两筛号的网眼净宽 度之比为1∶2。 四、计算题(60分) 1. (10分)外径为426mm的蒸汽管道,其外包扎一层厚度位 426mm的保温层,保温材料的导热系数可取为0. 615 W/(m· ℃)。若蒸汽管道的外表面温度为177℃,保温层的外表面温度 为38℃,试求每米管长的热损失以及保温层中的温度分布。 2. (10分) 一单程列管式换热器,由若干根长为3m、直径为 φ25×2.5mm的钢管束组成。要求将流量为1.25kg/s的苯从350K 冷却到300K,290K的冷却水在管内和苯呈逆流流动。若已知 水侧和苯侧的对流传热系数分别为0.85和1.70kW/(m2.K),

食品工程原理实验报告

流化床干燥实验报告 姓名:张萌学号:5602111001 班级:食品卓越111班 一、实验目的 1.了解常压干燥设备的基本流程和工作原理。 2. 掌握测定干燥速度曲线的方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速 率、临界含水量、平衡含水量的实验分析方法。 二、基本原理 1.干燥速率:单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量。 2.干燥速率的测定方法:利用床层的压降来测定干燥过程的失水量。需要用到的公式有: 物料中瞬间含水率X i=(△p-△p e)/△p e 式中:△p-时刻τ时床层的压差; 计算出每一时刻的瞬间含水率X i,然后将X i对干燥时间iτ作图,即为干燥曲线。 3.干燥过程分析: (1)物料预热阶段 (2)恒速干燥阶段 (3)降速干燥阶段。 非常潮湿的物料因其表面有液态水存在,当它置于恒定干燥条件下,则其温度近似等于热风的湿球温度tw ,到达此温度前的阶段称为

(1)阶段。在随后的第二阶段中,由于表面存有液态水,物料温度约等于空气的湿球温度tw,传入的热量只用来蒸发物料表面水分,在第(2)阶段中含水率X随时间成比例减少,因此其干燥速率不变,亦即为恒速干燥阶段。在第(3)阶段中,物料表面已无液态水存在,亦即若水分由物料内部的扩散慢于物料表面的蒸发,则物料表面将变干,其温度开始上升,传入的热量因此而减少,且传入的热量部分消耗于加热物料,因此干燥速率很快降低,最后达到平衡含水率而终止。(2)和(3)交点处的含水率称为临界含水率用X0表示。对于第(2)(3)阶段很长的物料,第(1)阶段可忽略,温度低时,或根据物料特性亦可无第二阶段。 三、实验装置与流程 1.主要设备及仪器 (1)鼓风机:BYF7122,370W; (2)电加热器:额定功率2.0KW; (3)干燥室:Φ100mm×750mm; (4)干燥物料:耐水硅胶; (5)床层压差:Sp0014型压差传感器,或U形压差计。 2.实验装置

食品工程原理练习题

传热练习题 1、 某加热器外面包了一层厚度为300mm 的绝缘材料,该材料的热导率为0.16W/(m ·℃),已测得该绝缘层外缘温度为30℃,距加热器外壁250mm 处为75℃,试求加热器外壁面的温度为多少? 2、 用套管换热器将果汁从80℃冷却到30℃,果汁比热为3.18kJ/kg ℃,流量为240kg/h 。冷却水与果汁呈逆流进入换热器,进口和出口温度分别为10℃和20℃,若传热系数为450W/m 2℃,计算换热面积和冷却水用量。 3、在一内管为Φ25mm×2.5mm 的套管式换热器中,用水冷却苯,冷却水在管程流动,入口温度为290K ,对流传热系数为850W/(m 2·K),壳程中流量为1.25kg/s 的苯与冷却水逆流换热,苯的进、出口温度分别为350K 、300K ,苯的对流传热系数为1700 W/(m 2·K),已知管壁的热导率为45 W/(m·K),苯的比热容为c p =1.9 kJ/(kg·℃),密度为ρ=880kg/m 3。忽略污垢热阻。试求:在水温不超过320K 的最少冷却水用量下,所需总管长为多少(以外表面积计)? 4、 在一单程列管式换热器中,用130℃的饱和水蒸汽将36000kg/h 的乙醇水溶液从25℃加热到75℃。列管换热器由90根Ф25mm×2.5mm ,长3m 的钢管管束组成。乙醇水溶液走管程,饱和水蒸汽走壳程。已知钢的热导率为45W/(m·℃),乙醇水溶液在定性温度下的密度为880kg/m 3,粘度为1.2×10-3Pa·s ,比热为4.02kJ/(kg·℃),热导率(即导热系数)为0.42W/(m·℃),水蒸汽的冷凝时的对流传热系数为104W/(m 2·℃),忽略污垢层热阻及热损失。试问此换热器是否能完成任务(即换热器传热量能否满足将乙醇水溶液从25℃加热到75℃)? 已知:管内对流传热系数关联式为4.08.0Pr Re )/(023.0d λα=,λμ/Pr p C =。 干燥练习题 5、 某物料在连续理想干燥器中进行干燥。物料处理量为3600kg/h, 物料含水量由20%降到5%(均为湿基)。空气初始温度为20℃,湿度为0.005kg/kg 绝干气,空气进干燥器时温度为100℃, 出干燥器时温度为40℃。试求:(1)空气消耗量;(2)预热器传热量。 6、 在某干燥器中干燥砂糖晶体,处理量为100kg/h ,要求将湿基含水量由40%减至5%。干燥介质为干球温度20℃,相对湿度15%的空气,经预热器加热

食品工程原理重点70750

食品工程原理复习 第一章流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥等。这些基本的物理过程称为单元操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。 热量传递: 物体被加热或冷却的过程也称为物体的传热过程。凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递: 两相间物质的传递过程即为质量传递。凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 1

2 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实 践基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其 值愈大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设, 为工程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。 边界可以是真实的,也可以是虚拟的。边界所限定空间的外部称 为外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压 强)仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的 截面流向总能量小的截面。 7.1kg 理想流体在管道内作稳定流动而又没有外功加入时,其柏努

《食品工程原理》教学大纲

食品工程原理课程教学大纲 一、课程基本概况 课程名称:食品工程原理 课程名称(英文):PRINCIPLES OF FOOD ENGINEERING 课程编号:0611306 课程总学时:70学时(讲课60学时,实验10学时) 课程学分:3.5学分 课程分类:必修课 开设学期:第4学期 适用专业:食品科学与工程专业 先修课程:《高等数学》、《大学物理》、《物理化学》、《机械制图》等课程 后续课程:《粮油食品工艺学》、《畜产食品工艺学》、《果蔬食品工艺学》、《食品机械》、《食品工厂设计》 二、课程的性质、目的和任务 本课程是食品科学与工程专业主要的必修课之一。本课程是在高等数学、物理学、物理化学等课程的基础上开设的一门专业基础课程,是承前启后,由理及工的桥梁。主要目的是培养分析和解决有关单元操作各种问题的能力,以便在食品生产、科研与设计中到强化生产过程,提高产品质量,提高设备生产能力及效率,降低设备投资及产品成本,节约能耗,防止污染及加速新技术开发等。主要任务是:研究单元操作的基本原理、典型设备的构造及工艺尺寸的计算(或选型)。 三、主要内容、重点及深度 (一)理论教学 绪论 目的要求:了解食品工程原理的性质、任务、学习方法;掌握单位换算、物料衡算、能量衡算的基本方法。 主要内容: 一、食品工程原理的发展历程 二、食工原理的性质、任务、与内容 三、单位制与单位换算 四、物料衡算 五、能量衡算 六、过程平衡与速率 重点:单元操作的概念单位换算、物料衡算、能量衡算。 难点:经验公式的单位变换、试差计算法 1 / 8

第一章流体流动 目的要求:使学生了解流体平衡和运动的基本规律,熟练掌握静力学基本方程式、连续性方程式、柏努力方程式的内容和应用、流体在管内的流动阻力,在此基础上解决管路计算、输送设备功率计算等问题。 重点:静力学基本方程式、连续性方程式、柏努力方程式的内容和应用、流体在管内的流动阻力 难点:柏努力方程式的推导及其应用、流动边界层的概念、流动阻力计算公式的推导 主要内容: 第一节流体静力学方程式及其应用 一、流体静力学方程式 二、流体静力学基本方程式的应用 第二节流体在管内的流动 一、稳定流动与不稳定流动 二、连续性方程式 三、柏努利方程式 四、柏努利方程式的应用 第三节流体在管内的流动阻力 一、顿粘性定律与流体的粘度 二、流动类型与雷诺准数 三、滞流与湍流 四、边界层的概念 五、流动阻力 第四节管路计算与流量测量 一、管路计算 二、流量测量 第二章粉碎与筛分 目的要求:掌握粉碎与筛分单元操作的基本概念、基本原理和基本计算。 重点:粒度的大小、形状及分布,粉碎速率、粉碎能耗、平均粒度、筛分速率 难点:食品物料粒度的大小、形状及分布,粉碎速率、粉碎能耗、平均粒度、筛分速率。 主要内容: 第一节粉碎 一、概述 二、粉碎理论 第二节筛分 一、筛分理论

新食品工程原理复习题及答案

一、填空题: 1. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为15.7kg.s-1,其体积流量为_0.0157m3.s-1_.平均流速为__ 2.0m.s-1____。 2. 流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的____倍; 如果只将管径增加一倍,流速不变,则阻力损失为原来的_____倍。2;1/4 3. 离心泵的流量常用________调节。出口阀 4.(3分)某输水的水泵系统,经管路计算得,需泵提供的压头为He=25m水柱,输水量为20kg.s-1,则泵的有效功率为_________.4905w 5. 用饱和水蒸汽加热空气时,换热管的壁温接近__饱和水蒸汽;_的温度,而传热系数K值接近___空气____的对流传热系数。 6. 实现传热过程的设备主要有如下三种类型___、__、___.间壁式蓄热式直接混合式 7. 中央循环管式蒸发器又称__标准式__。由于中央循环管的截面积__较大_____。使其内单位容积的溶液所占有的传热面积比其它加热管内溶液占有的____要小__,因此,溶液在中央循环管和加热管内受热不同而引起密度差异,形成溶液的____自然__循环。 8. 圆管中有常温下的水流动,管内径d=100mm,测得中的体积流量为0.022m3.s-1,质量流量为__22kg.s-1 __,平均流速为_ 2.8m.s-1______。 9. 球形粒子在介质中自由沉降时,匀速沉降的条件是__粒子所受合力的代数和为零_ 。滞流沉降时,其阻力系数=__24/ Rep ___. 10. 某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w.m-1.K-1,此时单位面积的热损失为_______。(注:大型容器可视为平壁)1140w 11. 非结合水份是主要以机械方式与物料相结合的水份。 12. 设离心机转鼓直径为1m,转速n=600 转.min-1,则在其中沉降的同一微粒,比在重力沉降器内沉降的速度快___201___倍。 13. 在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。 本题目有题图:titu081.bmp 14. 用冷却水将一定量的热流体由100℃冷却到40℃,冷却水初温为15℃,在设计列管式换热器时,采用两种方案比较,方案Ⅰ是令冷却水终温为30℃,方案Ⅱ是令冷却水终温为35℃,则用水量WI__WII AI___A II。(大于,等于,小于) 大于,小于 15. 多效蒸发的原理是利用减压的方法使后一效的蒸发压力和溶液的沸点较前一效的____________,以使前一效引出的______________作后一效_________,以实现_____________再利用。为低、二次蒸汽、加热用、二次蒸汽 16. 物料干燥时的临界水份是指_由恒速干燥转到降速阶段的临界点时,物料中的含水率;它比物料的结合水份大。 17. 如右图所示:已知,ρ水=1000kg.m-3,ρ空气=1.29kg.m-3,R=51mm,则△p=500_ N.m-2,ξ=_1(两测压点A.B间位差不计) 本题目有题图:titu141.bmp 18. 板框压滤机主要由__滤板、滤框、主梁(或支架)压紧装置等组成_,三种板按1—2—3—2—1—2—3—2—1的顺序排列组成。 19. 去除水份时固体收缩最严重的影响是在表面产生一种液体水与蒸汽不易渗透的硬层,因而降低了干燥速率。 20. 多效蒸发的原理是利用减压的方法使后一效的蒸发压力和溶液的沸点较前一效的_为低,以使前一效引出的_二次蒸汽作后一效加热用,以实现_二次蒸汽_再利用。 21. 恒定的干燥条件是指空气的_湿度、温度、速度_以及_与物料接触的状况_都不变。 22. 物料的临界含水量的大小与_物料的性质,厚度和恒速干燥速度的大小__等因素有关。 二、选择题: 1. 当离心泵内充满空气时,将发生气缚现象,这是因为( ) B. A. 气体的粘度太小 B. 气体的密度太小 C. 气体比液体更容易起漩涡 D. 气体破坏了液体的连续性 2. 降膜式蒸发器内溶液是(C )流动的。 A. 自然循环; B. 强制循环; C. 不循环 3. 当空气的t=t=tφ(A)。

食品工程原理 第五章 习题解答

第五章习题解答 1. 什么样的溶液适合进行蒸发? 答:在蒸发操作中被蒸发的溶液可以是水溶液,也可以是其他溶剂的溶液。只要是在蒸发过程中溶质不发生汽化的溶液都可以。 2. 什么叫蒸发?为什么蒸发通常在沸点下进行? 答:使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发。在蒸发操作过程中物料通常处于相变状态,故蒸发通常在沸点下进行。 3. 什么叫真空蒸发?有何特点? 答:真空蒸发又称减压蒸发,是在低于大气压力下进行蒸发操作的蒸发处理方法。将二次蒸汽经过冷凝器后排出,这时蒸发器内的二次蒸汽即可形成负压。操作时为密闭设备,生产效率高,操作条件好。 真空蒸发的特点在于: ①操作压力降低使溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源; ②对相同压强的加热蒸汽而言,溶液的沸点随所处的压强减小而降低,可以提高传热总温度差;但与此同时,溶液的浓度加大,使总传热系数下降; ③真空蒸发系统要求有造成减压的装置,使系统的投资费和操作费提高。 4. 与传热过程相比,蒸发过程有哪些特点? 答:①传热性质为壁面两侧流体均有相变的恒温传热过程。 ②有些溶液在蒸发过程中有晶体析出、易结垢或产生泡沫、高温下易分解或聚合;溶液的浓度在蒸发过程中逐渐增大、腐蚀性逐渐增强。二次蒸汽易挟带泡沫。 ③在相同的操作压强下,溶液的沸点要比纯溶剂的沸点高,且一般随浓度的增大而升高,从而造成有效传热温差减小。 ④减少加热蒸汽的使用量及再利用二次蒸汽的冷凝热、冷凝水的显热是蒸发操作过程中应考虑的节能问题。 5. 单效蒸发中,蒸发水量、生蒸气用量如何计算? 答:蒸发器单位时间内从溶液中蒸发出的水分质量,可用热负荷来表示。也可作物料衡算求得。 在蒸发操作中,加热蒸汽冷凝所放出的热量消耗于将溶液加热至沸点、将水分蒸发成蒸汽及向周围散失的热量。蒸汽的消耗量可通过热量衡算来确定。 6. 何谓温度差损失?温度差损失有几种? 答:溶液的沸点温度t往往高于二次蒸汽的温度T’,将溶液的沸点温度t与二次蒸汽的温度T'之间的差值,称为温度差损失。 蒸发操作时,造成温度差损失的原因有:因蒸汽压下降引起的温度差损失'?、因蒸发器中液柱静压强而引起的温度差损失''?和因管路流体阻力引起的温度差

最新整理食品工程原理名词解释和简答题复习课程

1.1.位能:由于流体在地球重力场中处于一定的位置而具有的能量。若任选一基准水平面作为位能的零点,则离基准垂直距离为Z的流体所具有的位能为mgz。 2.动能:由于运动而具有的能量。若流体以均匀速度u流动,则其动能为mv2/2.若流动界面上流速分布不均,可近似按平均流速进行计算,或乘以动能校正系数。 3.内能:物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量总和。对于不克压缩流体,其内能主要是流体的分子动能,对于可压缩流体,其内能既有分子动能,也有分子位能,如果单位质量流体所含的内能为e,则质量为m的流体所具有的内能E=me。在热力计算时,我们对某一状态下的内能变化值。 4.流动功:如果设备中还有压缩机或泵等动力机械,则外接通过这类机械将对体系做功,是为功的输入,相反也有体系对外做功的情形,是为功的输出,人为规定,外界对体系做功为正,体系对外界做工为负。 5.汽蚀:水泵叶轮表面受到气穴现象的冲击和侵蚀产生剥落和损坏的现象。吸上真空高度达最大值时。液体就要沸腾汽化,产生大气泡,气泡随液流进入叶轮的高压区而被压缩,于是气泡又迅速凝成液体,体积急剧变小,周围液体就以极高速度冲向凝聚中心,造成几百个大气压甚至几千个大气压的局部应力致使叶片受到严重损伤。 6.汽蚀余量:指泵吸收入口处单位液体所具有的超过气化压力的富余能量, 7.泵的工作点:泵的特性曲线与某特定管路的特性曲线的交点。1.雷诺准数:Re=dup/u;是惯性力和黏性力之比,是表示流动状态的准数2努赛尔特准数:Nu:表示对流传热系数的准数3普兰特准数:Pr:表示物性影响的准数4格拉斯霍夫准数:Gr:表示自然对流影响的准数5粘度:液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子;运动黏度是流体的动力黏度与流体的密度之比6热传导:是通过微观粒子(分子·原子·电子等)的运动实现能量传递;热对流:指流体质点间发生相对位移而引起的热量传递过程;热辐射:指物体由于热的原因以电磁波的形式向外发射能量的过程7水分结冰率:食品冻结过程中水分转化为冰晶体的程度;最大冰晶生成区:水分结冰率变化最大的温度区域(-1~5摄氏度)8形状系数:表证非球形颗粒与球形颗粒的差异程度。9分隔尺度:指混合物各个局部小区域体积的平均值;分隔强度:指混合物各个局部小区域的浓度与整个混合物的平均浓度的偏差的平均值。10泵的工作点:将同一系统中的泵的特性曲线和某特定管路曲线,用同样的比例尺绘在一张图上,则这两条曲线的交点称为系统的工作点11温度场:某一瞬间空间中各点的温度分布;温度梯度:沿等温面法线方向上的温度变化率12颗粒群的频率分布曲线:将各个颗粒的相对应的颗粒百分含量绘制成曲线;累计分布曲线是将小于(大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系绘制成表格或图形来直观表示颗粒粒径的累积分布13粉碎:利用机械力将固体物料破碎为大小符合要求的小块颗粒或粉末的单元操作;粉碎比“物料粉碎前后的平均粒度之比14床层空隙率:众多颗粒按某种方式堆积成固体定床时,床层中颗粒堆积的疏密程度可用空隙率表示,数值等于床层空隙体积与床层总体积之比15床层的比表面:单位床层体积具有的颗粒表面积16水力光滑管:当δ﹥Δ时,管壁的凸凹不平部分完全被黏性底层覆盖,粗糙度对紊流核心几乎没有影响,此情况成为水力光滑管17紊流核心:黏性影响在远离管壁的地方逐渐减弱,管中大部分区域是紊流的活动区,这里成为紊流核心18允许吸上真空高度Hsp:在吸上真空高度上留有一定的余量,所得的吸上真空高度19最大吸上真空高度Hsmax:当泵的吸入口处的绝对压力Ps降低到与被输送液体在输送温度下的饱和蒸汽压Pv相等时,吸上真空高度就达到最大的临界值,称为最大吸上真空高度20泵的几何安装高度(吸入高度):指泵的吸入口轴线与贮液槽液面间的垂直距离21壁效应:壁面附近的空隙率总是大于床层内部,因阻力较小,流体在近壁处的流速必大于床层内部22黑体:A=1表示投射到物体表面上的辐射能全部被该物体吸收;白体或镜体:R=1,表示投射到物体表面上的辐射能全被该物体反射;透热体:D=1表示投射到物体表面上的辐射能全部被透过;灰体:能以相同的吸收率且部分地吸收所有波长范围的辐射能的物体;特点:a,灰体的吸收率

食品工程原理(下)期末试卷(B) 2006.6

江 南 大 学 考 试 卷 专 用 纸 《食品工程原理》(2)期末试卷(B ) 2006.6 (食品学院03级用) 使用专业、班级 学号 姓名 题 数 一 二 三 四 五 总 分 得 分 一、概念题 〖共计30分〗; (填空题每空1分,判断、选择题每小题各1分) 1 在填料塔吸收系数测定的实验中,本实验室所使用的填料有__拉西______环和___鲍尔_____环两种。 2 根据双膜理论,吸收质从气相主体转移到液相主体整个过程的阻力可归结为( C )。 (A)两相界面存在的阻力; (B)气液两相主体中的扩散的阻力; (C)气液两相滞流层中分子扩散的阻力; 3 气体的溶解度随________的升高而减少,随 ___________的升高而增大。 4 精馏过程是利用 多次部分气化_______________和____多次部分冷凝____________的原理而进行的。 5 精馏塔设计时采用的参数(F ,x F ,,q, D ,x D ,R 均为定值),若降低塔顶回流液的温度,则塔内实际下降液体量__增大______,塔内实际上升蒸汽 量________。(增大,减少,不变,不确定) 6 二元溶液连续精馏计算中,进料热状态的变化将引起以下线的变化。( ) (A)平衡线; (B)操作线与q 线; (C)平衡线 本题得分 8. 判断题(对打√,错打×) ①干燥操作能耗大,但要从湿固体物料中除去湿份(水份),只能采用干燥 操作。( ) ②干燥过程中,湿物料表面并不总是保持为操作条件下空气的湿球温度。 ( ) 9. 干燥过程是________________和________________相结合的过程。 10 料液在高于沸点下进料时,其加热蒸气消耗量比沸点进料时的蒸汽消耗 量___少______, 因为此时料液进入蒸发器后有____闪蒸__________现象产生。 11多效蒸发的原理是利用减压的方 法使后一效的蒸汽压力和溶液的沸点较前一效的低,以使前一效引出的_____________作后一效的 ____________,从而实现____________再利用。 12萃取剂加入量应使原料和萃取剂的和点M 位于 (A)溶解度曲线之上方区; (B)溶解度曲线上; (C)溶解度曲线之下方区; (D)座标线上。 13萃取是利用各组分间的 差异来分离液体混合液的。 (A)挥发度 (B)离散度 (C)溶解度 (D)密度。 14判断题(对打√,错打×) 从A 和B 组分完全互溶的溶液中,用溶剂S 萃取其中A 组分,如果 出现以下情况将不能进行萃取分离: (A) S 和B 完全不互溶,S 和A 完全互溶。 ( )

食品工程原理总复习

食品工程原理总复习 第0章引论 1.什么是单元操作? 2.食品工程原理是以哪三大传递为理论基础的?简述三大传递基本原理。3.物料衡算所依据的基本定律是什么?解质量衡算问题采取的方法步骤。4.能量衡算所依据的基本定律是什么?要会进行物料、能量衡算。 第一章流体流动 1.流体的密度和压力定义。气体密度的标准状态表示方法? 2.气体混合物和液体混合物的平均密度如何确定? 3.绝对压力Pab、表压Pg和真空度Pvm的定义。 4.液体静力学的基本方程,其适用条件是什么? 5.什么是静压能,静压头?位压能和位压头? 6.压力测量过程中使用的U型管压差计和微差压差计的原理。 7.食品工厂中如何利用流体静力学基本方程检测贮罐中液体存量和确定液封高度? 8.流体的流量和流速的定义。如何估算管道内径? 9.什么是稳定流动和不稳定流动?流体流动的连续性方程及其含义。10.柏努利方程及其含义。位能、静压能和动能的表示方式。 11.实际流体的柏努利方程,以及有效功率和实际功率的定义。 12.计算管道中流体的流量以及输送设备的功率。 13.什么是牛顿粘性定律?动力黏度和运动黏度的定义。 14.什么是牛顿流体?非牛顿流体?举例说明在食品工业中的牛顿流体和非牛顿流体。 15.雷诺实验和雷诺数是表示流体的何种现象? 16.流体在圆管内层流流动时的速度分布及平均速度表述,泊稷叶方程。17.湍流的速度分布的近似表达式。 18.计算直管阻力的公式—范宁公式。 19.层流和湍流时的摩擦因数如何确定? 20.管路系统中局部阻力的计算方法有哪两种?具体如何计算? 21.管路计算问题(重点是简单管路,复杂管路) 22.流体的流量测定的流量计有哪些?简述其原理。 第二章流体输送 1.简述离心泵的工作原理。什么是“气缚”现象? 2.离心泵主要部件有哪些?有何特点? 3.离心泵的主要性能参数有哪些? 4.离心泵的特性曲线是指那三条关系曲线? 5.影响离心泵特性曲线的因素有哪些?

相关文档
最新文档