用交流电压进行高压XLPE绝缘电缆线路的现场试验参考文本

用交流电压进行高压XLPE绝缘电缆线路的现场试验参考文本
用交流电压进行高压XLPE绝缘电缆线路的现场试验参考文本

用交流电压进行高压XLPE绝缘电缆线路的现场试验参考文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

用交流电压进行高压XLPE绝缘电缆线路的现场试验参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

数千米长的电缆线路具有大电容,例如10 km长的

110 kV交联聚乙烯(XLPE)绝缘电缆,按其截面积的不同,

电容可达2~3 μF。如果在系统的频率(50 Hz)下用交流电

压进行现场试验,就需要很大的无功功率。如上所述的电

缆,在160 kV(2.5 u0)下进行交流电压试验,则可能需要

高达20 MVA的试验功率。常规的交流电压试验设备(运行

频率50 Hz)的缺点在于其单位试验功率的重量较大,达

100~200 N/kVA,试验设备的运输很不经济,而且需要

在现场提供相当大的电源。

众所周知,油浸纸绝缘电力电缆的现场试验一般都采

用直流电压。试验时可以同时测量泄漏电流,由泄漏电流

的变化或者泄漏电流与试验电压的关系,可用以判断绝缘状况。数十年对油浸纸绝缘电力电缆采用直流耐压试验的实践,已证明其作为现场定期预防性试验项目能得出满意的试验结果,这也就是充油和压气电缆用直流电压进行现场试验的理由。这个试验方法也同样用于高压XLPE绝缘电缆,它似乎是唯一可行的方法。

1 XLPE绝缘电缆线路用直流耐压试验的缺点

高压XLPE电缆线路的运行试验表明,现场采用直流耐压试验不能有效地检出有缺陷的XLPE绝缘电缆及附件。各国运行经验发现通过直流耐压试验的XLPE绝缘电缆及附件在投入运行后有击穿故障发生。

为此,CIGRE WG21-09工作组(高压挤包绝缘电缆试验)于1984年向世界各国电缆制造商和电力公司调查,并组织进行模拟结构样品试验,进一步确认高压XLPE绝缘电缆采用直流耐压试验是不恰当的,其存在以下明显的缺

点:

a)直流电压下绝缘电场分布与交流电压下电场分布不同,前者按电阻率分布,而后者按介电系数分布,尤其在电缆终端和接头等高压电缆附件中,直流电场强度的分布与交流电场强度分布完全不同。这往往造成交流工作电压下有缺陷部位在直流耐压的现场试验时不会击穿而被检出,或者在交流工作电压下绝不会产生问题的部位,而在直流耐压现场试验时发生击穿。

b)XLPE自身的固有场强高,要用很高的直流试验电压甚至严重损伤电缆才能检出。例如,20 kV XLPE电缆绝缘的50%处有金属尖端,结果却在10 U0的直流电压下才能使其击穿。再者,在接头内有金属尖端或密封电缆头周围有严重的缺陷,即使用12 U0~16 U0直流电压试验也不可能检出。

c)由于XLPE的高绝缘电阻和相应的空间电荷效应,尚

不能排除在直流电压下会造成XLPE电缆绝缘非故意的预先损伤。直流耐压试验时形成的空间电荷,可造成电缆在投入交流工作电压运行时击穿,或附件界面因积聚电荷而沿界面滑闪。

2 调频串联谐振装置实例

传统的直流电压试验存在着严重缺点,必须寻求新的较为有效的试验方法。非常自然的、符合绝缘机理的倾向,是采用交流电压试验方法,关键是要开发新型的交流电压试验设备。本文将详细介绍由西门子柏林电力电缆厂等研制的8 MVA,160 kV调频串联谐振试验装置。

2.1 移动式

调频串联谐振装置设计的首要目的是试验安全、简便和快速,整个试验设备均安装在低底架的大卡车上。最重的组件是电抗器,重156.8 kN。车辆总重量约400 kN。

2.2 试验电压连接线

电源电压经OHL门架的户外终端和变压器的输出端或气体绝缘开关(GIS)而馈电至用户的电缆线路。通常连接到试验设备的电抗器,包括可接至户外套管或试验电缆的插入式浇注树脂绝缘管。内部绝缘为SF6,以便能够快速、安全和干燥地装配。

2.3 户外套管

户外套管的户外部分有防水硅橡胶裙边,并模铸在耐压的增强玻璃纤维塑料支撑管上。户外套管的内部,导体是用交联聚乙烯绝缘并用硅橡胶电容式应力锥来控制场强。附加的内部绝缘为SF6。这种结构使安装比较容易,此外,试验也不会受天气的影响。

户外套管装在电抗器上,用柔软的铜导线接至被试电缆线路的户外密封终端。如果该铜导线很长或沿着曲折的途径,则应采用绝缘子来支撑。

2.4GIS馈电的试验电缆

如果被试电缆和系统端接在GIS(气体绝缘开关设备)内,则电源馈电线可接至为试验而特殊安装的连接器壳体,壳体尺寸符合IEC 859要求。

两端都有密封终端的试验电缆绕在电缆盘(安装在车上)上,而且可拉开至70 m长。用电子器件控制电缆盘的传动机构使敷设试验电缆时达到灵活而且支撑牢固。用试验电缆可接至现场GIS附近的任何地方。

试验电缆的密封终端,与户外套管一样都是充以SF6气体,确保装配工作简易和安全。2.5 初级电源的连接电缆

在大多数使用场合,试验电源均从用户的系统获取。根据被试电缆的长度和电容,视在功率可能需要达200 kVA。但是,在很多的试验场合下,可能仅仅需要电源视在功率小于50 kVA。为此,运输车还有装在电缆盘上的连接电缆,长度200 m。

在所接入的电源负荷较大的场合或者馈电位置远离公用电源系统时,本移动式大容量调频串联谐振装置还添加有可灵活移动的发电机。

2.6 绝缘气体源的环境安全

运输车上有SF6气体充气站,提供所需的SF6气体以及充气至密封终端的真空和压力系统,并提供可排气和再充气5 MPa的压力容器。

2.7 在运输车上起吊工作

户外终端或试验电缆密封终端安装至电抗器需要质量达100 kg的起重机。起重机也安装在拖车上。这样,在用户的现场就可直接进行工作而不受其他任何辅助设备的限制。

在开始安装的时候,通常不可能与用户的电网相连接。因此,起重机由直流电动机液压驱动,直流电动机由拖车上的蓄电池供电。这样,进行试验的准备工作不会有

任何延误。

2.8 设备控制和用户操作室

运输车是按成套移动式调频串联装置而设计的,适用于户外使用。因此,也装有宽敞的测试间。其内包括电子器件控制设备,计算机控制的联机装置以及容纳操作和观察人员的足够空间。用户能在各种气候条件下从事试验,而且便于试验时做记录或试验全部结束后立即编写试验报告。

3 运行经验

本试验装置自研制成功后,已用于110 kV XLPE绝缘电缆线路的现场试验,并取得初步有效运行经验。

自从1996年以来,已在高压电缆线路进行交流电压试验。大约80%的试验连接是经由户外密封终端而进行的,约20%则是经由GIS开关装置进行。在已试验的电缆线路中,长度最长的约3.8 km,最高试验电压为160 kV,仅

利用试验设备最大功率的50%。这意味着还可以试验更长的电缆线路。

经由户外密封终端可方便地把交流电压馈电至被试电缆线路。接线方式如图2所示。利用铜导线把电抗器的电压输出接至电缆密封终端。

4 结束语

用于长距离电缆线路的交流电压试验,需要相当大和重的试验设备。为此,以往的XLPE电缆都是采用直流电压试验。高压XLPE电缆线路的运行经验表明,采用直流电压耐压试验不能有效地检出XLPE电缆缺陷,特别是有缺损的XLPE电缆附件。这一点已取得国际共识,采用更有效的试验方法势在必行。

通过对工频串联谐振试验装置的研究和试制,已获得一种适合于XLPE绝缘电缆和附件的试验方法,即施加工频或接近工频的交流电压,在电缆及附件上产生的电场分布

输电线路电压等级判断

为了提高远距离传输效率,一般采用高压低流方式传送,这样来降低电的损耗。瓷瓶的个数越多,相对电压越高。在中国,高于380V就可以称为高压电。电线杆越高,一般电压越高,城市里水泥普通杆子一般上万伏,对于高压铁塔,看绝缘子个数,500kv 23个;330kv 16个;220kv 9个;110kv 5个;但一般都有很多个 500kv的输电线路基本上用的是四分裂导线,也就是一相有四根,220kv多用两分裂导线的,110kv多用一根。高压线对低电压高,所以高压传输电线都用钢架将电缆悬高,来避免对地放电 国家电网公司电力安全工作规程(线路部分) 第一:看绝缘子的个数 3片绝缘子的是 35kv 7片到8片绝缘子是 110Kv 14片左右是220KV的线路 19片左右是330kv的线路 28左右是500kv的线路 当有29片到30片是 750KV的线路 当37片时是直流500kv的线路 当58片时是直流 800kv的线路 54片是1000kv的线路 此数据来源:《输配电线路施工》中国电力出版社出版 第二:看线间距离 导线之间的距离是4米左右时线路是110kv的线路 导线之间距离是6米时线路是220kv的线路 导线之间距离是9米时线路是330kv的线路

导线之间距离是 12米时线路是 500kv的线路 注意:线间距离与很多因数有关所以不一定是以上的数据相符,但是不会隔好远,此线间距离指得是中间于边线的距离。 第三: 500kv以及800 kv的输电线路基本上用的是四分裂导线或者5分裂,也就是一相有四根导线或5根, 220kv多用两分裂导线的,110kv多用一根。 第四: 看铁塔上面的牌子有线路的电压等级

由高压线看电压等级

由高压线看电压等级 高压电线电压等级 为了提高远距离传输效率,一般采用高压低流方式传送,这样来降低电的损耗。在中国,高于380V就可以称为高压电。 我国《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为0.4 kV(220V/380V)。随着电机制造工艺的提高,10 kV电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。 我国最高交流电压等级是750KV(兰州---官亭线),国家电网公司正在实验1000KV特高压交流输电。我国最高直流电压等级为正负500KV(葛洲坝---上海南桥线、天生桥---广州线、贵州---广东线、三峡---广东线),另有正负50KV(上海---嵊泗群岛线),100KV(宁波---舟山线),南方电网公司将建设正负800KV特高压直流输电线。 判断电压等级 可以从两个方面,初步判断高压线的电压等级。 1、等级越高电线离地越高。目测上下导线的垂直距离就可以知道:110KV 垂直距离大于3.5米,220KV 垂直距离大于5.5米,500KV 垂直距离大于10米,以上是单回路线路(单杆单回水平排列),如果是双回路线路(单杆多回垂直排列)。各垂直距离加0.5米。双回路的导线数量是单回路的2倍,通常6根导

线的铁塔为双回路。 2、看绝缘子个数,500kv 23个;330kv 16个;220kv 9个;110kv 5个;这是最少个数,实际会多一两个。 绝缘子数目与电压等级 根据线路的绝缘子片数和当地污秽等级判断,10KV一般是1到2片,35KV 为3片左右,110KV为7片,220为14至15片,要是污秽等级比较高可以加绝缘子片数即加爬距。绝缘子串也不一定准确。但相对来说,绝缘子串的个数基本上能确定电压等级。 直线杆塔上悬垂绝缘子串绝缘子个数,一般1个是15KV(1.5万伏)。 各电压等级大致绝缘串子数量如下: 电压等级串子个数 10KV 1 35KV 3 60KV5 110KV 7 220KV 14

高压输电研究报告

高压输电线路防雷研究报告 一.概述 输电线路在运行过程中承受工作电压、操作过电压或大气过电压时,都可能会发生绝缘闪络事故。在超高压输电系统中,操作过电压已被限制在较低的水平 (500kV系统不超过2.0p.u),不再是构成线路绝缘的控制因素。另一方面,近几年来因治理污闪事故的调爬等措施使线路的绝缘水平得到提高,线路在工作电压作用下的可靠性也明显提高。国内、外运行经验表明,大气过电压引起的绝缘闪络已成为线路故障的主要原因。现将美国、日本和俄罗斯等几个国家的高压和超高压输电线路的雷击跳闸率摘录如表 1.1。 统计表明,雷害引起的跳闸约占线路跳闸次数的50%。为确保送电线路的 安全稳定运行,建设坚强电网,国家电网公司对雷击跳闸率指标提出了更加严格的要求。2005年3月国家电网公司颁布的《110(66)kV?500kV架空输电线路运行规范》明确提出各电压等级线路的雷击跳闸率(归算到40个雷暴日),应达到如下指标: 造成输电线路雷击跳闸的主要原因是反击和绕击。 1.输电线路反击 杆塔以及杆塔附近避雷线上落雷后,由于杆塔或接地引下线的电感和杆塔接地电阻上的压降,塔顶的电位可能达到使线路绝缘发生闪络的数值,造成杆塔雷击反击。杆塔的接地电阻是影响雷击跳闸率的重要因素,计算表明:杆塔的接地 电阻如增加10?20 Q,雷击跳闸率将会增加50%?100%。为此,各网、省电力公司为提高供电可靠性,投入大量的人力和财力进行杆塔接地电阻的改造,使线路杆塔的接地电阻满足防雷设计的要求,保证了雷击跳闸率满足规程的要求。 农备种电压等级的线路i殳计耐命水屮

2.输电线路绕击 雷绕过避雷线的屏蔽,击于导线称为“绕击”。由于影响发生绕击的因素比反击要复杂得多,人们对它感兴趣的程度和研究深度也较反击为多。上一世纪的60年代初,美国的E.R.Whitehead、H.R.Armstorng和G.R.Brown等人在前人完成的小模型模拟试验的基础上先后开展了绕击过程的理论研究,并取得了重要成果,完善和发展了分析输电线路屏蔽性能的电气几何模型( EGM),被称为Whitehead 理论。 二.高压输电线路防雷保护的基本术语 ⑴雷电流波形 雷电流的波头和波尾皆为随机变量,其平均波尾为40卩s;对于中等强度以 上的雷电流,波头大致在1~4卩s内,实测表明,雷电流幅值IL与陡度dtdiL 的线性相关系数为0.6左右,这说明雷电流幅值增加时雷电流陡度也随之增加,因此波头变化不大,根据实测的统计结果,“规程”建议计算用波头取2.6卩so 即认为雷电流的平均上升陡度 业为:业=!LKA s d t d t 2.6 雷电流的波头形状对防雷设计是有影响的,因此在防雷设计中需对波头形状作出规定,“规程”建议在一般线路防雷设计中波头形状可取为斜角坡;而在设计特殊高塔时,可取为半余弦波头,在波头范围内雷电流可表示为: i L上(1 cos t) 2 ⑵雷电流幅值 雷电流i L为一非周期冲击波,其幅值与气象、自然条件等有关,是一个随机变量,只有通过大量实测才能正确估计其概率分布规律。 ⑶雷电日 在进行防雷设计和采取防雷措施时,必须从该地区雷电活动的具体情况出发。某一地区的雷电活动强度可以用该地区的雷电日来表示。雷电日是一年中有 雷电的日数。“规程”建议采用雷电日作为计算单位。根据长期统计的结果,在我国“规程”中绘制了全国平均雷日数分布图,可作为防雷设计的依据,全年平均雷日数为40的地区为中等雷电活动强度地区,如长江流域和华北的某些地区;年平均雷电日不超过15日的地区为少雷区;年平均雷暴日数多于15但少于40的地区为中雷区;年平均雷暴日数多于40但少于90的地区为多雷区;

如何让看杆塔确定电压等级

如何让看杆塔确定电压等级

————————————————————————————————作者:————————————————————————————————日期:

:输电线路在生活中非常常见,但很多从事电力相关行业的人士也并不清楚如何通过杆塔来确定电压等级,今天我们就来说说这个事~ 按照结构来分,输电线路分为架空输电线路和电缆线路。本文讨论的是架空输电线路,它由线路杆塔、导线、绝缘子、线路金具、拉线、杆塔基础、接地装置等构成,架设在地面之上。输电导线由输电杆塔一段段连接起来,高电压等级的用“铁塔”,低电压等级的比如居民区里见的一般用“木头杆”或“水泥杆”,合起来统称“杆塔”。 架空输电线路按照输送电流的性质可分为交流输电和直流输电。那么如何一眼分辨直流和交流输电线路呢? 其实很简单,交流是三相电,输电线条数为3或者3的倍数;而直流输电线只有正负两极,也就是两条线加避雷线。 接下来进入正题,如何一眼辨别输电线路的电压等级? 只需要“三看”: 一看分裂导线数 分裂导线是超高压输电线路为抑制电晕放电和减少线路电抗所采取的一种导线架设方式,即每相导线由几根直径较小的分导线组成。分裂导线数越多,输电能力越强,电压等级越高。

1000kV特高压输电线路、800KV直流输电线路分成8根,为八分裂导线。 750kV的超高压输电线路一般采用六分裂导线,这个电压等级只在我国的西北电网使用。

500kV输电线按规程应是四分裂导线,不过也有些采用六分裂导线。

220kV的一般是双分裂 110kV及以下的电压等级由于电晕不严重,一般采用单根导线。 二看绝缘子数目 绝缘子是一种特殊的绝缘控件,通常由玻璃或陶瓷制成,用来增加爬电距离。绝缘子呈飞碟状,一个飞碟算一片绝缘子,绝缘子串起到隔离导线与杆塔的作用。每片绝缘子能够承受大约15~20千伏电压,所以可以根据绝缘子数判断电压等级。不过如果在高海拔、污秽重的地区,片数会有所增加。

10KV输电线路电压监测

毕业论文题目:10KV输电线路电压监测

摘要 本论文主要是应用传感器、51单片机、GPRS模块对输电线路进行数据采集、分析处理及处理结果发送的设计,设计分为传感器型号的选择、周期小信号的数字化处理、脉冲计数程序的设计及GPRS系统四个大模块。再根据四大模块对每个模块进行了功能的具体化设计,在周期小信号的数字化处理模块中又进行了模拟信号的放大,并将周期信号数字且频率依旧。在单片机脉冲计数程序模块中体现了智能化。在这之中最为经典的是GPRS系统的应用,此系统永远在线,按流量计费,从而提供了一种高效、低成本的无线分组数据业务。 本设计采用MCS系列单片机的51单片机来实现信号的分析处理。使用51单片机实现对线路监测的结果输出控制,从而达到监测目的。 关键词传感器周期信号数字化程序设计GPRS无线网络

目录 第一章. 引言 (2) 第二章监测设备的概述 (3) 第三章传感器的选用 (5) 3.1 传感器的定义 (5) 3.2 传感器的作用及其分类 (5) 3.3 传感器的选用原则 (7) 3.4 传感器测量基础 (9) 第四章.周期小信号的数字化 (10) 4.1 放大电路基础 (10) 4.2 A/D转换 (11) 第五章.单片机及其应用 (12) 5.1单片机的概念 (12) 5.2单片机的组成与特点 (12) 5.3 MCS-51 程序设计 (13) 5.4 单片机的中断应用 (15) 5.5定时器的应用 (16) 第六章.GPRS相关知识简介 (17) 6.1 GPRS相关技术 (17) 6.2 GPRS的技术优势 (18) 6.3 GPRS的网络结构 (19) 6.4 GPRS与GSM比较中表现出的特点 (20) 第七章. 10KV输电线路电压监测 (21) 7.1设计的模块化介绍 (22) 7.2 主要功能 (23) 第八章. 结束语 (24) 第九章. 参考文献 (25) 第十章. 辞 (26)

输电线路的基本知识线路

输电线路的基本知识线路 一、送电线路的主要设备: 送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变电站,以实现输送电能为目的的电力设施。主要由导线、架空地线、绝缘子、金具、杆塔、基础、接地装置等组成。 1.导线:其功能主要是输送电能。线路导线应具有良好的导电性能,足够的机械强度,耐振动疲劳和抵抗空气中化学杂质腐蚀的能力。线路导线目前常采用钢芯铝绞线或钢芯铝合金绞线。为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根导线组成的分裂导线型式。 2.架空地线:主要作用是防雷。由于架空地线对导线的屏蔽,及导线、架空地线间的藕合作用,从而可以减少雷电直接击于导线的机会。当雷击杆塔时,雷电流可以通过架空地线分流一部分,从而降低塔顶电位,提高耐雷水平。架空地线常采用镀锌钢绞线。目前常采用钢芯铝绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。兼有通信功能的采用光缆复合架空地线。 3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。送电线路常用绝缘子有:盘形瓷质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。 (1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)盘形玻璃绝缘子:具有零值自爆,但自爆率很低(一般为万分之几)。维护不需检测,钢化玻璃件万一发生自爆后其残留机械强度仍达破坏拉力的80%以上,仍能确保线路的安全运行。遇到雷击及污闪不会发生掉串事故。在Ⅰ、Ⅱ级污区已普遍使用。 (3)棒形悬式复合绝缘子:具有防污闪性能好、重量轻、机械强度高、少维护等优点,在Ⅲ级及以上污区已普遍使用。 4.金具 送电线路金具,按其主要性能和用途可分为:线夹类、连接金具类、接续金具类、防护金具类、拉线金具类。 (1)线夹类: 悬式线夹:用于将导线固定在直线杆塔的悬垂绝缘子串上,或将架空地线悬挂在直线杆塔的架空地线支架上。 耐张线夹:是用来将导线或架空地线固定在耐张绝缘子串上,起锚固作用。耐张线夹有三大类,即:螺栓式耐张线夹;压缩型耐张线夹;楔型线夹。

高压输电线路测量方法

高压输电线路工频参数测量方法 根据GB50150-2006标准规定,新建及改建的35kV高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期 目前,高压输电线路工频参数测量方法有2种:传统工频法和变频法测试 目前国内不少电业部门在现场进行线路工频参数测量时,有的还采用指针式表计组合,需人工多次不同步读取测量数据,人工工作量大;有的虽已使用了专用的数字测量仪表或线路参数测试仪,但当线路较长时,所需用的工频试验电源容量仍将会很大;而且采用工频电源进行测试需要用调压器,隔离变压器,高压电流互感器、电压互感器等众多设备, 使得试验设备重、大、多,试验接线非常繁杂。整套试验设备体积庞大,重量大,需要吊车等配合工作,十分不利于现场工作,而且由于测试电源是工频电源,容易与耦合的工频干扰信号混频,带来很大的测量误差,需要大幅度提高信噪比,对电源的容量和体积要求又进一步提高 随着国家电力建设的发展、供电线路的同杆架设和交叉跨越增多,导致输电线路相互间的感应电压不断提高,对测试人员和仪器仪表的安全造成严重的威胁;给线路工频参数的准确测量带来了强力的干扰。因此,采用传统的工频电源进行线路参数的测试难以保证工作的安全性及测试结果的准确性 变频法测试系统可采用非工频频率的电源进行线路的测试,以代替目前线路测试需用的众多设备,并规避了工频感应对测量准确性的干扰。为了进一步削弱工频感应电压、电流对于测量安全的威胁和对测量准确性的干扰,我公司在测试系统的核心部件-变频电源内部做了特殊处理,用于泄放工频感应电流和削除工频感应电压 测试系统主机可对设定的频率信号进行定频采样,并根据主机仪器中数据库内置的不同类型及线径的输电线路每公里的理论参考值用于对测试结果的非工频频率进行 校正得出工频下的线路参数测试值 用户可根据被测线路的工频感应电压、电流的大小确定试验频率为工频或变频,若采用定频测试,仪器可将线路测试参数自动归算到工频条件下的测试结果,并且生成标准规范的测试报告。这样一来,极大的简化了线路参数的传统测试,而且可不必再考虑 量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数 MS-110输电线路工频参数测试系统主要特点有 1、快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以测量线路间互感和耦合电容(线路直阻采用线路直阻仪进行测量) 2、抗干扰能力强,能在异频信号与工频干扰信号之比为1:10的条件下准确测量; 3、外部接线简单,仅需一次接入被测线路的引下线就可以完成全部的线路参数测量

教你认识沿途输电线路

教你认识沿途的输电线路 实话说,即便是学电的、在电力系统工作的人都不一定认识输电线路,输电工程的确太复杂了,基本算纯工程性问题,想了解并不容易。 先说说输电杆塔的概念,输电导线是由输电杆塔一段一段撑起来的,高电压等级的用“铁塔”,低电压等级的比如居民区里见的一般用“木头杆”或“水泥杆”,合起来统称“杆塔”。高电压等级的线路需要有更大的安全距离,所以要架得很高,只有铁塔才能有能力负担数十吨的线路,一根电线杆架不了这么高、也没这么大支撑力,所以电线杆都是较低电压等级的。 电压等级都是说线电压,ABC三相中任意两相之间的电压。家里用的220V 是相电压,是三相中任意一相对大地的电压。实际家里用电是380V线电压的(220V的根号3倍),只是到了楼门口了,才三相分开,比如ABC三相各入一栋楼的三个单元。380V电压等级在电力系统也叫0.4kV电压等级,对比下目前的1000kV特高压输电线路,差2500倍,颤抖吧~ 我们在旅行沿途看到的一般都是输电铁塔,至于塔型什么的没啥意思就不说了,猫头塔、酒杯塔、门型塔、V字塔都是“象形”的,看样子就知道。输电线路也分直流和交流(DC和AC),直流好认但不是很常见,国内的线路就那么几条,碰上不容易。 下图就是±800kV云南至广东的输电线路。 铁塔是T型的,下面吊着两回输电线路,一边正极,一边负极。仔细看铁塔上面还伸出来了两个小“角”,一边也各一条“细线”,这不是输电用的,而是避雷用的避雷线,也叫地线。(避雷概念参见“雷电轶事与防雷”,回复“雷电”)

下面集中说说交流线路,这个几乎“大宝天天见”。 交流的一回线路有ABC三相,输电铁塔最顶端顶着的是避雷线。雷暴多地区或电压等级高的线路是两根避雷线,雷暴不严重或电压等级低的线路可以减少到一根避雷线,这个是从工程实际和省钱的角度选择的,反正大家看到最顶端细细的一或两根线就知道是避雷线了。避雷线都是直接跟铁塔相连的,为的是把雷击时的电流能顺着铁塔引到地里面去。下图就是只有一根避雷线的线路。 避雷线一般都高电压等级的空旷地区的输电铁塔用,咱们看到的电线杆上一般很少有避雷线,一是电线杆一般是在城市内,有其他更高的建筑可以被雷劈;二是本来低电压等级的电线杆就送不了多少电,还要架根避雷线的成本就高了。 避雷线下面就是输电线路了,根数都是3的倍数,3根线的叫一回线,6根线的叫两回线,12根的就叫四回线了,每一回里都有ABC三相的三根线。上面这张图我们就叫“同塔双回”线路,一边是一回线。之所以一个塔上有多回线路,主要是考虑输送容量和占地面积,所以也衍生出了“线路长度”和“回路长度”的概念,对同塔双回而言,回路长度是线路长度的2倍,以此类推。下图是个同塔四回的,如果是不同电压等级的,则上面导线的电压要高于下面导线的电压,电压越高对地的安全距离要求越高。

2.高压输电线路基本概念梳理

常用基本概念 1.设计气象三要素:风速、覆冰、温度。 2.输电线路结构形式:架空输电线路、电缆输电线路、线缆混合输电线路。 3.架空输电线路组成:导线、避雷线(地线)、绝缘子(金具)串、杆塔、基础、接地、拉线、通信线、防护金具等。 4.电缆输电线路组成:电缆、终端接头(敞开式、封闭式)、避雷器、中间接头(绝缘接头、直通接头)、接地箱、接地引线、支架、监测装置、防火防盗设施等,可以简单的理解为电缆线路由电缆本体、附件、支持及防护设施构成。 5.档距 相邻两基杆塔之间的水平直线距离称为档距。工程设计中常遇档距:连续档(距)、孤立档(距)、水平档距(风力档距)、垂直档距(重力档距)、极大档距、极限档距、代表档距(规律档距)、临界档距、次档距等9种常用档距。 5.1连续档(距):由两基耐张杆塔及其中间若干(至少一基)直线塔构成的档距。 5.2孤立档(距):两基耐张杆塔之间没有直线杆塔,其档距称为孤立档(距)。 5.3水平档距(风力档距):杆塔两侧档距的算术平均值,通常用来计算杆塔水平荷载。 5.4垂直档距(重力档距):相邻两档距间导线最低点之间的水平距离,通常用来计算杆塔垂直荷载。

5.5极大档距:在一定高差下,如果某档距架空线弧垂最低点的应力恰好达到许用应力,高悬挂点应力也恰好达到规定的悬挂点许用应力,则称此档距为该高差下的极大档距。 5.6极限档距:通过放松架空线所能得到的允许档距的最大值称为极限档距。 5.7代表档距(规律档距):通常把大小不等的一个多档距的耐张段,用一个等效的假想档距来代替它,这个能够表达整个耐张力学规律的假想档距称之为代表档距或规律档距。 5.8临界档距:两个及以上气象条件同时成为控制条件的档距称为临界档距。 5.9次档距:间隔棒之间的水平距离称为次档距。 6.呼称高:塔脚板至下横担下表面的距离。 7.弧垂(弛度):电线上任意点至电线两侧悬挂点的连线之间的铅垂距离称为该点的弧垂或弛度。 8.限距:导线对地面或对被跨越设施的最小距离。 9.线(相)间距离:架空输电线路相间导线的最小距离。 10.分裂间距:分裂导线子导线线间的最下距离。 11.架空地线保护角:地线对导线的保护角指杆塔处,不考虑风偏,地线对水平面的垂线和地线与导线或分裂导线最外侧子导线连线之间的夹角。可正可负可为零。 12.高海拔地区:海拔高度不小于1000米的地区。 13.摇摆角:悬垂绝缘子串在风力作用下偏离铅垂位置后与铅垂位置的夹角。 14.风偏角:导线受风力作用后偏离铅垂位置,顺线路方向看时,导线偏离铅垂位置的角度称为风偏角。

电压等级的确定

一、电网电压等级的确定,是与供电方式,供电负荷,供电距离等因素有关的. 有关资料提供了供电电压与输送容量的关系: ①当负荷为 2000KW 时,供电电压易选 6KV,输送距离在 3-10 公里; ②当负荷为 3000KW-5000KW 时,供电电压易选 10KV,输送距离在 5-15 公里; ③当负荷为 2000KW-10000KW 时,供电电压易选 35KV,输送距离在 20-50 公里; ④当负荷为10000KW-50000KW 时, 供电电压易选110KV, 输送距离在50-150 公里; ⑤当负荷为50000KW-200000KW 时,供电电压易选220KV,输送距离在150-300 公里; ⑥当负荷为 200000KW 以上时,供电电压易选 500KV,输送距离在 300 公里以上. 但近年来,随着电气设备的进步及电力技术的发展,输送容量及距离有了很大进步. 电力系统电压等级与变电站种类电力系统电压等级有220/380V(0.4 kV),3 kV,6 kV,10 kV,20 kV,35 kV, 66 kV,110 kV,220 kV,330 kV,500 kV.随着电机制造工艺的提高,10 kV 电动机已批量生产,所以 3 kV,6 kV 已较少使用,20 kV,66 kV 也很少使用. 供电系统以 10 kV,35 kV 为主.输配电系统以110 kV 以上为主.发电厂发电机有 6 kV 与10 kV 两种,现在以10 kV 为主,用户均为220/380V(0.4 kV)低压系统. 根据《城市电力网规定设计规则》规定:输电网为 500 kV,330 kV,220 kV, 110kV,高压配电网为 110kV,66kV,中压配电网为 20kV,10kV,6 kV,低压配电网为0.4 kV(220V/380V). 发电厂发出 6 kV 或 10 kV 电,除发电厂自己用(厂用电)之外,也可以用 10 kV 电压送给发电厂附近用户,10 kV供电范围为 10Km,35 kV为20—50Km,66 kV 为30—100Km,110 kV为50—150Km,220 kV 为100—300Km,330 kV为200—600Km,

我国输电线路的电压等级和要求

我国输电线路的电压等级和要求 发布时间:2012-9-25 1:43:16 作者:中国电力技术专业网我国采用的电压等级有380/220V、6、10、35、66、110、154、220、330、500kV,其中154 kV为非标准电压等级,66 kV和330 kV为限制发展电压等级。 我国采用的电压等级有380/220V、6、10、35、66、110、154、220、330、500kV,其中154 kV为非标准电压等级,66 kV和330 kV为限制发展电压等级。 目前通常把10 kV及以下电力线路称为配电线路,其中把1 kV以下的线路称为低压配电线路,1~10 kV线路称为高压配电线路;35 kV及以上的电力线路称为送电线路,其中35 kV~220 kV线路称为高压送电线路,330~500 kV线路称为超高压送电线路。 根据电力事业的发展需要,将来可能发展750~1000 kV或更高的电压等级。之所以采用高电压来输送电能,是因为采用高电压输送电能有以下优点: 1、减少线路损耗; 2、提高送电功率; 3、输送距离远; 4、相对提高了线路安全性。 所以,电力系统大部分都采用高压输电线路作为电力网内长距离、大功率的主要联络干线。 输电线路按其结构形式有架空电力线路和电缆电力线路。因架空线路与电缆线路比,具有建设速度快、检修维护方便、输送容量大、综合造价低等优点,我国电力线路主要采用架空电力线路形式。架空电力线路一般使用在城市外的长距离的旷野或高山上,而城市中为城市美观现多采用电缆下地。 架空电力线路的组成元件主要有导线、避雷线和接地体、绝缘子、金具、杆塔、拉线和基础。 对电力线路的基本要求是: 1、保证线路架设质量,加强运行维护,提高对用户供电的可靠性。 2、要求电力线路的供电电压在允许的波动范围内,以便向用户提供质量合格的电能。 3、在送电过程中,要减少线路损耗,提供送电效率,降低送电成本。 4、架空线路由于长期置于露天运行,线路的各元件除受正常的电气负荷和机械荷载作用外,还受到风、雨、冰、雪、大气污染、雷电等自然和人为条件的作用,要求线路各元件应有足够的机械和电气强度。 “经济电流密度”常作为新建线路选择导线截面的依据,也可作为运行线路经济与否的判断标准。所谓“经济电流密度”,就是当输电线路单位导线截面上通过这

输电线路基础(识图)

电力线路基础知识 电力系统中电厂大部分建在动力资源所在地,如水力发电厂建在水力资源点,即集中在江河流域水位落差大的地方,火力发电厂大都集中在煤炭、石油和其他能源的产地;而大电力负荷中心则多集中在工业区和大城市,因而发电厂和负荷中心往往相距很远,就出现了电能输送的问题,需要用输电线路进行电能的输送。因此,输电线路是电力系统的重要组成部分,它担负着输送和分配电能的任务。 输电线路有架空线路和电缆线路之分。按电能性质分类有交流输电线路和直流输电线路。按电压等级有输电线路和配电线路之分。输电线电压等级一般在35kV及以上。目前我国输电线路的电压等级主要有35、60、110、154、220、330kV、500kV、1000kV交流和±500kV 、±800kV直流。一般说,线路输送容量越大,输送距离越远,要求输电电压就越高。配电线路担负分配电能任务的线路,称为配电线路。我国配电线路的电压等级有380/220V、6kV、l0kV。 架空线路主要指架空明线,架设在地面之上,架设及维修比较方便,成本较低,但容易受到气象和环境(如大风、雷击、污秽、冰雪等)的影响而引起故障,同时整个输电走廊占用土地面积较多,易对周边环境造成电磁干扰。输电电缆则不受气象和环境的影响,主要通过电缆隧道或电缆沟架设,造价较高,发现故障及检修维护等不方便。电缆线路可分为架空电缆线路和地下电缆线路电缆线路不易受雷击、自然灾害及外力破坏,供电可靠性高,但电缆的制造、施工、事故检查和处理较困难,工程造价也较高,故远距离输电线路多采用架空输电线路。 输电线路的输送容量是在综合考虑技术、经济等各项因素后所确定的最大输送功率,输送容量大体与输电电压的平方成正比,提高输电电压,可以增大输送容量、降低损耗、减少金属材料消耗,提高输电线路走廊利用率。超高压输电是实现大容量或远距离输电的主要手段,也是目前输电技术发展的主要方向。 输电专业日常管理工作主要分为输电运行、输电检修、输电事故处理及抢修三类。输电专业管理有几个主要特点:一是,工作危险性高。输电线路检修一般需要进行高空作业,对工作人员的身体素质、年龄和高空作业能力要求很高,从安全角度考虑,一般40岁以上人员很难再胜任输电线路高空检修作业工作;输电带电作业需要在不停电的情况下,实行带电高空作业,对技术和人员素质要求更高,因此该工作危险性较高。一般说来,输电检修人员可以从事输电运行工作,但输电运行人员不一定能从事输电检修工作。二是,输电事故具有突发性。输电事故处理和抢修工作属于突发性事故抢修工作,不可能列入正常的输电检修工作计划,在输电事故抢修人员和业务管理上与输电检修差异较大。三是,施工环境大都比较恶劣。受输电成本和发电厂、水电站位置的影响,大多数输电线路架设在地广人稀的高山、密林、荒漠地区,施工环境恶劣,条件艰苦,很多施工设备和材料无法通过车辆运送,导致线路的建设和维护难度增大。 在事故抢修管理方面,对于一般事故抢修,可通过加强对抢修事故的统计分析,了解事故发生的规律,深入分析后确定需要配备的日常抢修工作人员数量;对于日常工作人员不能完成的抢修事故可通过外围力量的支持协作来完成,如破坏性较大的台风、地震、雪灾等严重自然灾害发生时,对输电网络影响较大,造成的电网事故比较集中,因此可以集中一个地市、全省甚至是全国电力系统的力量,开展事故抢修工作。 第一节电力线路的结构 架空输电线路的主要部件有: 导线和避雷线(架空地线)、杆塔、绝缘子、金具、杆塔基础、

浅谈基于故障波形判断输电线路单相接地故障性质的方法

龙源期刊网 https://www.360docs.net/doc/f118132557.html, 浅谈基于故障波形判断输电线路单相接地故障性质的方法 作者:王姝黄凯 来源:《科技视界》2017年第33期 【摘要】本文通过对输电线路阻抗组成情况,以及三种典型单相接地故障波形的特点加 以分析,以六次输电线故障波形为例对其印证分析,得出判断输电线路单相接地故障性质的方法,从而提高故障时应急处置速度,保障电能的畅通输送,保障电网的安全可靠运行。 【关键词】输电线路;阻抗角;故障;波形性质 0 前言 输电线路做为电能输送的通道,在电力生产过程中的至关重要。随着我国对清洁能源的需求不断增长,大量的电力能源需要通过输电线路从资源地区输送到负荷中心。越来越多的高压等级、超长距离的输电线路加以建设,以满足大负荷的输送。这些输电线路穿越了复杂的地理环境,不仅有高山、森林、草原、峡谷、河流,还有人口密集的城镇,随之而来的输电线路故障也逐步增多。一旦发生输电线路故障,电力能源不能从资源地区输送到负荷中心,轻则引起局部地区停电,影响人们的日常生产、生活,重则造成区域电网解列,大面积的停电,造成人们的恐慌,甚至影响社会的稳定。输电线路的故障难以避免,如何快速处置输电线路故障,保障电能可靠输送至关重要。处置电力线路故障首要的就是判断出故障的性质,以便快速的组织应急抢修的机具、人员,比如输电线路掉串故障需要准备备件及牵引设备,输电线路树竹放电故障需要对通道进行清理砍伐等。 1 常见输电线路故障类型 做为大负荷输送的输电线路一般电压等级均在220千伏及以上,这类型的架空输电线路对地距离,以及相间距离都较大,发生多相故障的情况较少,出现单相故障的情况较多。在220千伏及以上的电力系统中,采用的中性点接地的运行方式,发生接地故障时会有很大的故障电流,安装在变电站的保护装置检测到故障电流后跳开断路器,切除故障,同时也对故障时的电气量加以记录,以便后期进行分析。 引起输电线路发生单相接地故障的原因经统计,多为雷击、外破或树竹放电、绝缘子串掉落和倒塔。通过近年来在工作中遇到的输电线路故障加以总结归纳,可以通过输电线路发生故障时保护装置记录的故障波形来快速判断。下面将对三种输电线路故障保护波形分析加以分析甄别、判断,希望对处置快速处置输电线路有所帮助。 2 输电线路故障判断原理

电力系统的电压等级

电力系统的电压等级 额定电压:各用电设备、发电机、变压器都是按一定标准电压设计和制造的。当它们运行在标准电压下时,技术、经济性能指标都发挥得最好。此标准电压就称为~。 一、电力系统的额定电压等级 1、电力系统的额定电压等级(输电线路的额定线电压) 380220, kV 3, kV 6, kV 10, kV 35, kV 60, kV 110, kV 220, kV 330, kV 500, kV 750, kV 1000 一般来说:110kV 以下的电压等级以3倍为级差:10kV 35kV 110kV 110kV 以上的电压等级,则以两倍为级差:110kV 220kV 500kV 按电压等级分类: 低压网:电压等级在1kV 以下; 中压网:1~10kV ; 高压网:高于10kV 、低于330kV ; 超高压网:低于750kV ; 特高压网:1000kV 及以上 确定额定电压等级的考虑因素: 三相功率S 和线电压U 、线电流I 的关系是UI S 3=。 当输送功率一定时,输电电压越高,电流越小,导线等载流部分的截面积越小,投资越小; 但电压越高,对绝缘的要求越高,杆塔、变压器、断路器等绝缘的投资也越大。 所以,对应于一定的输送功率和输送距离应有一个最合理的线路电压。 但从设备制造的角度考虑,线路电压不能任意确定。规定的标准电压等级过多也不利于电力工业的发展。 2、 发电机、变压器、用电设备的额定电压的确定 1) 用电设备的额定电压=线路额定电压 允许其实际工作电压偏离额定电压%5± 2)线路的额定电压: 指线路的平均电压(Ua+Ub )/2, 线路首末端电压损耗为10% ;因为用电设备允许的电压波动是±5% ,所以接在始端

输电线路基本常识

输电线路的基本知识 一、送电线路的主要设备: 送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变 电站,以实现输送电能为目的的电力设施。主要由导线、架空地线、绝缘子、金具、杆塔、基 础、接地装置等组成。 1.导线:其功能主要是输送电能。线路导线应具有良好的导电性能,足够的机械强度,耐 振动疲劳和抵抗空气中化学杂质腐蚀的能力。线路导线目前常采用钢芯铝绞线或钢芯铝合金绞 线。为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根 导线组成的分裂导线型式。 2.架空地线:主要作用是防雷。由于架空地线对导线的屏蔽,及导线、架空地线间的藕合 作用,从而可以减少雷电直接击于导线的机会。当雷击杆塔时,雷电流可以通过架空地线分流 一部分,从而降低塔顶电位,提高耐雷水平。架空地线常采用镀锌钢绞线。目前常采用钢芯铝 绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。兼有通信 功能的采用光缆复合架空地线。 3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。送电线路常用绝缘子有:盘形瓷 质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。 (1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。 遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)盘形玻璃绝缘子:具有零值自爆,但自爆率很低(一般为万分之几)。维护不需检测, 钢化玻璃件万一发生自爆后其残留机械强度仍达破坏拉力的80%以上,仍能确保线路的安全运行。遇到雷击及污闪不会发生掉串事故。在Ⅰ、Ⅱ级污区已普遍使用。 (3)棒形悬式复合绝缘子:具有防污闪性能好、重量轻、机械强度高、少维护等优点,在Ⅲ级及 以上污区已普遍使用。 4.金具 送电线路金具,按其主要性能和用途可分为:线夹类、连接金具类、接续金具类、防护金 具类、拉线金具类。 (1)线夹类: 悬式线夹:用于将导线固定在直线杆塔的悬垂绝缘子串上,或将架空地线悬挂在直线杆塔 的架空地线支架上。 耐张线夹:是用来将导线或架空地线固定在耐张绝缘子串上,起锚固作用。耐张线夹有三大类,即:螺栓式耐张线夹;压缩型耐张线夹;楔型线夹。 螺栓式耐张线夹:是借U型螺丝的垂直压力与线夹的波浪形线槽所产生的摩擦效应来固定 导线。 压缩型耐张线夹:它是由铝管与钢锚组成。钢锚用来接续和锚固钢芯铝绞线的钢芯、然后 套上铝管本体,以压力使金属产生塑性变形,从而使线夹与导线结合为一整体,采用液压时, 应用相应规格的钢模以液压机进行压缩。采用爆压时,可采用一次爆压或二次爆压的方式,将 线夹和导线(架空地线)压成一个整体。

如何让看杆塔确定电压等级

:输电线路在生活中非常常见,但很多从事电力相关行业的人士也并不清楚如何通过杆塔来确定电压等级,今天我们就来说说这个事~ 按照结构来分,输电线路分为架空输电线路和电缆线路。本文讨论的是架空输电线路,它由线路杆塔、导线、绝缘子、线路金具、拉线、杆塔基础、接地装置等构成,架设在地面之上。输电导线由输电杆塔一段段连接起来,高电压等级的用“铁塔”,低电压等级的比如居民区里见的一般用“木头杆”或“水泥杆”,合起来统称“杆塔”。 架空输电线路按照输送电流的性质可分为交流输电和直流输电。那么如何一眼分辨直流和交流输电线路呢? 其实很简单,交流是三相电,输电线条数为3或者3的倍数;而直流输电线只有正负两极,也就是两条线加避雷线。 接下来进入正题,如何一眼辨别输电线路的电压等级? 只需要“三看”: 一看分裂导线数 分裂导线是超高压输电线路为抑制电晕放电和减少线路电抗所采取的一种导线架设方式,即每相导线由几根直径较小的分导线组成。分裂导线数越多,输电能力越强,电压等级越高。

1000kV特高压输电线路、800KV直流输电线路分成8根,为八分裂导线。 750kV的超高压输电线路一般采用六分裂导线,这个电压等级只在我国的西北电网使用。

500kV输电线按规程应是四分裂导线,不过也有些采用六分裂导线。

220kV的一般是双分裂 110kV及以下的电压等级由于电晕不严重,一般采用单根导线。 二看绝缘子数目 绝缘子是一种特殊的绝缘控件,通常由玻璃或陶瓷制成,用来增加爬电距离。绝缘子呈飞碟状,一个飞碟算一片绝缘子,绝缘子串起到隔离导线与杆塔的作用。每片绝缘子能够承受大约15~20千伏电压,所以可以根据绝缘子数判断电压等级。不过如果在高海拔、污秽重的地区,片数会有所增加。

10kV输电线路.

设计说明 10kV配电线路输送电的稳定性、可靠性直接影响着用户的用电状态,而且在社会经济迅速发展的背景下,人们对用电的安全性、可靠性以及稳定性的要求也越来越高,10kV配电线路故障的频繁发生势必会对用户用电带来一定的影响,甚至引发人身安全事故,因此,应做好10kV配电线路故障的防范工作。 本次设计内容是10kV输电线路继电保护设计。本文首先介绍了继电保护的基本概要,然后根据10kV输电线路的实际情况对保护进行选择,最后根据给定的接线图及参数,进行短路电流的整定计算。通过对所配置的继电保护进行整定计算和校验,论证继电保护配置的正确性。

1 绪论 (1) 1.1 继电保护的简述 (1) 1.2 继电保护的构成 (1) 1.3继电保护的要求 (2) 2 10kV输电线路保护的选择 (4) 2.1 10kV线路保护特点 (4) 2.2 10kV线路继电保护的选择 (4) 3 电网的距离保护 (5) 3.1 距离保护的基本概念 (5) 3.2 10kV线路常见故障 (5) 3.2.1 相间短路 (5) 3.2.2 单相接地 (5) 3.2.3 瞬时电流速断保护 (5) 4 整定计算 (8) 4.1设计要求 (8) 4.2 设计参数 (8) 4.3 相间短路电流、电压保护 (8) 4.3.1 无时限电流速断保护 (9) 4.3.2 定时限过电流保护 (9) 4.3.3 限时电流速断保护 (12) 4.4 整定不满足要求时措施 (12) 参考文献 (14) 总结 (15) 致谢 (16)

1.1 继电保护的简述 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。 继电保护的基本任务是:电力系统发生故障时,自动、快速、有选择地将故障设备从电力系统中切除,保证非故障设备继续运行,尽量缩小停电范围,电力系统出现异常运行状态时,根据运行维护的要求能自动、及时、有选择地发出告警信号或者减负荷、跳闸。见图1-1。 图1-1 继电保护基本组成示意图 1.2 继电保护的构成 纵观电力系统继电保护,根据不同的应用需求、不同的产品特性以及不用的产品发张阶段,继电保护系统的具体技术方案的设计及外在特性千差万别。但不论怎样,保护的基本组成都应包含测量部分、逻辑部分及执行部分,见图1-2。 为保证继电保护装置的正确动作,保护装置必须输入被保护对象的有关电气量,经过测量比较及相应的逻辑判断,最终确定保护装置是否应该使断路器跳闸或发出告警信号,并通过执行部分完成保护装置所担负的任务。 图1-2 继电保护装置的组成

输电线路状态检测

输电线路状态检测 一简介 输电是用变压器将发电机发出的电能升压后,再经断路器等控制设备接入输电线路来实现。按结构形式,输电线路分为架空输电线路和电缆线路。架空输电线路由线路杆塔、导线、绝缘子、线路金具、拉线、杆塔基础、接地装置等构成,架设在地面之上。按照输送电流的性质,输电分为交流输电和直流输电。 输电的基本过程是创造条件使电磁能量沿着输电线路的方向传输。线路输电能力受到电磁场及电路的各种规律的支配。以大地电位作为参考点(零电位),线路导线均需处于由电源所施加的高电压下,称为输电电压。 输电线路是电力系统的主干网络。包括绝缘子、金具、杆塔和输电线等设备和器材。它广泛分布在平原及高山峻岭,直接暴露于风雪雨露等自然环境之中,同时还受到洪水、滑坡等自然灾害的损害,运行环境相当恶劣。 输电线路在综合考虑技术、经济等各项因素后所确定的最大输送功率,称为该线路的输送容量。输送容量大体与输电电压的平方成正比。因此,提高输电电压是实现大容量或远距离输电的主要技术手段,也是输电技术发展水平的主要标志。 输电线路的保护有主保护与后备保护之分。主保护一般有两种纵差保护和三段式电流保护。而在超高压系统中现在主要采用高频保护。后备保护主要有距离保护,零序保护,方向保护等。电压保护和电流保护由于不能满足可靠性和选择性现在一般不单独使用一般是二者配合使用,且各种保护都配有自动重合闸装置。而保护又有相间和单相之分。如是双回线路则需要考虑方向。在整定时则需要注意各个保护之间的配合。还要考虑输电线路电容,互感,有无分支线路。和分支变压器,系统运行方式,接地方式,重合闸方式等。还有一点重要的是在220KV及以上系统的输电线路,由于电压等级高故障主要是单相接地故障,有时可能会出现故障电流小于负荷电流的情况。而且受各种线路参数的影响较大。在配制保护时尤其要充分考虑各种情况和参数的影响。 电力系统的安全可靠性运行至关重要。输电线路可靠性及运行情况直接决定着电力系统的稳定和安全。检修是保证输电设备健康运行的必要手段。做好输电设备的检修工作及早发现事故隐患并及时予以排除,使其始终以良好的状态投入运行具有重要的意义,尤其是电力系统向高电压、大容量、互联网发展,其重要性更加突出。 二输电线路检测内容 输电线路检测内容一般可包括以下几个方面: 杆塔基础 1.检查杆塔及拉线基础变异,周围土壤突起或沉陷,基础裂纹、损坏、下沉或上拔, 护基沉塌或被冲刷;2.基础保护帽上部塔材被埋入土或废弃物堆中,塔材锈蚀;3. 防洪设施坍塌或损坏;4.在基础周围取土、打桩、开挖或倾倒有害化学品;5.铁塔地脚螺母松动、缺损; 接地装置 接地装置外露或腐蚀情况。 铁塔杆身 1.杆塔倾斜,横担歪斜,铁塔主材弯曲; 2.塔材、拉线(棒)等被偷盗破坏或锈蚀; 3.拉线锈蚀、断股或松弛、张力不均; 4.砼杆出现裂纹过裂纹扩展,混凝土脱落,钢 筋外露,脚钉缺损;5.在杆塔上架设电力线、通信线等;6.利用杆塔拉线作起重牵引地锚,在拉线上栓牲畜,悬挂物件;7.杆塔或拉线上有危及供电安全的巢以及有蔓藤类植物附生。

相关文档
最新文档