含参不等式的解法举例

含参不等式的解法举例
含参不等式的解法举例

含参不等式专题(淮阳中学)

编写:孙宜俊当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型 (即是那一种不等式) 的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。

解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况:

(1)二次项的系数;(2)判别式;(3)不等号方向( 4)根的大小。

一、含参数的一元二次不等式的解法:

1.二次项系数为常数(能分解因式先分解

因式,不能得先考虑0 )

例1、解关于X的不等式X2 (a 1)x a 0。

解:(x2a)( x 1) 0

令(x a)(x 1) 0 x a, x 1为方程的两个根

(因为a与1的大小关系不知,所以要分类讨论)

(1)当a 1 时,不等式的解集为{x| x 1 或x a}

( 2 )当a 1 时,不等式的解集为{x|x a或x1}

( 3 )

当a 1 时,不等式的解集为{x|x1}

综上所

述:

(1)当a 1 时,不等式的解集为{x| x1或X a} ( 2 )

当a 1 时,不等式的解集为{x|x a或x1} ( 3 )

当a 1 时,不等式的解集为{x|x1}

变题1 、

解不等式x2(a 1)x a 0 ;2

解不等式x2 (a2 a)x a3 0。

小结:讨论两个根的大小关系,尤其是变题 2 中 2 个根都有参数的要加强讨

例2、解关于x 的不等式2x 2 kx k 0

分析 此不等式为含参数k 的不等式,当k 值不同时相应的二次方程的判别 式的

值也不同,故应先从讨论判别式入手. 解 k 2 8k k(k 8)

分解因式先分解因式,不能得先考虑 0)

例3、解关于 x 的不等式:

2 ax (a 1)x 1 0.

解:若a 0,

原不等式 x 1 0 x 1.

若a 0, 原不等式

(x 丄)(x 1) 0

x 丄或x 1

a

a

若a 0

, 原不等式

(x

1

)(x 1) 0. ()

a

其解的情况应由1与1的大小关系决定,故

a

(1) 当a 1时,式()的解集为;

1

(2) 当 a 1 时,式()-x 1 ;

a

1

(3) 当 0 a 1 时,式()1 x -.

a

综上所述,当a 0时,解集为{ xx —或x 1};

a

(1)当

0,既k 8或k

0时,方程2x 2

所以不等式2x 2 kx k

0的解集是:

⑵当 0即k 8或k

0时,方程2x 2

⑶当

0,即8 k 0时,方程2x 2

所以不等式2x 2 kx k 0的解集为 说明:一元二次方程、一元二次不等式、 注意

数形结合研究问题。

小结:讨论,即讨论方程根的情况。

2.二次项系数含参数(先对二次项系数讨论,

kx k 0有两个不相等的实根。

kx k 0有两个相等的实根,

,即 2 ,{0};

kx k 0无实根

、一元二次函数有着密切的联系,要

分大于、等于或小于

0,然后能

所以不等式2x 2 kx k 0的解集是

例5、解关于的x 不等式(m 1)x 2 4x 1

0(m R)

分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1 1时,还需

对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论: ⑴当m< —1时,/ =4 (3-m ) >0,图象开口向下,与x 轴有两个不同交点,不 等式的解集取两边。⑵当一10,图象开口向上,与 x 轴有两个不同交点,不等式的解集取中间。⑶当 m=3时,/ =4 (3— m ) =0,图 象开口向上,与x 轴只有一个公共点,不等式的解为方程 4x 2 4x 1 0的根。

当a 0时,解集为{x x 1};

a 1时,解集为{ x1

x -};

a

1时,解集为;当a 1

1时,解集为{x 丄 a

x 1}.

例4、解关于x 的不等式: 2

ax :ax 2

ax 1

0.

() (1) a 0时, ()

1 0 x R. (2) a 0

时,

则 a 2 4a 0 a 0 或 a

4

此时两根为x i

a 2 4a 2a

a

a 2 4a 2a

①当a 0时, 0, ()a

②当4 a 0时, 0,() ③当a

4时,

0,

()x

④当a 4时, 0, ()x

综上,可知当a 0时,〕

解集为(」-

当4 a 0时,解集为

当a

4时, 解集为(

当a 4时, 解集为(

a 2 4a 2a

a a 2 4a

2a ;

2a

a ??、a 2 4a

2a

a a 2 4a

2a

,1)(

);

a .a 2 4a

2a

Ja 2 4a ) , /■

2a

1 0.

ax 解 X 2 ??、a 2

4a

2a

⑷当m>3时,/ =4(3-m ) <0,图象开口向上全部在x 轴的上方,不等式的解集 为。

解:当m 1时,原不等式的解集为

x|x —; 4

当m=3时,原不等式的解集为 x | x —;

2

当m>3时,原不等式的解集为 。

小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解, 若不易分解, 也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向, ②判别式 确定解的存在范围,③两根大小。⑶二次项的取值(如取 0、取正值、取负值) 对不等式实际解的影响。

牛刀小试:解关于x 的不等式ax 2

2(a 1)x 4 0, (a 0)

思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。 具体解答请同学们自己完成。

二、含参数的分式不等式的解法: 例1:解关于x 的不等式2ax 1

x 2 x 2

分析:解此分式不等式先要等价转化为整式不等式,再对 ax -1中的a 进行

分类讨论求解,还需用到序轴标根法。

解:原不等式等价于(ax 1)(x 2)(x 1) 0 当a =0时,原不等式等价于(x 2)(x 1) 0

解得1 x 2,此时原不等式得解集为{x|

1 x 2};

1

当a >0时,原不等式等价于(x -)(x 2)(x 1)

0, a

贝U:当a 1时,原不等式的解集为x |x

1且x 2 ;

2

当0

2

a

当a 丄时,原不等式的解集为 x | 1 x 丄或x 2 ;

2

a

1

当a <0时,原不等式等价于(x -)(x 2)(x 1)

0, a

则当a 1时,原不等式的解集为x|x 2且x 1 ;

当1 a 0时,原不等式的解集为x|x -或1 x 2 ;

a

当a 1时,原不等式的解集为X|x 1或-x 2 ;

a

小结:⑴本题在分类讨论中容易忽略 a =0的情况以及对1,- 1和2的大小

a

进行比较再结合系轴标根法写出各种情况下的解集。⑵解含参数不等式时,一要考虑参数总的取值范围,二要用同一标准对参数进行划分,做到不重不漏,三要使划分后的不等式的解集的表达式是确定的。⑶对任何分式不等式都是通过移项、通分等一系列手段,把不等号一边化为0,再转化为乘积不等式来解决。

牛刀小试:解关于x的不等式岂口1,(a 1)

x 2

思路点拨:将此不等式转化为整式不等式后需对参数a分两级讨论:先按a>1 和a<1分为两类,再在a<1的情况下,又要按两根-__2与2的大小关系分为 a 1

a 0,a 0和0 a 1三种情况。有很多同学找不到分类的依据,缺乏分类讨论的意识,通过练习可能会有所启示。具体解答请同学们自己完成。

上述两题分别代表一元二次不等式中多项式可否直接进行因式分解,其共同点是二次项系数含参数,故需对二次项系数的符号进行讨论.

练习:1.解关于x的不等式(x 2)(ax 2) 0

2. 解关于x的不等式:x2 (a 2)x a 0.

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 2项的系数 a 的符号分类,即 a 0,a 0,a 0; 例 1 解不等式: ax 2 a 2 x 1 0 分析: 本题二次项系数含有参数, a 2 2 4a a 2 4 0 ,故只需对二次项 系数进行分类讨论。 2 解 :∵ a 2 2 4a a 2 4 0 a 2 a 2 4 a 2 a 2 4 ∴当 a 0时,解集为 x|x a 2 a 4 或x a 2 a 4 2a 2a 当 a 0 时,不等式为 2x 1 0, 解集为 x| x 1 例 2 解不等式 ax 2 5ax 6a 0a 0 分析 因为 a 0, 0 ,所以我们只要讨论二次项系数的正负。 解 a(x 2 5x 6) a x 2 x 3 0 当 a 0时,解集为 x|x 2或x 3 ;当 a 0时,解集为 x|2 x 3 、按判别式 的符号分类,即 0, 0, 0 ; 例 3 解不等式 x 2 ax 4 0 分析 本题中由于 x 2 的系数大于 0, 故只需考虑 与根的情况。 解: ∵ a 2 16 ∴当 a 4,4 即 0 时,解集为 R ; 解得方程 2 ax 2 a 2 x 1 0 两根 x 1 a 2 a 2 4 2a , x 2 a 2 a 2 4 2a 当 a 0时 , 解集为 x| a 2 a 2 4 2a x a 2 a 2 4 2a

当 a 4即Δ=0时,解集为 x x R 且x a ; 当 a 4 或 a 4 即 0, 此时两根分别为 x 1 a a 16 , x 2 2 x 1 x 2 , a a 2 16 a a 2 16 x 或 x 〈 22 例 4 解不等式 m 2 1 x 2 4x 1 0 m R 2 2 2 2 解 因 m 2 1 0, ( 4)2 4 m 2 1 4 3 m 2 当 m 3或 m 3 ,即 0 时,解集为 R 。 2 三、按方程 ax bx c 0 的根 x 1 , x 2的大小来分类,即 x 1 x 2,x 1 x 2 ,x 1 x 2; 1 例 5 解不等式 x 2 (a )x 1 0 (a 0) a 1 分析: 此不等式可以分解为: x a (x ) 0 ,故对应的方程必有两解。本题 a 只需讨论两根的大小即可。 11 解: 原不等式可化为: x a (x ) 0 ,令 a ,可得: a 1 aa 11 ∴当 a 1或 0 a 1时, a ,故原不等式的解集为 x |a x ; a 1 当 a 1 或 a 1 时, a , 可得其解集为 ; a 11 当 1 a 0或a 1时, a ,解集为 x| x a a 例 6 解不等式 x 2 5ax 6a 2 0 , a 0 分析 此不等式 5a 2 24a 2 a 2 0 ,又不等式可分解为 x 2a (x 3a) 0 ,故 所以当 m 3 ,即 0 时,解集为 x| x 1 2 当 3 m 3 ,即 0 时,解集为 2 3 m 2 x 或 x m 2 1 2 m 2 1 3 m 2 ; ; a a 2 16 a a 16 ,显然 ∴不等式的解集为

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

含参不等式练习题及解法

众所周知,不等式解法是不等式这一板块的高考备考重点,其中,含有参数的不等式的问题,是主考命题的热点,又是复习提高的难点。(1)解不等式,寻求新不等式的解集; (2)已知不等式的解集(或这一不等式的解集与相关不等式解集之间的联系),寻求新含参数的值或取值范围。 (3)注意到上述题型(2)的难度与复杂性,本专题对这一类含参不等式问题的解题策略作以探索与总结。 一、立足于“直面求解” 解不等式的过程是一系列等价转化的过程,对于有关不等式的“解”的问题,直面不等式求解,有时是问题解决的需要,有时是解决问题的基础或手段。所给问题需要在获得不等式的解集或最简形成后,方可延伸或突破时,则要果断地从求 解不等式切入。例1.设关于x的不等式 (1)解此不等式;(2)若不等式解集为(3,+∞),求m的取值范围; (3)若x=3属于不等式的解集,求m的取值范围 分析:着眼于不等式的等价变形,注意到这里m2>0,m2同乘以不等式两边,则不等式转化为ax>b型,于是可以x的系数a的取值为主线进行讨论。 解:(1)由题设,原不等式m(x+2)>m2+(x-3)(m R,m≠0) (m-1)x>m2-2m-3(1)∴当m>1时,由(1)解得 当m=1时,由(1)得x R;当m<1且m≠0时,由(1)解得 ∴当m>1时,原不等式的解集为当m=1时,原不等式的解集为R 当m<1且m≠0时,原不等式的解集为 (2)若不等式的解集为(3,+∞),则由(1)知应得 ∴此时m的取值范围为{5} (3)注意到x=3 为不等式的解,将x=3代入(1)得:3(m-1)>m2-2m-3m2-5m<0 00以及,m的取值或取值范围由此而产生。 例2.已知关于x的不等式组的整数解的集合为{-2},求实数R的取值范围。 分析:由题设知,这一不等式组的解集只含有一个整数-2,那么当x= -2属于这一成员不等式时,该不等式的解集是何种情形,这需要解出不等式后方可作出结论,故考虑以求解这一成员不等式切入并延伸。 解:不等式x2-x-2>0 (x+1)(x-2)>0x<-1或x>2 ∴不等式x2-x-2>0的解集A=(-∞,-1)∪(2,+ ∞),显然-2∈A 不等式2x2+(2R+5)x+5R<0 (x+R)(2x+5)<0① 设这一不等式的解集为B,则由-2B,得:(-2+R)(-4+5)<0R<2② 注意到(x+R)(2x+5)=0的根为x1= -R,, ∴(1)当时, 由①得,即此时-2 B (2)当时,由①得

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法 含参一元二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>--ax x ; 2、(1-ax )2 <1. } 2,2 |{,1)5(} 2|{,1)4(}2 ,2|{,10)3(}2|{,0)2(}22 | {,0)1(><>≠=><<<<=<<0, 即x (x -2 a )<0. ∵2a <0,∴不等式的解集为{x |2a

含参不等式

《不等式(组)的字母取值范围的确定方法》教学设计 教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。 学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解. 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。 学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。 (2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。 教学准备 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 1、⑴不等式组???-≥>1 2x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组?? ?≥≤14x x 的解集是 . ⑷不等式组???-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题 1. 逆向运用“大大取大”求解参数 分析:逆向运用大大取大归结为:若不等式组???>>b x a x 的解集为b x >,则b a ≤ 例1.(2014恩施市) 如果一元一次不等式组???>>a x x 3的解集为a x >,则a 的取值范围是:( ) A. a >3 B. a ≥3 C. a ≤3 D. a <3 变式练习1:若不等式组? ??<->+m x x x 544的解集是3

含参一元二次不等式的解法知识讲解

含参一元二次不等式的解法 温县第一高级中学数学组 任利民 解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点.解含参一元二次不等式时对参数的分类主要依据有三个因素:①比较两根大小;②判别式的符号;③二次项系数的符号.下面例举几例来加以分析说明. 一、 根据二次不等式所对应方程的根的大小分类 例1解关于x 的不等式 2(1)0x x a a --->. 分析:原不等式等价于()(1)0x a x a -+->,所对应方程的两根是 x a =或1x a =-.这两个根的大小关系不确定,因此分类的标准是a 与1a -的大小关系.这样就容易将a 分成111,,222 a a a >=<这三类. 解:原不等式等价于()(1) 0x a x a -+->,所对应方程的两根是x a =或1x a =-. 当12 a >时,有1a a >-,所以不等式的解集为{x x a >或1}x a <-. 当12a =时,有1a a =-,所以不等式的解集为{x x R ∈且1}2 x ≠ 当12 a <时,有1a a <-,所以不等式的解集为{1x x a >-或}x a <. 【评注】对参数进行的讨论是根据解题的需要而自然引出的,并非一开始就对参数加以分类讨论.当二次项系数不含参数且能进行因式分解时,其解法较容 易,只讨论根的大小.本题中对a 的讨论时,12的选取依据就是比较两个根的大 小.解题关键是熟练掌握二次函数的图象特征,做到眼中有题,心中有图. 二、 根据判别式的符号分类 例2解关于x 的不等式 2220x ax ++>. 分析:设2()22f x x ax =++,欲确定()0f x =的根的情况,需讨论 0,0,0?>?=?<三种情况,由此来确定()f x 的图像,并最终确定不等

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

(完整版)含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

含参一元二次方程的解法

学科:数学 专题:含参一元二次方程的解法 主讲教师:黄炜 北京四中数学教师 重难点易错点解析 当系数中含有字母时,注意有实解的判断。 题一 题面:(x -m )2 =n .(n 为正数) 金题精讲 题一 题面:解关于x 的一元二次方程 1. x 2+2mx =n .(n +m 2≥0). 2. x 2-2mx +m 2-n 2=0. 3. .0422 2 =-+-b a ax x 4. abx 2-(a 2+b 2)x +ab =0.(ab ≠0) 解含参的一元二次方程:配方法、因式分解 满分冲刺 题一

题面:解关于x 的一元二次方程 1. ()()()b a a c x c b x b a ≠=-+-+-0 2 2. ()()()01222≠--=-b a x b a x 3. ()()() 0222222≠+-=-++b a b a bx a b ax 解含参的一元二次方程:因式分解 题二 题面:解关于x 的方程kx 2-(k +1)x +1=0. 解含参的方程,分类讨论。 题三 题面:已知关于x 的方程x 2-2ax -a +2b =0,其中a ,b 为实数. (1)若此方程有一个根为2a (a <0),判断a 与b 的大小关系并说明理由; (2)若对于任何实数a ,此方程都有实数根,求b 的取值范围. 一元二次方程的解,判别式。

讲义参考答案 重难点易错点解析 题一 答案:.,21m n x m n x +-=+= 金题精讲 题一 答案:1. .,2221n m m x n m m x +--=++-= 2. x 1=m +n ,x 2=m -n . 3. .2 ,221b a x b a x +=-= 4. ?==b a x a b x 21, 满分冲刺 题一 答案:(1)121,c a x x a b -==- (2) 12,1a ab x a x b +==- (3)当b=0时,120x x ==;当b ≠0时,无实根。 题二 答案:k =0时,x =1;k ≠0时,.1,121==x k x 题三 答案:解:(1)∵方程x 2-2ax -a +2b =0有一个根为2a ,∴4a 2-4a 2-a +2b =0. 整理,得2 a b = . ∵0

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0

含参一元二次不等式专项训练

含参一元二次不等式专题训练 解答题(共12小题) 1.已知不等式(ax﹣1)(x+1)<0 (a∈R).2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).(1)若x=a时不等式成立,求a的取值范围; (2)当a≠0时,解这个关于x的不等式. 3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x的不等式,(a∈R): (1)ax2﹣2(a+1)x+4>0; (2)x2﹣2ax+2≤0. 5.求x的取值范围:(x+2)(x﹣a)>0. 6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0.8.解关于x 的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0. 10.解下列不等式: (1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).

含参一元二次不等式专题训练参考答案与试题解析 一.解答题(共12小题) 1.(2009?如皋市模拟)已知不等式(ax ﹣1)(x+1)<0 (a ∈R ). (1)若x=a 时不等式成立,求a 的取值范围; (2)当a ≠0时,解这个关于x 的不等式. 的大小关系即可解这个关于时,,所以不等式的解:;时,的解: ,所以不等式的解:.时,所以不等式的解:时,所以不等式的解:或 2.解关于x 的不等式:x 2 +(a+1)x+a >0(a 是实数). 3.解关于x 的不等式ax 2 +2x ﹣1<0(a >0). 4.解关于x 的不等式,(a ∈R ): (1)ax 2 ﹣2(a+1)x+4>0; (2)x 2 ﹣2ax+2≤0. ),即}=2,即﹣<><{x|<a <﹣> ﹣ a }综上,﹣a <﹣ > a }5.求x 的取值范围:(x+2)(x ﹣a )>0.

含参不等式的解法(教师版)

不等式(3)----含参不等式的解法 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容。 (一)几类常见的含参数不等式 一、含参数的一元二次不等式的解法: 例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈ 分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。⑵当-10, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为?。 解:11,|;4m x x ? ?=-≥???? 当时原不等式的解集为 ???? ??+-+≤≤+--<<-? ?????+-+≤+--≥-3时, 原不等式的解集为?。 小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。 牛刀小试:解关于x 的不等式)0(,04)1(22>>++-a x a ax 思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解答请同学们自己完成。 二、含参数的分式不等式的解法: 例2:解关于x 的不等式02 12>---x x ax 分析:解此分式不等式先要等价转化为整式不等式,再对ax -1中的a 进行分类讨论求解,还需用到序轴标根法。 解:原不等式等价于0)1)(2)(1(>+--x x ax 当a =0时,原不等式等价于0)1)(2(<+-x x 解得21<<-x ,此时原不等式得解集为{x|21<<-x };

不等式解法举例

第一课时 知识清单: 1、解含绝对值的不等式,关键是去掉绝对值符号,进而转化为不含绝对值的不等式求解。 2、去绝对值得方法主要有: (1)公式法: x a a x a ?<-或x a > (2)平方法:当0a >时,22x a x a ?>. (3)零点分段法. 3、含绝对值不等式的等价变形: (1)()(0)()f x a a f x a >>?>或()f x a <-;()a f x a -<< (2)()(0)f x a a <>?()a f x a -<<; (3)[][]22()()()()()()()()f x g x f x g x f x g x f x g x >?>?+-g ; (4)()()()()f x g x f x g x >?>或()()f x g x <-; (5)()()()()()f x g x g x f x g x ; 2、解不等式213x +>; 3、解不等式317x +<; 4、解不等式3110x +>; 5、解不等式211x -≤; 6、解不等式2311x x -+>; 7、解不等式113x x ++->; 8、解不等式234x x --+>; 9、解不等式211x x +>-; 10、解不等式233x x x ++>4+; 11、解不等式 2341x x x --<+;

第二课时 知识清单: 1、解分式不等式,首先要把它等价变形为整式不等式.共有如下几种类型: (1)()0()()0()f x f x g x g x >?>g ; (2)()0()()0() f x f x g x g x ?≠?g g 或()0f x =; (4) ()()0()0()()0,()0()0()f x g x f x f x g x f x g x g x ≤?≤??<=?≠?g g . 2、数轴穿根法解不等式的步骤是: (1)等价变形后的不等式一边是零,一边是各因式的积(未知数系数一定是正数); (2)把各因式的根标在数轴上; (3)用曲线“从上往下同时从左向右”穿根(奇次根穿透,偶次根不穿透); (4)看图象写出解集. 简记为:变形、标根、穿根、写解集. 习题: 1、解不等式 201x x +<-; 2、解不等式122 x x +≤-; 3、解不等式21031 x x ->+; 4、解不等式2301 x x +<-; 5、解不等式23901 x x +>+; 6、解不等式121 x x ->0+; 7、解不等式107 x x -<-; 8、解不等式112 x x -<+; 9、解不等式123x x +>-; 10、已知0a <,解关于x 的不等式 12 ax x >-;

含参一元二次不等式专项训练

含参一元二次不等式专项训练

含参一元二次不等式专题训练 解答题(共12小题) 1.已知不等式(ax﹣1)(x+1)<0 (a∈R).2.解关于x 的不等式:x2+(a+1)x+a>0(a是实数). (1)若x=a时不等式成立,求a的取值范围; (2)当a≠0时,解这个关于x的不等式. 5.求x的取值范围:(x+2)(x﹣a)>0. 3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x 的不等式,(a∈R): (1)ax2 ﹣2(a+1)x+4>0; (2)x2 ﹣2ax+2≤0.

6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0. 8.解关于x的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0. 10.解下列不等式:(1)ax2+2ax+4≤0; (2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0. 11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).

含参一元二次不等式专题训练参考答案与试题解析 一.解答题(共12小题) 1.(2009?如皋市模拟)已知不等式(ax﹣1)(x+1)<0 (a∈R).(1)若x=a时不等式成立,求a的取值范围; (2)当a≠0时,解这个关于x的不等式. 考 点: 一元二次不等式的解法. 专 题: 计算题;综合题;分类讨论;转化思想. 分析:(1)若x=a时不等式成立,不等式转化为关于a的不等式,直接求a的取值范围; (2)当a≠0时,当a>0、﹣1<a<0、a<﹣1三种情况下,比较的大小关系即可解这个关于x的不等式. 解答:解:(1)由x=a时不等式成立,即(a2﹣1)(a+1)<0,所 以(a+1)2(a ﹣1)<0, 所以a<1且a≠﹣1.所以a 的取值范围为(﹣∞,﹣1) ∪(﹣1,1).(6分) (2)当a>0时,,所以不等式的解:; 当﹣1<a<0时,,所以不等式(ax﹣1)(x+1)<0 的解:或x<﹣1; 当a<﹣1时,,所以不等式的解:x<﹣1或. 当a=﹣1时,不等式的解:x<﹣1或x>﹣1 综上:当a>0时,所以不等式的解:; 当﹣1<a<0时,所以不等式的解:或x>﹣1; 当a≤﹣1时,所以不等式的解:x<﹣1或.(15分) 点 评: 本题考查一元二次不等式的解法,考查转化思想,分类讨 论思想,是中档题. 2.解关于x的不等式:x2+(a+1)x+a>0(a是实数). 考 点: 一元二次不等式的解法. 专 题: 不等式的解法及应用. 分 析: x2+(a+1)x+a>0(a是实数).可化为(x+a)(x+1)>0. 对a与1的大小分类讨论即可得出. 解 答: 解:x2+(a+1)x+a>0(a是实数)可化为(x+a)(x+1) >0. 当a>1时,不等式的解集为{x|x>﹣1或x<﹣a}; 当a<1时,不等式的解集为{x|x>﹣a或x<﹣1}; 当a=1时,不等式的解集为{x|x≠﹣1}. 点 评: 本题考查了一元二次不等式的解法、分类讨论的方法,属 于基础题. 3.解关于x的不等式ax2+2x﹣1<0(a>0).

不等式知识点大全一

不等式知识点大全一 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ §06. 不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. < = ? a< b ? = > - ? > - a - ; a ; b b 0b a b a b a (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a >(对称性) ? b b a< (2)c ? > >,(传递性) a> a c b b (3)c + > ? >(加法单调性) a b c b a+ (4)d > + a+ > >,(同向不等式相加) ? c b a d c b (5)d - > ? a- < >,(异向不等式相减) a b c d c b (6)bc ac , . > >0 ? b c a> (7)bc < ,(乘法单调性) >0 ? ac c b a< (8)bd > > > >0 ,0(同向不等式相乘) c ac d b a> ?

(9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等. ,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 2222(6)0||;||a x a x a x a x a x a x a a x a >>?>?<->

相关文档
最新文档