曲线钢轨磨耗现状及减磨技术研究

曲线钢轨磨耗现状及减磨技术研究
曲线钢轨磨耗现状及减磨技术研究

曲线钢轨磨耗现状及减磨技术研究

摘要:列车在轮载作用下不可避免会出现曲线地段的钢轨磨耗问题,研究钢轨曲线磨耗的现状、成因及发展趋势,针对性的提出钢轨的减磨措施,对于提高线路的运行品质,减少养护维修的工作量,保证列车运营安全,具有十分重要的作用。

关键词:曲线磨耗;养护维修;减磨技术

钢轨在自然条件、列车的轮轨及其他不可抗因素作用下,不可避免地会产生铁路钢轨的锈蚀、磨耗和损伤等状况。在通常情况下,轮轨相互作用是引起钢轨磨耗主要原因,特别是处于小半径曲线上的钢轨,磨耗问题尤为严重。养护维修要求在钢轨磨损达到一定限度就更换钢轨,以保证列车运营安全。由于公司辖区铁路普遍存在自然环境差、养护维修人员少的特点,对及时更换磨耗钢轨带来很大困难,同时也会大幅提高线路养护维修成本。因此,分析钢轨侧磨原因,并采取减磨措施,以减少养护维修工作量,提高钢轨使用寿命,减少线路养护维修成本就显得十分必要。

1 钢轨磨耗现状

随着行车密度和轴重的提高,曲线地段钢轨的侧面磨耗、轨面波磨、轨面剥落掉块等情况普遍产生,对钢轨的使用寿命及行车安全造成一定影响。结合辖区铁路曲线磨耗调查,分析其规律如下。

钢轨磨耗主要表现为垂磨、侧磨、波磨、肥边等情况,其中曲线垂直磨耗变化较为缓慢,一般在一年左右时间会达到1mm左右;在曲线外股侧

磨则与曲线半径的大小相关,半径越小发展速度越快。其初期表现为鱼鳞裂纹,并有铁屑脱落,逐渐会形成轨头下圆角处的碾堆金属连成长条被切掉情况,如图1所示。

在线路上有部分曲线内股内、外侧均出现了肥边,也存在着部分曲线外侧出现肥边的现象如图2所示。

曲线地段钢轨上内股出现波磨,曲线外股较内股严重,其中部分曲线外股出现了严重的波磨现象,1m钢平尺测量最大矢度严重达3.0mm。如图3所示。

2 波磨的减缓措施及思路

2.1 减小轨道不平顺

减小轨道不平顺对减缓波磨及其它轮轨病害均十分有利。减小轨道不平顺可减少粘滑振动的发生机率及钢轨不均匀磨损的累加效应,从而有效地控制波磨发展速率。减少轨道不平顺主要是指减少诸如钢轨接头病害、轨面剥离、擦伤及钢轨死弯等病害引起的脉冲不平顺。脉冲不平顺导致轮轨冲击,引发轮对粘滑振动,是对波磨形成和发展影响最大的轨道不平顺。计算表明,在完全平顺的轨道上,货车在半径600m以上的曲线地段几乎不会发生轮对粘滑振动,但因接头不平顺的作用,在半径2000m的曲线上也可能发生轮对粘滑振动。多数波磨从接头附近始发的现象说明了这一点。加强线路的检查及养护,强化动静态检查手段,通过开展集中修、机械修是提高线路轨道平顺的有效手段。

2.2 加大轨道弹性、提高轨道阻尼

轨道增弹减振对减少轮轨其它病害也是有利的。增加轨道弹性可有效

地减小轮对粘滑振动发生机率,而提高轨道阻尼则可明显降低波磨的发展速率。碎石道床及时清筛板结道床显然有利于恢复轨道弹性,由于普通胶垫使用寿命短,而工务养护维修工作受诸多因素影响不能及时更换,因此,选择使用寿命更长的热塑性弹性体胶垫成为有效措施。在小半径曲线地段安装轨距杆,在曲线内轨外侧安装加强型轨撑,是提高轨道横向刚度的有效措施。而安装P60防爬器可以防止钢轨爬行,减少连续大轨缝,延长钢轨使用寿命等。

2.3 适当降低曲线地段外轨超高

过超高加大轮对粘滑振动,而欠超高抑制甚至消除轮对粘滑振动。车速较低且轴重较大的货车对波磨形成和发展的影响最大。因此,在主要运行货车的线路上,外轨且主要出现磨损型波磨的曲线地段铺设高强度的钢轨,可采用尽量降低外轨超高的办法减缓波磨。

2.4 钢轨倒换

轮对在曲线上可能发生粘滑振动从而形成波磨,但在直线上,发生粘滑振动的机率却很小,说明直线地段波磨形成和发展的条件不充分。如将曲线地段的波磨轨倒换至直线上,因粘滑振动消失,磨耗功显著降低,波磨的发展将得到明显抑制。从节约成本的角度出发,挑选轨面伤损好的钢轨用于更换直线重伤轨是有意义的。

2.5 钢轨打磨

钢轨打磨是最有效的减缓波磨的措施之一。波磨一旦出现,又反过来激化和加剧轮对粘滑振动,促进波磨进一步发展,波深越大则波磨发展越快,构成恶性循环。钢轨打磨中断了这种恶性循环的发展过程,减缓了波

磨发展速率。钢轨打磨分大型养路机械和小型养路机械打磨两种,大型养路机械主要应用于无缝线路,小型养路机械主要应用于普通线路,但工作效率低下,工作量大。

2.6 提高钢轨材质强度及耐磨性能

提高钢轨耐磨性能,选择使用强度更高的钢轨,是最主要的减缓磨耗、提高使用寿命的措施之一。轮对粘滑振动是波磨的成因,但波磨的形成和发展却表现为钢轨不均匀磨损或不均匀塑性变形的逐步累积。能够减缓轨头磨损和塑性变形的措施就能减缓波磨,钢轨耐磨性能的提高,无疑会延缓波磨的形成与发展过程。

2.7 增大轮对轴刚度

轮对轴刚度偏小是易于激发轮对粘滑振动的因素之一,及时维修轮对,保持圆顺,提高轮对轴刚度,可有效地抑制钢轨波磨。

2.8 控制涂油润滑

以减缓曲线外轨侧磨为目的的轮缘或轨侧涂油润滑,对减缓波磨是不利的。同时,过量涂油对减缓钢轨剥离也不利。因此,涂油润滑绝不是越勤越好。但目前对合理的涂油工艺还缺乏深入系统的研究。

3 结束语

从工务的角度出发,分析钢轨磨耗的原因并分析其与曲线半径、超高、轨距、轨底坡、钢轨材质、轨道刚度、线路养护不良等诸多因素的关系,采取先加强曲线线路设备,控制曲线线型线位,合理布设曲线超高、轨底坡,加强钢轨打磨整修和改善轮轨润滑条件等措施,是目前最为合理可行的措施,从对延长钢轨的使用寿命会起到十分重要作用。

参考文献

[1]姚玉侠.铁路曲线钢轨侧面磨耗原因及减缓措施[J].铁道运营技术,2006(4),P24~27.

[2]魏家沛,李国芳.曲线几何参数对车辆轮轨磨耗的影响[J].机械工程与自动化,2013(4),P33-36.

浅谈钢轨打磨技术及配合施工

浅谈钢轨打磨技术与配合施工 卫浩波 钢轨打磨主要分为预防性打磨和修理性打磨。修理性打磨的特点是打磨速度低,反复进行,基本去除钢轨表面伤损或波磨,不能去除深度裂纹,主要是针对状态较差钢轨的打磨方式,目的是消除钢轨顶面严重的波磨及曲线下股钢轨飞边,尽可能恢复钢轨标准断面,延长钢轨使用寿命,打磨遍数一般为5-10遍。预防性打磨则是一次快速打磨,完全去除包含微裂纹的薄层,同时,形成或保持理想的轮廓,主要是针对状态较好钢轨的打磨方式,目的是消除钢轨顶面不平顺,改善轮轨关系,提高轨面平顺性,延长钢轨使用寿命,打磨遍数一般为3-4遍。 一、我国既有线钢轨现状分析 我国铁路轨底坡明显偏小(1:40),新钢轨铺设上道与车轮未磨合时,直线钢轨车轮走形光带在距离轨距侧10~30mm范围内(轨面R80起点至R300约5mm),曲线钢轨上股光带则更趋近轨距角,当钢轨较软、列车轮重较大时,随着车轮的不断滚动碾压钢轨轨面被磨损,光带逐渐变宽至整个轨面,轮轨通过自然磨损而磨合,逐渐形成共形接触,见图1

图1 钢轨磨合后的轨面状态 而当钢轨较硬、轮重较小,又未能及时进行大机打磨时,轮轨接触长期在轨距侧,会导致在该部位形成滚动接触疲劳伤损(RCF),容易在轨距角部们产生裂纹或剥离掉块,见图2~图3所示。 图2 既有线钢轨在轨距角部位产生剥离掉块 图3 既有线钢轨轨面裂纹(PD3)钢轨 综上所述,按照效益最大化原则,应该及时的进行预防性打磨,使钢轨形成适合轮轨接触的轨头形面,去除钢轨表面脱碳层和施工造成的轨面伤损,车轮走行光带居中,提高轨道的平顺性。 二、钢轨打磨方式的对比 秦沈线新轨打磨程序:①号打磨模式:角度排列从45°~33°重叠分配24个砂轮,主要目的是增加切削量打磨车轮与钢轨内侧作用边的接触部位。②号打磨模式:角度排列从44°~22°均匀分配24个砂轮,主要目的是打磨钢轨内侧作用边,并且比对①号打磨模式扩大角度和

关于钢轨打磨技术的探讨

关于钢轨打磨技术的探讨 摘要:本文是通过京九线集中修配合钢轨打磨车施工的实际情况,进行总结。针对钢轨存在的病害,结合钢轨打磨车的工作性能,在钢轨打磨的角度、轮轨接触位置等进行详细介绍,并制定可行的打磨模式,有效控制钢轨伤损发展。 关键词:钢轨病害;打磨;控制 1 引言 钢轨是轨道的主要组成部件,钢轨的作用在于引导机车车辆的车轮前进,直接承受来自车轮和其他方面的各种力,且传递给轨下基础,并为车轮的滚动提供连续平顺和阻力最小的表面,因此,钢轨在铁路运输中扮演着重要的角色并直接关系到运输安全。钢轨的使用寿命主要由磨耗和滚动接触疲劳决定,要延长钢轨的使用寿命,就要在养护维修上下功夫,打磨是钢轨维修中的重要手段之一,因此,确定合理的打磨周期、模式、方法是我们日常工作应该长期摸索、总结的。 2 钢轨表面伤损形式以及危害 机车车辆和线路的相互作用方式是铁路轮轨接触式运输的基本方式。钢轨是承重的主要载体,由于承受多种载荷的作用,致使钢轨下不可避免的产生各种损伤。钢轨伤损的种类很多,常见的主要有波形磨耗、垂磨、侧磨、肥边和钢轨接触疲劳损伤(鱼鳞纹)严重时产生剥离掉块。钢轨的这些

病害就造成了轮轨接触关系的不良,不仅影响列车运行的平稳性,同时还会大幅增加线路养护维修工作量和轨件非正常磨损等问题,造成恶性循环,甚至危及行车安全。 3 钢轨打磨的作用以及方式 钢轨打磨是实现最佳轮轨相互作用的关键,钢轨打磨技术可有效治理和控制钢轨的波磨、表面裂纹、剥离掉块等滚动接触疲劳伤损,改善轮轨接触状况,提高轨道的平顺性,延长钢轨的使用寿命。其主要作用有:控制钢轨接触表面形状,降低接触应力;将钢轨表面的微小裂纹和塑性变形层磨去,提高材料抗疲劳性能;防止由于疲劳而引起的断轨事故;消除波浪磨耗;控制钢轨形状,防止脱轨,减少事故;延长钢轨寿命。 钢轨打磨主要分为预防性打磨和修理性打磨。预防性打磨是一次快速打磨,主要是针对新更换或是状态较好的钢轨,其目的是去除包含微裂纹的脱碳层,同时,形成或保持较为理想的轮廓,消除钢轨顶面的原始不平顺,改善轮轨关系,提高轨面平顺性,延长钢轨使用寿命,96头钢轨打磨车作业,打磨遍数一般为1-2遍,打磨作业速度应控制在13km/h-15km/h。钢轨打磨主要分为预防性打磨和修理性打磨。预防性打磨是一次快速打磨,主要是针对新更换或是状态较好的钢轨,其目的是去除包含微裂纹的脱碳层,同时,形成或保持较为理想的轮廓,消除钢轨顶面的原始不平顺,

小半径曲线钢轨侧磨

浅析小半径曲线钢轨侧磨 原因分析及防治 哈西站工程指挥部李荣峰 1 引言 曲线是轨道三大薄弱环节之一,特别是山区铁路,曲线半径小、坡道大。近年来随着列车运量的增大、速度的提高,小半径曲线外股钢轨侧面磨耗加快。为了适应铁路运输发展的要求,延长曲线更换磨耗钢轨的周期,减少养护维修的工作量,降低运营成本,分析及防治小半径曲线外股钢轨侧面磨耗,已成为线路维修工作中急需解决的重要课题之一。 2 小半径曲线钢轨侧磨的规律 2.1 曲线钢轨侧磨速度与钢轨累计通过总重成正比。从小半径曲线钢轨定点观测调查数据看,钢轨累计通过总重在每千万吨时,钢轨侧磨值约为2.41mm。 2.2 曲线外股钢轨侧磨呈不均匀分布。小腰最大,大腰次之,接头最小。在同一根钢轨上,小腰位置侧磨值接近重伤标准(19mm),而接头或大腰处则连轻伤标准(14mm)都未达到,甚至磨耗值仅为3-5mm。 2.3 缓和曲线范围内磨耗值大,圆曲线范围内磨耗值小。 2.4 曲线方向圆顺磨耗值小,存在方向不良、钢轨硬弯、接头支咀、错牙等情况时,磨耗值大。 3 小半径曲线钢轨发生侧磨的主要原因

曲线钢轨发生磨耗的原因非常复杂。轮轨关系、钢轨的耐磨性能、轨道结构及机车车辆在曲线上的运行条件、养护维修方法等都与外轨磨耗有着密切的关系。笔者经过对有关方面资料的调查和现场实际摸索,归纳钢轨发生侧磨的主要原因有: 3.1 列车运量和轴重的增大、速度的提高是钢轨加剧磨耗的不要原因。 3.2 轨距超限和轨距变化率超过规定值维修不及时,加剧了钢轨侧面磨耗。 3.3 曲线超高设置不当。设置曲线超高时忽略了客货列车的比重,所设置超高没能尽量适应货车速度。对滨绥线上行20处发生侧磨的曲线调查计算,发现85%以上是因为设置超高时忽略了货车比重,超高值设置过大导致曲线侧磨加速。 3.4 钢轨涂油不及时或因油质问题导致涂油质量不好。因油脂厂家未能充分考虑东北地区冬季寒冷的实际情况,冬季油脂较干,需用一定的变压器油稀释,使油脂质量降低,涂油效果不好。 3.5 其它如线路方向不圆顺、钢轨硬弯、接头支咀等,导致机车车辆蛇行运动,轮轨间作用力增大等都是造成钢轨磨耗的原因。 4 小半径曲线钢轨侧面磨耗的防治

城市轨道交通钢轨打磨研究

城市轨道交通钢轨打磨研究 摘要:在我国快速发展的过程中。近年来,我国各大城市积极推进城市轨道交 通建设,在为市民提供快捷优质出行服务的同时,各城市的铁路钢轨也都承受着 超高负荷。钢轨是铁路轨道的主要组成部件,它引导机车车辆的车轮前进,为车 轮提供连续、平顺和阻力最小的滚动表面,且承受车轮的巨大压力。车轮和钢轨 长期的滚动接触,会对钢轨的踏面造成损害。钢轨表面会产生波磨和异常损伤等,使列车晃动并伴随有轮轨嚎叫声,不仅对列车平稳运行和乘客的舒适度造成影响,还会对周边环境产生噪声和振动。钢轨表面产生的鱼鳞损伤,如果不及时清除将 会渗透得越来越深直至进入轨头,严重时会出现断轨,最终导致严重事故,因此 需要对钢轨定期且及时的维护。 关键词:线路养护;钢轨波磨;鱼鳞纹钢;轨打磨涡;流探伤 引言 钢轨是铁路系统中重要的承力部件,随着我国铁路“高速”、“重载”战略的实施,轮轨间载荷也大幅增加,波磨、疲劳裂纹、剥落等钢轨损伤也日趋严重。这 些损伤会加剧列车运行时的振动与噪声,甚至对列车运行安全造成威胁,因此当 钢轨损伤达到一定限度时,或者在这些损伤出现之初,就需要对钢轨进行维护。 钢轨打磨是世界各国铁路工务部门最常用的线路维护技术之一,是对钢轨进行修 复最有效的措施。通过打磨作业可修复或减轻轨面损伤,预防接触疲劳等钢轨损 伤的产生,有效改善轮轨匹配关系,延长钢轨使用寿命,提高列车运行的安全性 与稳定性。当前,随着我国高速铁路的快速发展,钢轨打磨技术也逐渐成熟,我 国钢轨打磨技术已经从最开始借鉴国外打磨经验到目前形成自己的打磨模式,但 对钢轨打磨机理的理解,特别是钢轨材料去除行为以及打磨参数的选取策略方面 的研究还不够充分。在钢轨打磨过程中,钢轨与磨石的相互作用行为复杂,打磨 效率与打磨质量受多个因素的影响,且我国铁路分布范围广泛,钢轨服役环境复 杂多样,钢轨表面经常存在水、油等第三介质,这也会对钢轨打磨效果产生很大 影响。因此,现今钢轨打磨技术的关键在于加深对钢轨打磨机理的研究,不断优 化打磨参数,研发更加优良的打磨磨石,将钢轨打磨与其他钢轨维护技术相结合,进一步完善我国高速铁路钢轨打磨技术理论体系与作业标准。 1新建地铁钢轨打磨的必要性 由于施工失误的存在,对新建地铁线路进行必要的打磨是必需的。另外,实 际地铁轨道施工过程中,相互独立的枕木在铺垫的过程中,或多或少也会出现变形,引起制造公差;与此同时,实际施工过程中,由于轨底坡差异的存在,整个道 床的可控性差,导致难以控制轨底坡的精准性。而我国对地铁轨底坡误差有严格 的要求,范围限制于1/50~1/30s之间,对应的倾斜角的范围1°8'45″~1°54'33″。实践经验表明,通过合理的打磨技术,能够纠正施工误差,改善轨轮之间的相互 关系。值得注意的是,通过对新建地铁钢轨的打磨,能有效的减短新建地铁运行 的磨合期,保证新建地铁的高效率使用。有研究发现,地铁磨合运行期间,对地 铁轨轮的耗损非常的大,而过了磨合期,轨轮之间打磨光滑,吻合度提高,磨损 相对减少。 1.2长期运行地铁钢轨打磨的必要性 长期运行的地铁,由于内外环境因素,势必导致地铁钢轨的耗损、擦伤等意外,尤其是弯曲路段,钢轨两侧受力不一致,很容易导致地铁钢轨的破损。特别 是ATO模式运行的地铁,运行速度、车轴承重一致,反复运行后,轨道弹性变差,

钢轨打磨技术研究进展

45 1 2010 2 JOURNAL OF S OUT HW EST J I A OT ONG UN I V ERSI TY Vol .45 No .1 Feb .2010 :2009208203 : (50875221); 973 (2007CB714702); (2009BAG12A012B11) : (1956-), , , , , ,E 2mail:xsjin@home .s wjtu .edu .cn :025822724(2010)0120001211 DO I:10.3969/j .issn .025822724.2010.01.001 1 , 2 , 2 , 2 (1. , 610031;2. , 610031) : , . , . : ; ; . : ; ; ; ; ; :U216.424 :A St a te of Arts of Research on Ra il Gr i n d i n g J IN X uesong 1 , DU X ing 2 , G UO Jun 2 , CU I D abin 2 (1.Tracti on Power State Key Laborat ory,South west J iaot ong University,Chengdu 610031,China;2.School of M echanical Engineering,S outh west J iaot ong University,Chengdu 610031,China ) Abstract :A detailed intr oducti on t o the existing theories and techniques of rail grinding and their app licati on p ractices was p resented .The interacti ons bet w een rail grinding and rail r olling contact fatigue,rail wear,noise and rail lubricati on,as well as their models,were discussed .Based on the existing econom ic models f or rail grinding,a modified econom ic model was p r oposed,with the costs of dep reciati on of grinding equi pment incor porated . Suggesti ons about researches in the future are p resented:devel op ing a computer p r ogra m based on rail grinding p ractices t o op ti m ize rail grinding p r ofile,investigating an op ti m izati on model that integrates the indexes of vehicle 2track coup ling dyna m ics and grinding costs,op ti m izing rail grinding p r ocedures under different working conditi ons .Key words :rail grinding;contact fatigue;crack;wear;noise;econo m ic model , . , . , , . [1] , ,1989 [2] . , [3 6] , , [7] . : (1) , , , ;

浅谈小半径曲线钢轨侧磨的防治

浅谈小半径曲线钢轨侧磨的防治 作者:王秀丽王军龙 来源:《科技创新导报》2011年第15期 摘要:本文依托太焦线,针对小半径曲线段钢轨侧磨得原因进行研究,在此基础上提出了改善钢轨侧磨的措施,并对处理结果进行监测,结果表明,采用所述改善方法能够减缓钢轨的侧磨速度,减小维修量,可以较好地为类似工程施工提供参考。 关键词:钢轨侧磨小半径曲线侧磨原因侧磨防治 中图分类号:U213 文献标识码:A 文章编号:1674-098X(2011)05(c)-0059-01 随着我国铁路的发展,将会有越来越多的铁路进入山区,随之产生的是铁路线形出现大量的曲线,在有些地形较为复杂的地方还会出现小半径曲线,这样曲线超高设置难度加大,进一步加剧钢轨的不均匀侧磨,为减缓侧磨速度,延长钢轨与轮对的使用寿命,缓解施工与运输矛盾,采取一些综合整治小半径曲线的措施是必须的。 1 工程概况 太焦线是我局管内主要运煤通道,晋城—月山区间穿越太行山区,正线线路延长120km,曲线共计153条,延长46.47km,半径在450m以下的曲线100条,延长32.43km,最小曲线半径295m,钢轨磨耗严重。 2 小半径曲线侧磨形成的原因 (1)列车通过曲线时,钢轨对车轮的导向力,是导致曲线侧磨耗的主要原因。 (2)列车通过曲线,内外轮走行距离不相同,由于距离差而产生的车轮在外股钢轨上瞬时间的滑移运动也是产生外股钢轨侧面磨耗的主要原因。 可以看到,列车通过曲线需要改变行驶方向,那么钢轨必然作用于车轮一个导向力,而且半径愈小,产生的导向力也愈大,同时内外股的距离差也是半径愈小差愈大,这两方面均是客观存在的,也就是说曲线钢轨侧磨是不可避免的,而且半径愈小侧磨愈严重。 3 小半径曲线钢轨侧磨的整治措施 在日常工作中主要采取了以下几个方面综合措施,对于减缓小半径曲线钢轨侧磨效果显著。 3.1 改善曲线轮轨受力状态,减缓曲线侧面磨耗速率

打磨技术方案设计

津保铁路钢轨打磨技术案 一、目标廓形 (一)线路 1.津保铁路天津西津保场至霸州西(不含)上行k0+094~k72+164、下行k0+000~k72+164仅运行动车组,按照《高速铁路钢轨打磨管理办法》,应使用设计廓形为目标廓形。 2.津保铁路霸州西(含)至水(不含)上行k72+164~k137+082、下行k72+164~k136+670运行动车组及普速客车,按照《高速铁路钢轨打磨管理办法》,应使用60N为目标廓形。 3.霸京广高速联白洋淀至水东站上行k116+112~k125+744、下行北庄线路所至水东站k121+585~k125+705,应使用设计廓形为目标廓形。 (二)道岔 1.天津西津保场(18#道岔6组、12#道岔3组)、密云路线路所(18#道岔3组、12#道岔1组)、庄北线路所(42#道岔2组)、胜芳(18#道岔8组)、霸州南(18#道岔4组、42#道岔2组),应使用设计廓形为目标廓形。 2.霸州西(10组18#道岔)、白沟(18#道岔8组)、白洋淀(18#道岔9组、42#道岔1组)、北庄线路所(42#道

岔1组),应使用60E2为目标廓形。 直曲全打道岔:天津西津保场313#道岔(12#)、白洋淀4#道岔(42#)、北庄线路所线1道岔(42#)。 (三)温度调节器 津保铁路子牙河特大桥上下行k14+~k14+054,应使用设计廓形为目标廓形。温度调节器前后150m使用岔磨车进行打磨,温度调节器围打磨角度3°~+40°。 二、工作量调查 1.钢轨打磨前,应对钢轨状态进行全面调查,并保证线路状态良好。 ⑴线路、道岔几尺寸和轨下基础等应符合相关技术标准要求。打磨前,工务段应对线路、道岔结构进行全面检查,对线路结构病害、道岔降低值超限和几尺寸超过作业验收标准的地段应进行调整,保证线路、道岔状态良好。 ⑵工务段应提前对打磨地段进行调查,对影响打磨作业的工务设备应先采取措施进行处理,并通知其他相关设备管理单位拆除影响打磨作业的设备。 ⑶工务段应向工务机械段进行技术交底,提交相关技术资料、钢轨病害以及动态检测资料等。 ⑷工务机械段应预先进行打磨车打磨参数调整试验,工务段与工务机械段共同确认打磨廓形达到要求后可进行正式打磨。

5测量高速铁路曲线钢轨磨耗(无砟轨道)

铁道行业职业技能鉴定 铁路线路工高级工操作技能考核 准备通知单 试题名称:测量高速铁路曲线钢轨磨耗(无砟轨道) 考核时间:60 min 一、鉴定站准备 1.材料准备 记录用表格。 2.设备设施准备 曲线钢轨磨耗地段100 m线路。 3.工、量、刃、卡具准备 钢轨轮廓仪(台)。 4.考场准备 考试需要在天窗时间内进行,考场要有充足的照明。作业用头灯每人配备一个。 二、考生准备 考生自带劳动保护用品、笔。

铁路线路工高级工操作技能考核试卷 试题名称:测量高速铁路曲线钢轨磨耗(无砟轨道) 一、技术要求 1.能够正确组装仪器,并通过调试使仪器能够正常使用。 2.能够利用仪器检测钢轨的磨耗量。 3.根据检测结果判断钢轨伤损级别,并制定相应的处理方案。 4.作业完毕,整理仪器。 二、考核要求 曲线地段钢轨每10 m各测一处上下股垂磨、侧磨、45度磨耗、总磨耗。 三、考核时限 1.准备时间:0 min。 2.正式操作时间:60 min。 3.计时从考生得到允许作业的命令之时开始,到考生汇报作业完毕之时结束。 4.在规定时间内全部完成,不加分,也不扣分。每超时1 min,从总分扣2分,总超时5 min停止作业。 四、考核评分 考评人数:3人。 评分要点:1.组装仪器的方法正确。2.检测结果及轻重伤钢轨的标记准确。3.提出处理意见。 评分程序:1.作业过程。2.作业质量。 评分规则:1.各项配分扣完为止,不出现负分。2.考评员各自打分,取平均值为总分。 五、否定项 1.未认真执行上下道规定(如未清点工具、材料)。 2.作业中发生磕手碰脚等人身伤害事故。 3.作业完毕工料具发生遗失。

钢轨波浪型磨耗概述

钢轨波型磨耗概述 1.钢轨波形磨耗的产生机理 钢轨波浪型磨耗(简为波磨)一般有三类:磨损性波磨、塑流性波磨和混合性波磨。轨头有明显的波浪型磨损痕迹,钢轨上呈显可见的波谷与波峰,但无明显磨损凹陷,属于磨损性波磨,也是最常见的一种波浪型磨耗。地铁中产生的主要就是这种磨损性波磨。 根据对波长特征的调查分析,认为磨损性波磨是由于轮对在通过曲线时,轮对扭曲共振导致交替的纵向力,从而在轮对与钢轨间发生纵向滑动而产生波磨。这不仅与轮对的重力角刚度特性有关,而且与曲线曲率及轮轨黏着状态有直接关系,主要是轮轨之间的粘滑振动导致内轨顶面的波磨。当车辆通过曲线半径较小的线路时,由于轮对冲角的改变,轮轨的纵向剪切力超过轮轨黏着极限,轮轨间发生纵向滑动,滑动处形成波谷;滑动后释放了积累的能量,使轮轨又处于黏着状态,轮轨磨损减轻,该处形成波峰。这种粘滑振动不断重复,形成了钢轨表面的波磨。 2.粘滑振动与钢轨波形磨耗的关系 若所有的车辆具有极好的一致性,且运行速度一致,则容易在所经过的曲线上,特别是在圆曲线上形成有规律的振动,这种振动往往使右侧轮子与内轨间发生大的滑动,当轮轨接触面的切向力足以破坏轨道顶面的金属材料时,或使其发生低周疲劳,则波磨就会产生。因此,在一定外界条件共同作用下的粘滑振动是地铁曲线波形磨耗发生的重要原因。任一个外界条件的消失,都能够使波磨消失。 3.波磨容易出现的位置 大量计算分析表明,该粘滑振动的发生规律与现场出现的波磨发生规律相吻合,即这种振动容易出现在曲线内轨的圆曲线上,容易出现在曲线半径较小的区段,容易出现在轮轨粘着条件较好的地下洞内的轨道上,容易出现在轨道刚度较大的整体道床上。 4.钢轨波型磨耗的影响因素(影响粘滑振动的因素) (1)影响粘滑振动的首要因素是蠕滑率和蠕滑力之间的负梯度特性,对粘滑振动形成与否有着决定性作用。 (2)蠕滑力饱和后负斜率不同,可能产生轮对的粘滑振动的频率也不同。蠕滑力饱和后如无下降,无论其他条件如何,均不会发生粘滑振动。 (3)轨道的横向刚度和轮对的扭转和弯曲刚度,轨道的刚度低到一定程度就会使耦合振动消失。调查也发现采用木枕的道岔上没有这种波磨,而整体道床的道岔上有严重的波磨。同样轮对扭转和弯曲刚度的减小也会使耦合振动消失。

★小半径曲线钢轨磨耗分析及整治措施

小半径曲线钢轨磨耗分析及整治措施 小半径曲线的换轨周期,主要由上股钢轨的侧面磨耗和波形磨耗来控制。我国铁路行业小半径曲线上的钢轨有98%是由于侧面磨耗超限而报废的。对于小半径曲线上的钢轨而言,轮轨的磨耗和损伤十分严重,具体表现在曲线上股钢轨侧磨加剧,导致几何形状发生改变,有效截面减小,影响运营安全。因此,必须在钢轨磨损达到一定限度时就更换钢轨,以保证列车的运营安全。严重的钢轨侧面磨耗减少了钢轨的强度,加剧了钢轨的伤损,缩短了钢轨的使用寿命,不仅浪费大量的资金,而且还干扰运营任务的完成。因此,延长钢轨使用寿命对解决轨道交通因钢轨磨耗而出现报废的问题具有积极意义。 1 曲线钢轨磨损机理 钢轨磨耗主要有垂直磨耗、侧面磨耗、鞍型磨耗和波形磨耗(简称波磨)等。其中影响最大的是钢轨的侧面磨耗和波形磨耗,下面就这两种磨耗机理进行简单阐述。 1.1 波磨机理 波形磨耗是指钢轨使用后钢轨顶面出现的波形不均匀磨耗。按其波长分为短波(波纹形磨耗)和长波(波浪形磨耗)两种。据研究,钢轨波形磨损形成的充要条件是轮轨接触点上的法向力和切向力联合作用结果,使旧钢轨轨头内产生2~7mm深的塑性区,并且在纵向负蠕滑率作用下,塑性区向上向前产生碾压变形基础单波,同时踏面经过不均匀磨耗和压宽,由单波发展成多波,从而导致波形磨损的发生和发展。在轮轨系统中,影响钢轨波磨形成的因素很多,大致分为两类:一是轮对的扭转粘滑振动的强度,它决定了是否会形成钢轨波磨;二是在车辆运行条件下,钢轨波磨是否会进一步发展,是加速还是减缓波磨的发展,则取决于轨道弹性和阻尼、机车车辆及其走形部构造特性、曲线半径、轮轨间粘着系数及轮轨蠕滑力特性曲线、轨道不平顺等因素(见图1)。 图1波磨示意图

钢轨打磨车技术需求书

天津市地下铁道运营有限公司钢轨打磨车技术需求书 车辆中心工务室

钢轨打磨车技术需求书 一地铁钢轨打磨需求 1、钢轨打磨车广泛运用铁路、地铁的目的 钢轨是一切铁路设备的载体,其质量的好坏直接关系到运行设备的运行安全和运行质量。由于轨道长期承受运行车辆所产生的交变轮间作用力,很容易发生压溃、裂纹、磨耗、剥落等受损情况。这些问题如果不及时消除,会导致缺损进一步发展,导致掉块、断轨的发生,影响行车的安全。为了进一步适应地铁提速的要求,改善轮轨关系,延缓更换轨道周期,全面提高乘客的舒适度,早期的处理措施就是及时更换钢轨。大量的钢轨“提前退役”会造成严重的能源、资源浪费。钢轨的使用寿命主要是由滚动接触疲劳和磨耗所决定的,一方面需要保证钢轨的质量,一方面还要进行合理打磨。 钢轨打磨车可以修正轨道波浪状磨损、轮轨擦伤,进行线路钢轨的预防性维修,此外还可作轨面检查,并依据轨道原始形状对磨损的钢轨进行修复使其恢复到轮轨接触合理的状态。 2、工作条件 (1)钢轨整修作业于运营结束后进行,要求设备的作业效率高,大于连续六小时作业时间。 (2)设备应满足天津地区夏季高温、冬季寒冷气候条件使用要求,可适应地铁隧道内及地面的作业环境。 海波高度:≤500m,环境温度:-15℃~40℃,工作相对湿度:

85%。 3、钢轨类型及材质 正线:60kg/m,高碳微矾U75V普通热轧钢轨和U71Mn钢轨车辆段:50 kg/mU71Mn钢轨(车场线),60kg/mU75V热轧钢轨(试车线、出入段线) (1)钢轨轨底坡1/40 (2)正线采用无缝钢轨,车辆段采用25m钢轨 (3)最小平面曲线半径300m(正线),150m(车辆段线)(4)道岔号,No.9(正线)、No.7(车辆段线) (5)轨道最大超高120mm (6)接触轨供电方式、DC750V(接触网供电方式及电压,架空接触网、DC1500V) (7)最大坡度40‰ (8)最大轴重≤16t (9)最小通过曲线半径≤100m (10)线路钢轨内侧有防脱护轨(钢轨作用边离防脱护轨的距离为65mm,比钢轨面高10mm)。 二目前国内国际钢轨打磨车产品现状以及主要性能参数分析 1、美国HTT公司RGH系列产品,市场占有率较高 RGH钢轨打磨车动力采用John Deere 371KW电喷柴油机,Jupiter计算机控制,CAN总线,简化电气系统,液压驱动磨头。深圳地铁一期RGH10C型钢轨打磨车自2008年以来,3年间作业59

轮对异常磨耗原因分析及处理措施-宁兴良

SS4型机车轮对异常磨耗原因分析 及处理措施 宁兴良 朔黄铁路机辆分公司河北肃宁县 062350 摘要:本文总结了朔黄线上运用的SS4型电力机车轮对异常磨耗对机车所造成的各种不利影响,分析了其形成的原因,并根据现有技术条件采取了相应措施的解决措施,使机车轮对的技术管理做到了有序可控,提高了轮对使用寿命,确保了机车的正常运用。 关键词:轮对磨耗异常处理措施 0引言 轮对作为机车走行部关键部件之一,它不仅承受着巨大的静载荷和动载荷,还刚性的承受来自钢轨接头、道岔和线路不平顺等垂直和水平方向的作用力,从而实现机车牵引力的传递及导向。因此,轮对是一个受力复杂、负重很大、工作条件恶劣的重要部件,其外形尺寸是否符合技术要求、材质是否有缺陷,对保证运用安全是非常重要的。一旦轮对状态不良,轻者可能引起机车振动,重者可能造成机车脱轨、列车颠覆等行车事故。 1.问题的提出 朔黄铁路通车后,从2003年开始,部分SS4机车陆续出现了机车震动大、走行部异音、一系圆簧断裂、齿轮箱和抱轴箱裂损等一系列问题,影响了机车的正常运用和运输生产。 我们通过观察车轮表面状况以及对车轮尺寸报表进行分析,并与机车运用情况相结合,发现在机车轮对镟修走行18万公里后,机车车轮外形出现异常磨耗,主要有表现在以下几个方面。 1.1轮对踏面非正常磨耗比较严重,轮对踏面磨耗不均匀。轮对的不圆度最严重的达到了3mm以上以及个别轮对的箍厚差大于2mm(轮径差大于4mm)。 1.2轮缘偏磨现象较为严重,个别轮对的左右轮缘厚度差达到了4mm,一侧的轮缘磨耗量较小甚至在数据上反应不出来,而另一侧则磨耗严重。此时在轮对镟修时,需要较大的镟削量才能恢复踏面原形,造成了个别轮对的十万公里踏面磨耗量达到了3mm。踏面磨耗不是“磨”下去的,而是“镟”下去的。

曲线钢轨侧磨的原因及预防措施

曲线钢轨侧磨的原因及预防措施 我于2010年12月至2011年2月,对牡丹江工务段管辖滨绥线381km+900m-583km +000m 曲线共计215条,和83km的直线。进行了关于钢轨侧磨的调查。对曲线钢轨侧磨的有了新的认识,对曲线钢轨侧磨的影响因素进行了进一步的探索。对钢轨侧磨指标进行了系统分析。掌握了曲线钢轨侧磨的变化规律。制定了预防措施。 一、调研目的: 1、熟练掌握测量钢轨侧磨的方法。 2、通过直线与曲线的侧磨对比来分析同等条件下磨耗的比例。 3、对曲线侧磨提出综合整治或预防措施 二、调研方法: 1、对钢轨侧磨进行实地测量。 2、与技术员和工长进行实地测量,对数据进行认真分析。 3、把数据综合整理、对比。 4、查阅有关的钢轨台账。 三、调研内容及过程: (一)概述 我国地域辽阔,地形复杂,山区、丘陵地区占很大比例。特别是山区,曲线铁路占有很大的比例,而在山区大坡道铁路小半径曲线上,钢轨的侧向磨耗就更为严重。这些地段,小半径曲线的换轨周期,完全由上股钢轨的侧磨来控制。根据调查资料,我国小半径曲线上的钢轨有98%是由于侧面磨耗超限而报废的。严重的钢轨侧面磨耗削弱了钢轨的强度,加剧了钢轨的伤损,缩短了钢轨的使用寿命,不仅浪费大量的资金,而且还干扰运输任务的完成。因此减缓小半径曲线钢轨侧面磨耗的速率,从而延长钢轨使用寿命对于我国铁路具有重大的意义。 曲线是轨道结构强度中的薄弱环节。当机车、车辆进入曲线后,车体受机车牵引随惯性向前运行,轨道迫使机车、车辆转弯,这样势必形成车轮冲击轨道,造成轨道变形,轨道和车轮同时受到磨耗。当离心力和向心力得不到平衡而造成的内外轨偏载时,更加剧钢轨的磨耗。因此如何减缓曲线上的钢轨的磨耗,延长其使用寿命,降低维修成本,保证行车安全,成为工务工作的一项重要内容。 牡丹江工务段管辖滨绥线381km+900m-583km +000m,地处山区,线路基础大部分还是日、俄时期修建的,线路设计标准低,大多顺山铺设。曲线多、半径小、坡度大。形成线路条件、质量先天不足。该段线路共有曲线215条、延长132.65km,其中半径在650m以下的曲线有139条/80.82km,半径在350m以下的曲线有42条/12.53km,最小半径240m,最大坡度15‰。曲线上股钢轨的使用寿命一般为24~36月,按先用钢轨50kg/m钢轨计算成本投资每公里约60万元,仅小半径曲线每年需要更换钢轨12km,钢轨费用投入约660万元。 随着使用内燃以来、列车的运行速度、机车车辆轴重、行车密度都大大提高,使得轨道各部件的受力增加,曲线钢轨的侧磨成为一个比较突出的矛盾。据调查统计,宾绥线R ≤350m的曲线上,钢轨平均寿命为1~2年,最短的仅为7~8个月。我段管内的山区铁路,在半径R≤600m的曲线上,钢轨的平均寿命仅为2~3年。2007年又开行了重载货物列车。半径<600m的曲线外股钢轨侧磨加剧,这样不仅给养护维修带来许多工作,而且大大增加

城市轨道交通钢轨波纹磨耗成因的探讨

城市轨道交通钢轨波纹磨耗成因的探讨Discussion on the Cause of Rail Corrugation in Urban Rail Transit 1 引言 随着我国城市轨道交通建设的飞速发展,城市轨道交通已逐步成为城市中振动及噪声的主要污染源。由于轨道结构是振动传播的重要环节,因此环境影响评价中对于振动及噪声超标的敏感点,一般均要求在轨道结构上采取减振措施,以谋求线路开通后周边建筑物的振动及噪声满足要求。 在各类减振轨道结构中,扣件减振是最经济、最方便施工、最便于养护维修及更换的减振措施,国内外城市轨道交通中均有采用。然而在对我国新开通的城市轨道交通线路调研中,发现采用减振扣件的一些区段出现了类似高铁线路上的钢轨波纹磨耗问题(以下称为钢轨异常波磨问题),波长为60mm 左右,并伴随有轮轨啸叫声。城市轨道交通中因减振带来的异常波磨问题已逐渐成为当前轨道结构领域亟待解决的问题及研究热点。 2 钢轨波纹磨耗的定性分析 为全面掌握北京地铁钢轨异常波磨的情况及分布规律,课题组对钢轨波磨情况进行了系统、深入调研,并对发生波磨地段的长度、波磨特征、里程、车辆速度、线路条件、减振扣件类型等进行了详细统计,整理了详实的基础数据资料,并在此基础上对波磨的分布规律进行深入的总结分析[1]。 2.1 异常波磨的主要特点及定性分析 纵观国内外钢轨波磨成因的理论,大体分为动力类成因和非动力类成因两大类,动力类成因指钢轨波磨是轮轨系统动力作用的结果,非动力类成因主要从钢轨材质、冶炼、加工工艺等方面解释波磨的成因。 对于五号线钢轨异常波磨的成因,主要就以下几方面的特点进行定性分析,见表1。 此外,对于扣件刚度对波磨的影响问题,从既有文献来看,一般认为降低轨道刚度对于减缓波磨有利[5,6],但地铁工程的实践表明,扣件刚度的降低虽增加了轨道弹性,但反而更易引起钢轨波磨。扣件刚度对波磨的影响,有以下几方面。 一方面,扣件刚度的降低使得轨道变形加大,轮轨接触面积随着增大,因此轮轨接触应力有所降低,有利于减缓钢轨波磨; 另一方面,扣件刚度的降低将导致在动荷载作用下钢轨更易发生弯曲振动,故易导致钢轨异常波磨产生; 再者,为降低扣件刚度,需对垫板的材料配方、几何参数等进行设计,刚度调整的同时将使得扣件系统的阻尼特性发生改变。相关测试结果表明,扣件刚度的降低可能导致其高频下的阻尼值降低较多,导致轮轨接触界面振动加剧,加速异常波磨的产生[1]。这可能是目前已开通线路上各种减振扣件地段的波磨程度差异较大的主要原因之一。 因此,扣件刚度调整是否会导致波磨的产生是各种因素综合作用的结果,不能仅从扣件刚度的大小直接判定是否易导致钢轨异常波磨产生。 3 动力仿真分析 在以上定性分析的基础上,通过建立车辆/轨道系统动力仿真模型,从轮轨垂向振动理论的角度,通过对轮轨系统的随机响应振动特性进行动力仿真计算,以对钢轨异常波磨的成因进行理论分析。 目前在诸多钢轨波磨成因理论中,轮轨垂向振动理论认为轮轨接触频率与钢轨波磨有直接关系[5]。因此动力仿真分析主要通过计算能反映轮轨相互作用状况的轮对加速度频谱特性来评估轮轨接触作用与钢轨波磨形成的相互关系问题。影响因素主要考虑扣件刚度、扣件阻尼及车辆速度。 仿真分析中车辆采用B型车,轨道不平顺采用随机不平顺激扰,钢轨为60kg/m钢轨。车辆速度除有特别说明之外均为70km/h。 3.1.1扣件刚度的影响 摘要本文在对北京地铁部分线路钢轨波纹磨耗问题进行系统调研及定性分析的基础上,通过建立车轨动力仿真模型,对扣件刚度、阻尼及车速与钢轨波纹磨耗的关系进行了动力仿真分析,并提出相关建议,为既有线整治及新线预防提供参考。 关键词城市轨道交通钢轨波纹磨耗成因分析动力学 Abstract: This paper has made a dynamic simulation analysis based on the corrugation problem in some metro lines to make a system research and analysis, through establishing vehicle rail dynamic simulation model to analysis faster stiffness, damping and relation between train velocity and rail corrugation to propose advices for the references of the existing metro line and new construction line. Keywords: Urban Rail Transit; Rail Corrugation; Cause Analysis; Dynamics

钢轨允许磨耗限度

中华人民共和国铁道部部标准 TB 2097-89 钢轨允许磨耗限度 1 主题内容与适用范围 本标准规定了钢轨的垂直磨耗、侧面磨耗及波形磨耗的允许限度。 本标准适用于38、43、50及60kg/m国产与非国产钢轨。 2 总则 2.1 钢轨磨耗超限是钢轨伤损的一种类型。钢轨磨耗量由总磨耗、垂直磨耗与侧面磨耗表征。总磨耗表示由于磨耗而使钢轨头部断面积减少的程度。 总磨耗=垂直磨耗+侧面磨耗。 2.2 本标准是划分因磨耗而造成的钢轨轻、重伤的依据。磨耗达到重伤限度的钢轨应立即更换,不得再使用于本等级线路上;磨耗轻伤钢轨应注意观察其磨耗的发展趋势及其他类型伤损的相伴发生。 钢轨产生波形磨耗时应及时打磨,波形磨耗钢轨达到允许限值时应立即更换。 2.3 根据下列原则制定钢轨允许磨耗限度; 2.3.1 钢轨磨耗达到允许限度时尚能保证钢轨具有足够的强度与抗弯性能。 2.3.2 钢轨达到允许磨耗限度时机车车辆轮缘在最不利情况下不致接触到接头夹板。 2.3.3 波磨钢轨的波谷深度达到允许限度时不致引起轨道部件的损伤及养护工作量的急剧增加。 3 钢轨允许磨耗限度 3.1 各类钢轨磨耗量达到表1所列数值之一者即为轻伤钢轨。 中华人民共和国铁道部1989-09-01批准 1990-05-01实施

1 TB 2097-89 3.2各类钢轨磨耗量达到表2所列数值之一者即为重伤钢轨。 3.3 波形磨耗分为波纹磨耗与波浪磨耗两种。根据波形磨耗的类型,波谷深度的允许限度值见表3。 注:波纹磨耗波长为30~80mm,波长大于80mm时为波浪磨耗。 4 钢轨磨耗的测量 4.1 钢轨磨耗量测以标准断面为基准。 4.2 垂直磨耗在钢轨垂直中心线处量测。侧面磨耗在钢轨轨顶下14mm处量测,见图1。波形磨耗量测波谷深度。

钢轨不均匀侧磨的原因及预防措施

钢轨不均匀侧磨的原因及预防措施摘要 关键词 前言 正文 1.概述 2.曲线钢轨侧磨的形成原因 2.1.钢轨磨耗现状 2.1.1产生侧磨的主要因素 2.1.2产生垂磨的主要因素 2.1.3产生波磨的主要因素 2.2 侧磨产生的原因 2.2.1造成侧磨的外因 2.2.2 造成侧磨的内因 2.2.3造成侧磨的偶发因素 2.3半径 2.3.1半径≤600米曲线磨耗特征 2.3.2半径≥600米曲线磨耗特征 2.4 轨距 2.4.1轨距变化率与钢轨磨耗关系 2.4.2轨道框架与钢轨磨耗的关系

2.5 超高 2.5.1未被平衡过超高与磨耗的关系 2.5.2未被平衡欠超高与磨耗的关系 2.6 轨底坡 2.6.1设置轨底坡情况下的磨耗 2.6.2未设置轨底坡情况下的磨耗 2.7 曲线圆顺度与磨耗的关系 2.8 曲线维修养护要素 3. 曲线钢轨侧磨减缓措施 3.1 保持轨道几何尺寸的分布均匀 3.2 加强轨道的养护维修的途径 3.2.1 提高曲线圆顺度 3.2.2.及时矫直钢轨硬弯,针对接头支嘴问题,尽快尽早的整治,避免形成线路的不可逆变形 3.2.3高标准养护曲线 3.2.4加强钢轨涂油工作 3.2.5采用全长淬火耐磨轨。硬度高、耐磨性强。 3.2.6 增强轨道弹性 3.2.7 提高科学管理水平 4.研究结论 4.1.结论概述 4.2.总结了曲线上股钢轨侧面磨耗的特征和发生地点、发展规律

4.3.加大曲线半径有利于减缓钢轨的侧磨 4.4.提高工区对于曲线的养护维修水平 4.5.在曲线地段铺用强度较高耐磨轨 4.6.加强曲线涂油是减轻钢轨侧磨的关键措施之一致谢 参考文献 附录

打磨技术方案

津保铁路钢轨打磨技术方案 一、目标廓形 (一)线路 1.津保铁路天津西津保场至霸州西(不含)上行k0+094~k72+164、下行k0+000~k72+164仅运行动车组,按照《高速铁路钢轨打磨管理办法》,应使用设计廓形为目标廓形。 2.津保铁路霸州西(含)至徐水(不含)上行k72+164~k137+082、下行k72+164~k136+670运行动车组及普速客车,按照《高速铁路钢轨打磨管理办法》,应使用60N为目标廓形。 3.霸徐京广高速联白洋淀至徐水东站上行k116+112~k125+744、下行北张庄线路所至徐水东站k121+585~k125+705,应使用设计廓形为目标廓形。 (二)道岔 1.天津西津保场(18#道岔6组、12#道岔3组)、密云路线路所(18#道岔3组、12#道岔1组)、曹庄北线路所(42#道岔2组)、胜芳(18#道岔8组)、霸州南(18#道岔4组、42#道岔2组),应使用设计廓形为目标廓形。 2.霸州西(10组18#道岔)、白沟(18#道岔8组)、白洋淀(18#道岔9组、42#道岔1组)、北张庄线路所(42#道岔1组),应使用60E2为目标廓形。 直曲全打道岔:天津西津保场313#道岔(12#)、白洋淀4#道岔(42#)、北张庄线路所线1道岔(42#)。 (三)温度调节器

津保铁路子牙河特大桥上下行k14+042~k14+054,应使用设计廓形为目标廓形。温度调节器前后150m使用岔磨车进行打磨,温度调节器范围打磨角度3°~+40°。 二、工作量调查 1.钢轨打磨前,应对钢轨状态进行全面调查,并保证线路状态良好。 ⑴线路、道岔几何尺寸和轨下基础等应符合相关技术标准要求。打磨前,工务段应对线路、道岔结构进行全面检查,对线路结构病害、道岔降低值超限和几何尺寸超过作业验收标准的地段应进行调整,保证线路、道岔状态良好。 ⑵工务段应提前对打磨地段进行调查,对影响打磨作业的工务设备应先采取措施进行处理,并通知其他相关设备管理单位拆除影响打磨作业的设备。 ⑶工务段应向工务机械段进行技术交底,提交相关技术资料、钢轨病害以及动态检测资料等。 ⑷工务机械段应预先进行打磨车打磨参数调整试验,工务段与工务机械段共同确认打磨廓形达到要求后方可进行正式打磨。 ⑸道岔打磨前,工务段应组织电务部门对道岔转辙及辙叉部分滑床台进行覆盖,并清除作业地段线路两侧的可燃物,落实防火措施。 2.线路钢轨打磨工作量调查及预处理 ⑴钢轨廓形及光带 打磨前应调查待打磨地段钢轨廓形及光带状况,每3km采用钢轨轮廓测量仪测试钢轨廓形。廓形测试数据由工务机械段按照目标廓形进行对比

高速铁路钢轨磨耗的分析研究

龙源期刊网 https://www.360docs.net/doc/f21593427.html, 高速铁路钢轨磨耗的分析研究 作者:于家敏 来源:《科学与财富》2020年第02期 摘要:高速铁路列车轴重轻,速度快,钢轨的磨耗有其自身的特点,本文作者通过对全国主要著名的几条高速铁路钢轨磨耗情况的长期跟踪观测,重点分析与总结了高速铁路钢轨的磨耗特点。通过结果表明:高速铁路直线段钢轨的垂直磨耗量与磨耗速度相对比较小,而小半径曲线地段钢轨的侧面磨耗严重,已影响到钢轨的使用寿命。建议在小半径曲线地段使用在线热处理钢轨,同时进行钢轨润滑,以减少钢轨磨耗。 关键词:高速铁路;钢轨;垂直磨耗;侧面磨耗 引言钢轨磨耗是影响钢轨使用寿命的重要因素,按照磨耗的部位的不同,钢轨磨耗分为垂直磨耗与侧面磨耗,其中垂直磨耗在钢轨轨顶面宽三分之一处,距标准工作边测量,侧面磨耗在钢轨踏面,按标准断面下的16毫米处测量。目前,普通速度的钢轨的垂直磨耗,侧面磨耗重伤标准分别是11毫米与19毫米,高速铁路钢轨的垂直磨耗,侧面磨耗重伤标准分别是10毫米和12毫米。直线段钢轨的磨耗以垂直磨耗为主,而曲线段钢轨上股以侧面磨耗为主,下股以垂直磨耗为主。 高速铁路列车轴重轻,速度快,钢轨的磨耗有其自身的特征。我国高速铁路钢轨磨耗虽然己经开展了一些研究。但由于我国高速铁路尚处于运营初期,高速铁路钢轨的磨耗特征及规律还需要持续的跟踪研究。本文通过对我国高速铁路钢轨磨耗情况的长期跟踪测量,分析总结了高速铁路钢轨磨耗的一些规律及特点。研究结果表明:尖轨和基本轨磨耗发展呈现逐渐收敛的趋势;基本轨垂向磨耗在轮载过渡区前后较大,在轮载过渡区相对较小,直尖轨垂向磨耗比曲尖轨更严重;曲尖轨侧向磨耗明显大于直尖轨,在轮载过渡区前侧向磨耗较小,轮载过渡区侧向磨耗明显,基本轨侧向磨耗主要集中在尖轨前端及岔前区域,直基本轨侧向磨耗比曲基本轨更严重。试验结果可为磨耗仿真研究提供试验验证,同时可为高速道岔的养护维修提供科学指导。 一.磨耗的跟踪观测情况 从2008年我国第一条高速铁路开通以来,开始对多条高速铁路钢轨的磨耗情况进行了长期的跟踪观测,测点布置及观测时间。利用轨头廊形测量仪对钢轨测点测量了轨头外形,然后利用软件计算出钢轨的垂直磨耗和侧向磨耗。 二.磨耗的分析与结果 1.直线段钢轨外形与磨耗情况

相关文档
最新文档