植物组织培养的培养基

植物组织培养的培养基
植物组织培养的培养基

★植物组织培养培养基的主要成分

1.无机营养物:无机营养物主要由大量元素和微量元素两部分组成,大量元素主要包括氮、磷、钾、钙、镁和硫六种,氮源通常有硝态氮或铵态氮,但在培养基中用硝态氮的较多,也有将硝态氮和铵态氮混合使用的。磷和硫则常用磷酸盐和硫酸盐来提供。钾是培养基中主要的阳离子,在近代的培养基中,其数量有逐渐提高的趋势。而钙、钠、镁的需要则较少。培养基所需的钠和氯化物,由钙盐、磷酸盐或微量营养物提供。微量元素包括碘、锰、锌、钼、铜、钴和铁,这些元素有的对生命活动的某个过程十分有用,有的对蛋白质或酶的生物活性十分重要,有的是参与某些生物过程的调节。培养基中的铁离子,大多以螯合铁的形式存在,即FeSO4与Na2—EDTA(螯合剂)的混合。

2.碳源:培养的植物组织或细胞,它们的光合作用较弱。因此,需要在培养基中附加一些碳水化合物以供需要。培养基中的碳水化合物通常是蔗糖或D-葡萄糖,用量通常为2%-4%,高者可达5%,亦可用市售的白糖所代替,但一般应增加用量,而且最好用比较固定的厂家生产的产品,以保证实验的稳定性。

3.有机营养成分:包括人工合成或天然的有机附加物(包括维生素,氨基酸及其它有机物质等)。最常用的有酪朊水解物(水解乳蛋白、水解酪蛋白CH)、酵母提取物、玉米胚乳、麦芽浸出物、西红柿汁、椰子汁(CM)及各种氨基酸如甘氨酸(氨基乙酸)等。维生素:在培养基中加入维生素,常有利于外植体的发育。培养基中的维生素属于B族维生素,其中效果最佳的有硫氨素(维生素B1)、盐酸吡哆醇(维生素B6)和维生素H(生物素)、泛酸钙等、肌醇(环己六醇)、烟酸。在部分培养基中还添加维生素BX(氨酰苯甲酸)、维生素C(抗坏血酸)、维生素E(生育酚)、、维生素B12(氰钴胺酸)、维生素BC(叶酸)、维生素B2(核黄素)和氯化胆碱等维生素。这些可能对某些植物或植物的某些代谢过程有重要作用,如肌醇主要以磷酸肌醇和磷脂酰肌醇的形式参与由Ca介导的信号转导。

4.生长调节物质(常称为激素)常用的生长调节物质大致包括以下三类:

(1)植物生长素类。主要作用是:诱导愈伤组织的产生,促进细胞脱分化;促进细胞的伸长;促进生根。如吲哚乙酸(IAA)、萘乙酸(NAA)、IBA(吲哚丁酸)、NOA(萘氧乙酸),P-CPA(对氯苯氧乙酸)、2,4-D(2,4-二氯苯氧乙酸),2,4,5-T(2,4,5-三氯苯氧乙酸)和ABT生根粉等。生长素的使用浓度通常为0.1~10mg/L。

(2)细胞分裂素。如玉米素(Zt,6-(4-羟基-3-甲基-反式-2-丁烯氨基)嘌呤)、6-苄基嘌呤(6-BA

或BAP)和激动素(Kt,6-呋喃氨基嘌呤)、2IP(异戊烯氨基嘌呤)和TDZ(thidiazuron,噻二唑苯基脲)等。作用主要是:第一,促进细胞分裂和扩大(与生长素促进细胞伸长的作用不同),可使茎增粗,而抑制茎伸长;第二,诱导芽的分化,促进侧芽萌发生长;第三,抑制衰老,减少叶绿素的分解。延缓离体组织或器官的衰老过程,有保鲜的效果。但是,细胞分裂素对根的生长一般起抑制作用。在组培中,细胞分裂素的使用浓度通常为0.1~10mg/L。细胞分裂素常常与生长素相互配合,用以调节细胞分裂,细胞伸长,细胞分化和器官形成。

(3)赤霉素。组织培养中使用的赤霉素只有一种,即赤霉酸(GA3)。虽然已经用于顶端分生组织的培养和维管分化的研究,但在培养基中很少添加,因为它的作用往往是负面的。乙烯等。

5.琼脂或其他支持物除液体悬浮培养外,就目前情况而言,琼脂是一种极为理想的支持物。一般浓度0.4%-1%,质量越差的琼脂用量越大。琼脂作为培养基的支持物,使培养基呈固体状态,以利于各种外植体的培养。

6.其他添加剂(含天然提取物、抗生素等)活性炭渗透调节剂抗生素抗氧化剂等。

活性炭加入培养基中的目的主要是利用其吸附能力,减少一些有害物质的影响,例如防止酚类物质污染而引起组织褐化死亡。这在兰花组织培养中效果更明显。另外,活性炭使培养基变黑,有利于某些植物生根。但活性炭对物质吸附无选择性,既吸附有害物质,也吸附有利物质,因此使用时应慎重考虑,不能过量,一般用量为1%—5%。活性炭对形态发生和器官形成有良好的效应。在失去胚状体发生能力的胡萝卜悬浮培养细胞中加入1%一4%活性炭可使胚状体的发生能力得以恢复。

7.水水是植物原生质体的组成成分,也是一切代谢过程的介质和溶媒。配制培养基母液时要用蒸馏水,以保持母液及培养基成分的精确性,防止储藏过程发霉变质。大规模生产时可用自来水。但在少量研究上尽量用蒸馏水,以防成分的变化引起不良效果。

常用0.1mol/L的Na0H和0.1mol/L的HCl来调节培养基的PH。但需注意两点:第一,经高温高压灭菌后,培养基的PH会下降0.2—0.8,故调整后的PH应高于目标pH0.5个单位;第二,pH的大小会影响琼脂的凝固能力,一般当pH大于6.0时,培养基将会变硬,低于5.0时,琼脂就不能很好地凝固。

培养基种类:根据培养基态相不同分为固体培养基与液体培养基。固体培养基是指加凝固剂(多为琼脂)的培养基,其优点是外植体只是部分接触培养基,因此会使培养基中的效应物质产生一定的浓度梯度,从而有利于外植体的分化、生长。液体培养基是指不加凝固剂的培养基。外植体在液体培养基中能够与效应物质更好地接触,因此,生长速度比在固体培养基中更快。根据培养物的培养过程,培养基分为初代培养基与继代培养基。初代培养基是指用来第一次接种外植体的培养基。继代培养基是指用来接种继初代培养之后的培养物的培养基。根据其作用不同,培养基分为诱导培养基、增殖培养基和生根培养基。根据其营养水平不同,培养基分为基本培养基和完全培养基。基本培养基(就是通常称呼的培养基)主要有MS、White、B5、N6、改良MS、Heller、Nitsh、Miller、SH等。完全培养基就是在基本培养基的基础上,根据试验的不同需要,附加一些物质,如植物生长调节物质和其他复杂有机附加物等。

组织培养培养基配制:选择合适的培养基是植物组织培养成功的基础。选择合适的培养基主要从以下两个方面考虑:一是基本培养基;二是各种激素的浓度及相对比例。MS培养基适合于大多数双子叶植物,B5和N6培养基适合与许多单子叶植物,特别是N6培养基对禾本科植物小麦、水稻等很有效,White培养基适合于根的培养。

①根据配方要求,用量筒或移液管从每种母液中分别取出所需的用量,放入同一烧杯中,并用粗天平称取蔗糖、琼脂放在一边备用。

②将①中称好的琼脂加蒸馏水300~400毫升,加热并不断搅拌,直至煮沸溶解呈透明状,再停止加热。

③将①中所取的各种物质(包括蔗糖),加入煮好的琼脂中,再加水至1000毫升,搅拌均匀,配成培养基。

④用1N的氢氧化钠或盐酸,滴入③中的培养基里,每次只滴几滴,滴后搅拌均匀,并用pH试纸测其pH值,直到将培养基的pH值调到5.8。

⑤将配好的培养基,用漏斗分装到三角瓶(或试管)中,并用棉塞塞紧瓶口,瓶壁写上号码。瓶中培养基的量约为容量的1/4或1/5。

培养基的成分比较复杂,为避免配制时忙乱而将一些成分漏掉,可以准备一份配制培养基的成分单,将培养基的全部成分和用量填写清楚。配制时,按表列内容顺序,按项按量称取,就不会出现差错。

组织培养培养基的灭菌与保存

培养基配制完毕后,应立即灭菌。培养基通常应在高压蒸汽灭菌锅内,在汽相120℃条件下,灭菌20分钟。如果没有高压蒸汽灭菌锅,也可采用间歇灭菌法进行灭菌,即将培养基煮沸10分钟,24小时后再煮沸20分钟,如此连续灭菌三次,即可达到完全灭菌的目的。

经过灭菌的培养基应置于10℃下保存,特别是含有生长调节物质的培养基,在4~5℃低温下保存要更好些。含吲哚乙酸或赤霉素的培养基,要在配制后的一周内使用完,其它培养基最多也不应超过一个月。在多数情况下,应在消毒后两周内用完。

组织培养中几种常用培养基的配方

培养基配方

B5培养基(Gamborg 等,1968)(1)无机物NaH2PO4·H2O 150 mg/L;KNO33000 mg/L;(NH4)2SO4 134mg/L;MgSO4·7H2O 500 mg/L;Na2一EDTA 37.3 mg/L;FeSO4·7H2O 27.8 mg/L;MnSO4·H2O 10 mg/L;ZnSO4·7H2O 2mg/L;H3BO3 3mg/L ;Na2MoO·2H2O 0.25 m g/L;CuSO4·5H2O 0.025 mg/L;CoCl2·6H20 0.025 mg/L;KI 10 mg/L。(2)有机物维生素B1 10mg/L;维生素B6 1 mg/L;甘氨酸2.0 mg/L;叶酸0.5 mg/L;肌醇100.0mg/L;蔗糖50 g/L;pH 5.5。B5培养基是1968年由Gamborg等设计的。它的主要特点是含有较低的铵盐,较高的硝酸盐和盐酸硫胺素。铵盐可能对不少培养物的生长有抑制作用,但它适合于有些植物如双子叶植物特别是木本植物的生长。

HB培养基 Holley &Baker(1963) (1)无机盐(以1/2浓度的Knop液为基础) Ca(NO3)2.4H2O 1000mg/L;KNO3 125 mg/L;MgSO4·7H2O 125mg/L;KH2PO4 125 mg/L;Berthelot's液 0.5ml/L。Berthelot's液成分组成:MnSO4·4H2O 20g/L,KI 0.5g/L,NiCl2·6H20 0.05 g/L,CoCl2·6H20 0.05g/L,ZnSO4·7H20 0.10 g/L,CuSO4·5H2O 0.05g/L,BeSO4·4H2O 0.10 g/L,H3BO30.05g/L,浓硫酸 1ml。(2)有机物维生素B1理学 1 mg/L;腺嘌呤 8 mg/L;NAA 2 mg/L;蔗糖 40g/L 。

H培养基(1)无机盐KNO3 950 mg/L;NH4N03 720mg/L;MgSO4·7H2O 185 mg/L;CaCl2·2H2O 166 mg/L;KH2PO468 mg/L;Na2一EDTA 37.3 mg/L;FeSO4·7H2O 27.8 mg/L;MnSO4·4H2O 25 mg/L;ZnSO4·7H2O 10mg/L;H3BO3 10mg/L ;Na2MoO·2H2O 0.25 m g/L;CuSO4·5H2O 0.025 mg/L;(2)有机物维生素B1 0.5mg/L;维生素B6 0.5 mg/L;甘氨酸 2.0 mg/L;叶酸0.5 mg/L;肌醇100.0mg/L;烟酸0.5 mg/L;生物素0.05 mg/L;蔗糖20 g/L;pH 5.5。

Kassanis 培养基(1957)(1)无机盐Ca(NO3)2.4H2O 500mg/L;KNO3125 mg/L;MgSO4·7H2O 125mg/L;KH2PO4 125 mg/L;Berthelot's液10滴。(2)有机物酪蛋白1 mg/L;半胱氨酸10 mg/L;腺嘌呤 5 mg/L;烟酸 1 mg/L;维生素B6 1 mg/L;泛酸钙10 mg/L;肌醇0.1 mg/L;维生素H(生物素) 0.01 mg/L;蔗糖20 g/L。

KC培养基 Knudson C(1964) (1)无机盐 KH2PO4 250 mg/L;Ca(NO3)2.4H2O 1000mg/L;(NH4)2SO4 500mg/L;MgSO4·7H2O 250 mg/L;FeSO4·7H2O 25 mg/L;MnSO4·4H2O 7.5 mg/L;(2)有机物蔗糖 20g/L ;pH 5.0~5.2 。

LS培养基RM-64[Linsmair & SKoog(1964))]:(1)无机盐 NH4N03 l 650mg/L;KNO3 1900 mg/L;CaCl2·2H2O 440 mg/L;MgSO4·7H2O 370 mg/L;KH2PO4 170 mg/L;Na2-EDTA 37.3 mg/L;FeSO4·7H2O 27.8 mg/L;H3BO36.2 mg/L ;MnSO4·4H2O 22.3 mg/L;ZnSO4·7H2O 8.6 mg/L;KI 0.83 mg/L;Na2MoO·2H2O 0.25 mg/L;CuSO4·5H2O 0.025 mg/L;CoCl2·6H2O 0.025 mg/L。(2)有机物维生素Bl 0.4 mg/L;肌醇 10.0mg /L;蔗糖 30g/L;pH 5.6。 * FeSO4·7H2O 5.57g,Na2-EDTA 7.45g 先溶于1升蒸馏水里,然后按每升培养基含5mg的比例加入培养基中。

Miller 培养基(1963)(1)无机物NH4N03 l 000mg/L;KNO3 1000 mg/L;Ca(N03)2·4H2O 347mg/L ;KH2PO4 300 mg/L;KCl 65 mg/L;MgSO4·7H2O 35 mg/L;Na一Fe一EDTA 32 mg/L;MnSO4·4H2O 4.4 mg/L;ZnSO4·7H2O 1.5mg/L;H3BO3 1.6 mg/L ;KI 0.8 mg/L;CaCl2·2H2O 150 mg/L。(2)有机物维生素Bl 0.1 mg/L;维生素B6 0.1mg/L;叶酸0.5 mg/L;甘氨酸2.0 mg/L;蔗糖30g/L;pH 6.0。M11er培养基与MS培养基比较,无机元素用量减少l/3—1/2,微量元素种类减少,无肌醇。

MS培养基RM—62(Murashige & Skoog (1962)) (1)无机盐类同LS培养基。(2)有机物。?它的特点是无机盐的浓度高,具有高含量的氮、钾,尤其硝酸盐的用量很大,同时还含有一定数量的铵盐,这使得它营养丰富,不需要添加更多的有机附加物,就能满足植物组织对矿质营养的要求,有加速愈伤组织和培养物生长的作用,当培养物久不转移时仍可维持其生存。故这是目前应用最广泛的一种培养基。

MT(murashge and Tucker)培养基(1)大量元素NH4N03 l650mg/L;KNO3 1900 mg/L;CaCl2·2H2O 440 mg/L;MgSO4·7H2O 370 mg/L;KH2PO4 170 mg/L;Na2一EDTA 37.3 mg/L;FeSO4·7H2O 27.8 mg/L;H3BO3 6.2 mg/L ;MnSO4·4H2O 22.3 mg/L;KI 0.83 mg/L;Na2MoO·2H2O 0.25 m g/L;CuSO4·5H2O 0.025 mg/L;CoCl2·6H20 0.025 mg/L。(2)有机物维生素Bl 0.4 mg/L;维生素B6 10.0mg/L;烟酸5 mg/L;甘氨酸 2.0 mg/L;肌醇100.0mg/L;蔗糖50g/L。

L;KH2PO4 400 mg/L;MgSO4·7H2O 185 mg/L;CaCl2·2H2O 165 mg/L;Na2-EDTA 37.3 mg/L;FeSO4·7H2O 27.8 mg/L;MnSO4·H2O 4.4 mg/L;ZnSO4·7H2O 1.5mg/L;H3BO3 1.6mg/L ;KI 0.8mg/L。(2)有机物维生素B1 1mg/L;维生素B6 0.5 mg/L;叶酸 1 mg/L;蔗糖20 g/L;pH 5.8。1974年由我国的朱至清等为水稻等禾谷类作物花药培养而设计的。其特点是KNO3和(NH4)2SO4含量高,不含铝。目前在国内已广泛应用于小麦、水稻及其他植物的花粉和花药培养和组织培养。

Nielsen(1960)培养基(1)无机盐KNO3200 mg/L;Ca(N03)2·4H2O 800mg/L ;MgSO4·7H2O 200mg/L;KH2PO4 200 mg/L;ZnSO4·7H2O 0.2mg/L;NiCl2·6H2O 0.3 mg/L;MnCl2·H2O 1.8 mg/L;CuSO4·5H2O 0.08mg/L;H2MoO4·H2O 0.02 mg/L;H3BO3 2.8mg/L;(2)有机物维生素B1 1mg/L;烟酸5 mg/L;维生素B6 1 mg/L;蔗糖30 g/L。

Nitsch &Nitsch (1969)培养基(1)无机盐KNO3 950 mg/L;NH4N03 720mg/L;KH2PO4 68 mg/L;CaCl2·2H2O 166 mg/L;MgSO4·7H2O 185mg/L;FeSO4·7H2O 27.8 mg/L;Na2-EDTA 37.3 mg/L;MnSO4·4H2O 25mg/L;H3BO3 10 mg/L;ZnSO4·7H2O 10mg/L;CuSO4·5H2O 0.025mg/L;Na2MoO4·2H2O 0.25 mg/L;(2)有机物维生素H(生物素) 0.05 mg/L;肌醇100 mg/L;维生素B1 0.5mg/L;烟酸 5 mg/L;维生素B6 0.5 mg/L;甘氨酸2.0 mg/L;叶酸5 mg/L;蔗糖20 g/L。

SH培养基(Schenk和Hidebrondt) SH培养基是1972年由Schenk和Hidebrondt设计的。它的主要特点与B5相似,不用(NH4)2SO4,改用(NH4)PO4,是矿质盐浓度较高的培养基。在不少单子叶和双子叶植物上使用效果很好。

White培养基, White(1963):(1)无机盐类Ca(NO3)2·4H2O 287mg/L;KNO3 80mg/L;KCl 65 mg/L;NaH2PO4·H2O 19.1 mg/L;MgSO4·7H2O 738 mg/L;Na2SO4:·10H2O 453 mg/L;MnSO4·4H2O 6.6 mg/L;H3BO3 1.5 mg/L;ZnSO4·7H2O 2.7 mg/L;KI 0.75 mg/L;(2)有机物甘氨酸3.0 mg/L;烟酸0.5 mg/L;维生素B6 0.1 mg/L;维生素B1 0.1 mg/L;柠檬酸2.0 mg/L;蔗糖20g/L;pH 5.7。又称WH培养基,是1943年White设计的,1963年做了改良。其特点是无机盐浓度较低。它的使用也很广泛,无论是生根培养还是胚胎培养或一般组织培养都有很好的效果。

White培养基(改良)(White,1963)(1)无机盐KNO380 mg/L;Ca(N03)2·4H2O 300mg/L;MgSO4·7H2O 720 mg/L;Na2SO4 200 mg/L;KCl 65 mg/L;Na H2PO4·5H2O 16.5 mg/L;Fe(SO4)3 2.5 mg/L;MnSO4·4H2O 7 mg/L;ZnSO4·7H2O 3mg/L;H3BO3 1.5mg/L ;CuSO4·5H2O 0.001 mg/L;MoO3 3 mg/L。(2)有机物维生素B1 0.1mg/L;维生素B6 0.1 mg/L;甘氨酸 3.0 mg/L;肌醇 100.0mg/L;烟酸 0.3 mg/L;蔗糖 20 g/L;pH 5.0。

花肥培养基Kano(1963)(Kyoto so1ution)花肥3g/L;KH2PO4 250 mg/L;Ca(NO3)2.4H2O 1000mg/L;MgSO4·7H2O 250 mg/L;(NH4)2SO4 2mg/L;蔗糖20g/L ;pH 5.0。

木本植物用培养基(WPM,Woody Plant medium)(1)无机盐NH4N03400mg/L;Ca(NO3)2.4H2O 556mg/L;K2SO4990 mg/L;CaCl2·2H2O 96 mg/L ;KH2PO4170 mg/L;Na2MoO4·2H2O 0.25 mg/L;MgSO4·7H2O 370 mg/L;MnSO4·H2O 22.4mg/L;ZnSO4·7H2O 8.6mg/L;CuSO4·5H2O 0.25mg/L;FeSO4·7H2O 27.8 mg/L;Na2-EDTA 37.3 mg/L。(2)有机物肌醇100 mg/L;维生素B1 1.0mg/L;烟酸0.5 mg/L;维生素B6 0.5 mg/L;甘氨酸 2.0 mg/L;蔗糖20 g/L;琼脂6g/L;pH 5.2。

MS培养基的配制:

1、MS大量元素母液的配制一般将大量元素分别配制成10倍的母液,使用时再分别稀释10倍。依次分别称取:NH4NO316.5g;KNO319.0g ;KH2PO41.70g;MgSO4·7H2O 3.7g;CaCl2·2H2O 4.4g;共配成1L的母液。倒入1L 试剂瓶中,存放于冰箱中。

2、MS微量元素母液的配制一般将微量元素配制成100倍母液。依次称取:KI 0.083g;Na2MoO4·2H2O 0.025g;H3BO3 0.62g;CuSO4·5H2O 0.0025g;MnSO4·H2O 1.69g;CoCl2·6H2O 0.0025g;ZnSO4·7H2O 0.86g。配成1L母液,倒入1L试剂瓶中,存放于冰箱中。CuSO4·5H2O和CoCl2·6H2O 由于称取量很小,如果天平精确度没有达到万分之一,可先配成调整液。分别称取CuSO4·5H2O 0.05g,CoCl2·6H2O 0.05g,各自配成100ml的调整液,然后取5ml就还有0.0025g的量。

3、MS有机质母液的配制一般配制成100倍MS有机母液。依次称取肌醇10g;盐酸硫胺素(VB1)0.01g;烟酸0.05g;甘氨酸0.2g;盐酸吡哆醇(VB6)0.05g;配成1L母液,倒入1L试剂瓶中,存放于冰箱中。

4、MS铁盐母液的配制一般配制成100倍MS铁盐母液。依次称取:EDTA二钠3.73g 和FeSO4·7H2O 2.78g,配成1L母液,倒入1L试剂瓶中,存放于冰箱中。所以MS母液有5种大量元素母液,加上MS微量元素母液、MS有机母液和MS铁盐母液,共8种母液。

5、几种生长调节物质的配制各种生长素和细胞分裂素要单独配制,不能混合在一起,生长素类一般要先用少量95%的酒精或1当量的NaOH溶解,细胞分裂素一般要先用1当量的盐酸溶解,然后再加蒸馏水定容。一般取100mg配成100ml 母液。母液的保存:一般将以上配制好的各种母液保存在4℃左右冰箱内。

注意事项:(1)称量要精确;(2) 配制母液时要注意药品溶解的先后顺序,以免发生化学反应,使的产生沉淀。

植物组织培养的基本步骤

植物组织培养的基本步骤 成熟细胞离体——(脱分化)——分生细胞——(分裂)——愈伤组织——(再分化)——形态建成————完整植株。 培养基的主要成分 【水分】 【无机盐】1.大量元素:N,P,K,Ca,Mg,S(由相关的无机盐提供) 2.微量元素:Fe,B,Cu,Mn,Mn,Zn,Co 【有机营养成分】1.糖类 2.维生素 3.氨基酸 4.肌醇 5.天然有机物【植物生长调节剂】1.生长素 2.细胞分裂素 3.其他生长调节剂 【凝固剂】琼脂 【其他物质】1.活性炭 2.抗生素 3.抗氧化物质 4.硝酸银 培养基和组织培养用具的灭菌方式 【培养基,无菌水】高压蒸汽灭菌,0.105MPa灭菌15~30分钟 【移栽基质】曝晒,甲醛熏蒸或高压蒸汽灭菌0.14MMPa灭菌1~2h 【接种室,缓冲室】紫外线灯照射30min,或气雾消毒剂 【超净工作台】紫外线灯30min,之后打开风机过滤除菌 【外植体】不同的化学消毒剂浸泡消毒 【接种工具】70%乙醇浸泡或擦拭,之后用火焰灼烧灭菌 【培养室】3%来苏尔喷雾,或甲醛,气雾消毒熏蒸 【皮肤】先用肥皂洗手,接种前用70%乙醇擦拭 【瓶口,管口】70%乙醇擦拭,用火焰封口

【培养瓶表面】70%乙醇擦拭 【台面,桌面】70%乙醇擦拭或喷雾消毒 植物外植体的灭菌方式 【茎尖,茎段,叶片】1. 用70%乙醇浸泡30秒,再用无菌水冲洗1次。 2.用2%次氯酸钠浸泡15min或0.1%升汞浸泡5~10min。 3.若材料有绒毛,最好在消毒液中加入几滴吐温。 4.消毒时要不断震荡,使植物材料与消毒剂充分接触。 5.最后用无菌水冲洗3~5次。 【果实】1.用乙醇迅速漂洗一下,再用无菌水冲。 2.用2%次氯酸钠浸泡10min,用无菌水冲洗2~3次。 【种子】用10%次氯酸钠浸泡20~30min,或0.1%升汞消毒5~10min,然后再用无菌水冲洗3~5次。 【花蕾】1.用70%乙醇浸泡10~15秒,无菌水冲洗一次。 2.在漂白粉中浸泡10min,用无菌水冲洗2~3次。 【根及地下部器官】用0.1%升汞浸泡5~10min 或用次氯酸钠浸泡10~15min,再用无菌水冲洗3~5次。 【消毒后的外植体应及时按照无菌操作技术接种在适宜的培养基上】

植物组织培养的一般流程

植物组织培养的一般流程 一个完整的植物组织培养过程一般包括以下几个步骤: (1)准备阶段 查阅相关文献,根据已成功培养的相近植物资料,结合实际制订出切实可行的培养方案。然后根据实验方案配制适当的化学消毒剂以及不同培养阶段所需的培养基,并经高压灭菌或过滤除菌后备用。 (2)外植体选择与消毒 选择合适的部位作为外植体,采回后经过适当的预处理,然后进行消毒处理。将消毒后的外植体在无菌条件下切割成一定大小的小块,或剥离出茎尖,挑出花药,接种到初代培养基上。(3)初代培养 接种后的材料置于培养室或光照培养箱中培养,促使外植体中已分化的细胞脱分化形成愈伤组织,或顶芽、腋芽直接萌发形成芽。然后将愈伤组织转移到分化培养基分化成不同的器官原基或形成胚状体,最后发育形成再生植株。 (4)继代培养 分化形成的芽、原球茎数量有限,采用适当的继代培养基经多次切割转接。当芽苗繁殖到一定数量后,再将一部分用于壮苗生根,另一部分保存或继续扩繁。进行脱毒苗培养的需提前进行病毒检测。 (5)生根培养 刚形成的芽苗往往比较弱小,多数无根,此时可降低细胞分裂素浓度或不加,提高生长素浓度,促进小苗生根,提高其健壮度。 (6)炼苗移栽 选择生长健壮的生根苗进行室外炼苗,待苗适应外部环境后,再移栽到疏松透气的基质中,注意保温、保湿、遮荫,防止病虫危害。当组培苗完全成活并生长一定大小后,即可移向大田用于生产。 二、单项选择题 1. 在衡量杂种优势(H )时,超中优势的计算方法为(P 1 、P 2 分别表示两亲本的性状平均值,F 1 为杂种一代的性状平均值):A. H =[F 1 -(P 1 +P 2 )/2]/(P 1 -P 2 )/2 B. H =(F 1 -P 1 )/P 1 C. H =[F 1 -(P 1 +P 2 )/2]/(P 1 +P 2 )/2 D. H = (F 1 -P 2 )/P 2 2. 根据植物梢端组织发生层学说,如果L II 层细胞发生突变,则下列器官或组织会发生变异的是: A .表皮B. 种子C. 不定根D. 中柱 3. 对于孢子体型自交不亲和而言,下列基因型的杂交组合能产生后代的是: A .S 1 S 2 ×S 1 S 2 B .S 1 S 2 ×S 1 S 3 C .S 1 S 2 ×S 2 S 3 D .S 1 S 2 ×S 3 S 4

植物组培培养基的成分

植物组培培养基的成分 培养基是人工配制的,满足不同材料生长,繁殖或积累代谢产物的营养物质。在离体培养条件下,不同种类植物对营养的要求不同,甚至同一种植物不同部位的组织以及不同培养阶段对营养要求也不相同。筛选合适的培养基是植物组织培养极其重要的内容,是决定成败的关键因素之一。 大多数植物组织培养基的主要成分是无机营养物质(大量营养元素和微量营养元素)、碳源、有机添加物、植物生长调节剂和凝胶剂。一些组织可以生长在简单的培养基上,这些培养基只含无机盐和可利用的碳源(蔗糖),但大多数组织必须在培养基中添加维生素、氨基酸和生长物质,而且经常还将一些复合的营养物质加入到培养基中,这种由“化学定义”的化合物组成的培养基称为“合成”培养基。 人们已设计了许多培养基用于特殊组织和器官的培养。 怀特培养基是最早的植物组织培养基之一,最初作为根培养的培养基。为了诱导培养组织器官发生和再生植株,广泛使用含有大量无机盐成分的MS(Murashige和Skoog,1962)和LS(Linsmaier 和Skoog,1965)培养基。原本为细胞悬液或愈伤组织培养而设计的B5培养基,经过改良后,被证实有利于原生质体培养。同时,B5培养基也被用于诱导原生质体再生植株。尽管Nitshch(1969)为花药培养设计的培养基仍然使用频繁,但另一个称为N6的培养基,专门用于禾谷类花药培养和其他组织培养。类似的,N6培养基越来越多地

用于大豆、红三叶草和其他豆科植物的培养。该培养基营养成分促进胚性细胞和原生质体再生细胞快速生长。使用这些培养基成功的原因很可能是营养元素的比例和浓度基本上满足不同培养体系中细胞或组织生长和分化的最适需要。 植物组织培养基中无机和有机成分的浓度用质量浓度(mg/L 或ppm,但现在习惯用mg/L)或物质的量浓度(mol/L)表示。按照国际植物生理学协会的推荐,应该用mol/L表示大量营养元素和有机营养成分浓度,用μmol/L表示微量营养元素、激素、维生素和有机成分浓度。用物质的量浓度的优点是,每一种化合物每一摩尔的分子数是常数,所以按照特定培养基配方配制培养基时,无论无机盐化合物的水分子数为多少,原物质的量浓度都可以使用。但是,用质量浓度来表示浓度的话,就不能不考虑无机盐化合物的水分子数目了。 1、水分 水分是植物体的主要组成部分,也是一切代谢过程的介质和溶媒,在植物生命活动过程中不可缺少。配制培养基母液时要用蒸馏水或纯水,以保持母液及培养基成分的精确性,防止储藏过程中发霉变质。研究培养基配方时尽量用蒸馏水,以防成分的变化引起不良效果。而在大规模工厂化生产时,为了降低生产成本,常用自来水代替蒸馏水。如自来水中含有大量的钙、镁、氯和其他离子,最好将自来水煮沸,经过冷却沉淀后再使用。

植物组织培养实验基本步骤。。

植物组织培养实验基本步骤 一、母液的配置 1、MS大量元素母液的配制 将大量元素配制成10倍的母液,使用时再稀释10倍。按照配方表中用量依次分别称取扩大10倍的:NH4NO3 、KNO3 、KH2PO4 、 MgSO4·7H2O 、CaCl2·2H2O ,所有药品称取完毕后用蒸馏水逐个溶解,待全部溶解后,最后定容至500ml,转入500ml细口试剂瓶中,贴上标签,注明母液名称、放大倍数、配制日期、配制人姓名,置于4℃冰箱中保存备用。 2、MS微量元素母液的配制 将微量元素配制成100倍的母液,使用时再稀释100倍。按照配方表中用量分别依次称取:MnSO4· 4H2O 、ZnSO4·7H2O 、 H3BO3 、KI 、CuSO4·5H2O 、CoCl2·6H2O ,用蒸馏水逐个溶解,待全部溶解后,用容量瓶定容至500ml,转入500ml细口试剂瓶中,贴上标签,注明母液名称、放大倍数、配制日期、配制人姓名,置于4℃冰箱中保存备用。 3、MS铁盐母液配制 将铁盐配制成100倍的母液,使用时再稀释100倍。按照配方表中用量分别称取扩大100倍的:称

FeSO4·7H2O 和Na2·EDTA ,把FeSO4·7H2O和Na2·EDTA·2H2O分别置于200ml蒸馏水中,加热并不断搅拌使之溶解(磁力搅拌器,边加热,边搅拌)。保持加热,把FeSO4溶液慢慢倒入Na2·EDTA溶液中并不断搅拌,接近沸腾时停止加热,待溶液冷却后加蒸馏水到最终容积500ml,置于棕色细口瓶中,用力振荡1~2min,贴上标签,注明母液名称、放大倍数、配制日期、配制人姓名。在室温下避光保存一段时间令其充分反应后,再置于4℃冰箱中保存备用。 4、MS有机化合物母液的配制 将有机化合物配制成100倍的母液,使用时再稀释100倍。按照配方表中用量分别称取扩大100倍的:肌醇、维生素B1 、烟酸、甘氨酸、维生素B6 、蔗糖,用蒸馏水依次溶解并定容至500ml后,转入500ml 细口试剂瓶中,贴上标签,注明母液名称、配制日期、配制人姓名,置于4℃冰箱中保存备用。 二、植物激素的配置 常见激素:二氯苯氧乙酸(2,4-D)、萘乙酸(NAA)、吲哚乙酸(IAA)、吲哚-3-丁酸(IBA)、激动素(6-糠氨基嘌呤、 KT)、6-苄氨基嘌呤(6-BA)、赤霉素(GA3)、 1、生长素类: (1)、生长素类在组织培养中的主要作用是:诱导细胞的分裂和根的分化,诱导愈伤组织

植物组织培养技术

植物组织培养技术 植物组织培养是指将植物体的一部分接种在合成培养基上,使其按照预定目标生 长发育成新植株。近年来,花卉组织培养及快繁脱毒技术越来越多地应用于花卉种苗 繁殖生产中。 一、组织培养在花卉产业中的应用 1.快速、大量繁殖优良品种组织培养技术已成为种苗生产的主要技术之一。经组织 培养,可增加繁殖系数,加快繁殖速度,可生产出种性纯、品质好、产花量高的生产 性用苗。在花卉育种过程中,不断的杂交、选种极大地扩展了花卉的花形与颜色,使 得花卉在各方面都越来越接近人们的需求。但在同时,也造成了花卉基因类型的高度 异质化———子代不易有均一表现。而组培苗是在母株器官、组织或细胞的基础上发展起来的,可以保持母株的全部特性(花形、花色、株形、开花习性、抗逆性等), 因而可以根据需要来选择集多种优良性状于一体的植株加以分生,从而得到大量与母 株一模一样的植株。 2.培育脱毒苗木采用组织培养技术,利用植株的分生组织不易感染病毒的原理,可 以对花卉植株的分生组织进行组织培养来繁殖苗木,防止亲代植株的病害传递给子代,从而达到脱毒的目的。 病毒病对长期应用营养繁殖(分株、扦插等)的观赏植物及其生产的危害相当严重。由于观赏植物多采用营养繁殖,如嫁接、分株、压条等方法繁殖时,病毒(及类 病毒)则通过营养体及刀具、土壤传递给后代,大大加速了病毒病的传播与积累,导 致病毒病的危害越来越严重。据统计,观赏植物的病毒已多达100多种,并且逐年有 新增病毒的报道。观赏植物因病毒病大大影响其观赏价值,表现在康乃馨、菊花、百合、风信子等的鳞茎、球茎与宿根类花卉及兰科植物等严重退化,花少且小,花朵畸形、变色,大大影响观赏价值,严重者甚至导致某些品种的灭绝,严重制约观赏植物 生产的发展,这也是我国切花品种跨不出国门的原因之一。组培快繁技术已应用到蝴蝶兰的栽培中非洲菊也可以通过组培快繁技术进行繁殖 植物组织培养脱毒的原理主要是利用茎尖分生组织不带毒或少带毒。感病植株体内的病毒分布不均匀,其数量随植株部位和年龄而异,越靠近茎尖顶端的区域,病毒 的浓度也越低。分生区域无维管束,病毒只能通过胞间连丝传递,赶不上细胞不断分 裂和活跃的生长速度,因此生长点含有病毒的数量极少,几乎检测不出病毒。因此, 茎尖培养时,切取茎尖的大小对脱毒效果有很大影响,茎尖越小效果越佳,但太小时 不易成活,过大则不能保证完全除去病毒。不同种类的植物和不同种类的病毒在茎尖

植物组织培养步骤

植物组织培养概念(广义)乂叫离体培养,指从植物体分离出符合需要的组织.器官或细胞,原生质体等,通过无菌操作,在人工控制条件下进行培养以获得再生的完整植株或生产具有经济价值的其他产品的技术。植物组织培养概念(狭义)指用植物各部分组织,如形成层.薄壁组织.叶肉组织.胚乳等进行培养获得再生植株,也指在培养过程中从各器官上产生愈伤组织的培养,愈伤组织再经过再分化形成再生植物。 组织培养的步骤 一、培养基配制 配制培养基有两种方法可以选择,一是购买培养基中所有化学药品, 按照需要自己配制;二是购买商品的混合好的培养基基本成分粉剂,如MS B5等。 自己配制可以节约费用,但浪费时间、人力、且有时由丁药品的质量问题,给实验带来麻烦。就目前国内的情况看,大部分还是自己配制。为了方便起见,现以MS 培养基为例介绍配置培养基的主要过程。 1、配制几种母液 (1) 配制MSfc!元素母液 一般将大量元素分别配制成100倍的母液,使用时再分别稀释100倍。 分别称取 NH4NO3 165g KH2PO4 17g KNO3 190g CaCl2? 2H2O 44g MgSO4 7H2O 37g 各自配成1L的母液。倒入1L试剂瓶中,存放丁冰箱中。 (2) 配制MSa量元素母液 一般将微量元素配制成100倍母液。 依次称取 KI 0.083g Na2MoO4 - 2H2O 0. 025g H3BO3 0.62g CuSO4 5H2O 0.0025g MnSO4 H2O 1.69g CoCl2 - 6H2O 0.0025g ZnSO4 7H2O 0.86g 配成1L母液,倒入1L试剂瓶中,存放丁冰箱中。 CuSO4 5H2O和CoCl2?6H2。由丁称取量很小,如果天平精确度没有 达到万分之一,可先配成调整液。 分别称取 CuSO4 5H2O 0.05g CoCl2 - 6H2O 0.05g 各自配成100ml的调整液,然后取5ml就还有0.0025g的量。

植物组织培养步骤

植物组织培养概念(广义)又叫离体培养,指从植物体分离出符合需要的组织.器官或细胞,原生质体等,通过无菌操作,在人工控制条件下进行培养以获得再生的完整植株或生产具有经济价值的其他产品的技术。植物组织培养概念(狭义)指用植物各部分组织,如形成层.薄壁组织.叶肉组织.胚乳等进行培养获得再生植株,也指在培养过程中从各器官上产生愈伤组织的培养,愈伤组织再经过再分化形成再生植物。 组织培养的步骤 一、培养基配制 配制培养基有两种方法可以选择,一是购买培养基中所有化学药品,按照需要自己配制;二是购买商品的混合好的培养基基本成分粉剂,如MS、B5等。 自己配制可以节约费用,但浪费时间、人力、且有时由于药品的质量问题,给实验带来麻烦。就目前国内的情况看,大部分还是自己配制。为了方便起见,现以MS培养基为例介绍配置培养基的主要过程。 1、配制几种母液 (1)配制MS大量元素母液 一般将大量元素分别配制成100倍的母液,使用时再分别稀释100倍。 分别称取 NH4NO3 165g KH2PO4 17g KNO3 190g CaCl2·2H2O 44g MgSO4·7H2O 37g 各自配成1L的母液。倒入1L试剂瓶中,存放于冰箱中。 (2)配制MS微量元素母液 一般将微量元素配制成100倍母液。 依次称取 KI 0.083g Na2MoO4·2H2O 0.025g H3BO3 0.62g CuSO4·5H2O 0.0025g MnSO4·H2O 1.69g CoCl2·6H2O 0.0025g ZnSO4·7H2O 0.86g 配成1L母液,倒入1L试剂瓶中,存放于冰箱中。 CuSO4·5H2O和CoCl2·6H2O 由于称取量很小,如果天平精确度没有达到万分之一,可先配成调整液。 分别称取 CuSO4·5H2O 0.05g CoCl2·6H2O 0.05g 各自配成100ml的调整液,然后取5ml就还有0.0025g的量。 (3)配制MS有机母液

植物组织培养MS培养基配方

植物组织培养MS培养基配方 (一)母液配制与保存 配制培养基时,如果每次配制都要按着杨成分表依次称量,既费时,又增加了多次称量误差。为了提高配制培养基的工作效率,一般将常用的基本培养基配制成10~200倍,甚至1000倍的浓缩贮备液,即母液。母液贮存于冰箱中,使用时,将它们按一定的比例进行稀释混合,可多次使用,并在配制较多数量的培养基时,降低工作强度,也提高试验的精度。 基本培养基的母液有四种:大量元素(浓缩20倍),微量元素(浓缩100倍),铁盐(浓缩200倍),除蔗糖之外的有机物质(浓缩100倍) 1大量元素 配制大量元素母液时要分别称量,分别溶解,在定容时按表1中的序号依次加入容量瓶中,以防出现沉淀。倒入磨口试剂瓶中,贴好标签和做好记录后,可常温保存或放入冰箱内保存。 表1大量元素母液(配1L20倍的母液) 序号成分配方浓度/(mg.L-1)称取量/mg 配1mL培养基吸取 量/mL 1 硝酸铵NH4NO3 1650 33000 50 2 硝酸钾KNO 3 1900 38000 3 磷酸二氢钾KH2PO 4 170 3400 4 七水合硫酸镁MgSO4.7H2O 370 7400 5 氯化钙无水CaCl2 440 6644 2微量元素母液 在配制微量元素母液时,也应分别称量和分别溶解,定溶时不分先后次序,可随意加入溶量瓶中定容(表2),一般不会出现沉淀现象。倒入磨口试剂瓶中,贴好标签和做好记录后,可常温保存或放入冰箱内保有存。 表2微量元素母液(配制1L100倍母液) 成分配方浓度/(mg.L-1) 称取量/mg 配制1L培养基吸取 量/mL 碘化钾KI 0.83 83 10 硫酸锰MnSO4.H2O 22.3 2230 硼酸H3BO3 6.2 620 硫酸锌ZnSO4.7H2O 8.6 860 钼酸钠Na2MoO4.2H2O 0.25 25 硫酸铜CuSO4.5H2O 0.025 2.5 氯化钴CoCl2.6H2O 0.025 2.5 3铁盐母液 由于铁盐无机化合物不易被植物吸收利用,只有基螯合物才能被植物吸收利用,因此需要单独配成螯合物母液表3)。 配制方法:称取5.56g硫酸亚铁和7.46g乙二胺乙酸二钠,分别用450ml的去离子水溶解,分别适当加热不停搅拌,分别溶解后将硫酸亚铁溶液缓缓加入到乙二胺四乙酸二钠溶液中,将两种溶液混合在一起,最后用去离子水定溶于1000mL,倒入棕色贮液瓶中,贴好标签和做好记录后放入冰箱内保存。

植物组织培养试题库


植物组织培养试题库 一、名词 外植体:在植物组织培养过程中,由植物体上切取的根、茎、叶、花、果、种子 等器官以及各种组织、细胞或原生质体等统称为外植体。 热处理脱毒:利用病毒和植物细胞对高温忍耐性不同,选择适当的高温处理染病 植株,使植株体内的病毒部分或全部失活,而植株本身仍然存活。 平板培养法:是把单细胞悬浮液与融化的琼脂培养基均匀混合,平铺一薄层在培 养基底上的培养方法。 消毒:指杀死、消除或充分抑制部分微生物,使之不再发生危害作用。 玻璃化现象:在长期的离体培养繁殖时,有些试管苗的嫩茎、叶片呈现半透明水
渍状,这种现象称为玻璃化。 脱毒苗:是指不含该种植物的主要危害病毒,即经检测主要病毒在植物内的存在 表现阴性反应的苗木。 灭菌:是指用物理或化学的方法,杀死物体表面和孔隙内的一切微生物或生物体,
即把所有生命的物质全部杀死。 褐变:是指外植体在培养中体内的多酚氧化酶被激活,使细胞里的酚类物质氧化
成棕褐色的醌类物质,有时使整个培养基变褐,从而抑制其他酶的活性,影响 材料的培养。 微尖嫁接:指在人工培养基上培养实生砧木,嫁接无病毒茎尖以培养脱毒苗的技 术。主要程序:无菌砧木培养—茎尖准备—嫁接—嫁接苗培养—移栽。 植物细胞全能性:一个生活的植物细胞,只要有完整的膜系统和细胞核,它就会 有一整套发育成一个完整植株的遗传基础,在适当的条件下可以通过分裂、分化 再生成一个完整的植株。 人工种子:将组织培养产生的体细胞胚或不定牙包裹在能提供养分的胶囊里,再 在胶囊的外面包上一层具有保护功能和防止机械损伤的外膜,形成一种类似自然 种子的结构。 试管苗驯化:植物组织培养中获得的小植株,长期生长在试管或三角瓶内,体表 几乎没有保护组织,生长势弱,适应性差,要露地移栽成活,完成由“异养”到 “自养”的转变,需要一个逐渐适应的驯化过程。 器官培养:植物的根、茎、叶、花器(包括花药、子房)和幼小果实的无菌培 养。 微体嫁接:指将 0.1-0.2mm 的茎尖作为接穗,嫁接到由试管中培养出来的无菌 实生砧木上,继续进行试管培养,愈合成为完整的的植株。 快速繁殖(微繁殖): 用组织培养的方法,使植物的部分器官,组织迅速扩大培养, 并移植到温室或农田繁殖出大量幼苗的繁殖方法. 脱分化:将已分化组织的已停止分裂的细胞从植物体的抑制性影响下解脱出来, 恢复细胞的分裂活性.一个成熟的细胞转变为分生状态的过程叫脱分化. 原生质体融合(体细胞杂交):就是使分离下来的不同亲本的原生质体,在离体条 件下通过诱导发生的质膜融合进而细胞核融合,像性细胞受精作用那样互相融合 成一体的现象. 愈伤组织培养:是指将母体植株上的外植体,接种到无菌的培养基上,进行愈伤组 织诱导,生长和发育的一门技术
。1

植物常用培养基附加配制说明

备注:培养基和激素母液配制方法 (1)母液配制时,先向容量瓶中注入1/3定容体积的蒸馏水,再一一称取各种盐放入烧杯中溶解,装入容量瓶, 不得一次称取所有盐,混合溶解!在配制大量母液时,氯化钙最后加入。 (2)200×Fe盐溶液 称取1.39g FeSO4?7H2O溶于水(A液);称取1.865 g Na2?EDTA溶于热水(B液); 将A液缓慢倒入正在加热的B液中,加水接近250ml,煮沸,混合液颜色变深,冷却到室温,定容到250ml后,置于棕色试剂瓶内4℃保存。 (3)0.5mg/ml 2,4-D母液的配法 称取50mg 2,4-D,置于小烧杯内;加少量无水乙醇或95%乙醇使之完全溶解; 加水定容至100ml,4℃保存。如果出现沉淀,需要重新配置。 (4)0.5mg/ml α-NAA母液的配法 称取100mgNAA置于小烧杯内;用1N的KOH溶液溶解NAA;用水定容至200m l,4℃保存。 (5)0.5mg/ml 6-BA母液的配法 称取100mg 6-BA置于小烧杯中;加少量的浓盐酸,用玻棒研磨成糊状,再加入少量浓盐酸,使之完全溶解;用水稀释并定容至200ml,4℃保存。 (6)100mM乙酰丁香酮(As)的配制 称取196.2mg As,用5ml DMSO直接溶解,再加水定容至10ml,过滤灭菌后,分装入无菌小管,-20℃冰冻保存。使用前加入灭菌培养基。 (7) 0.5mg/ml KT和ABT的配法 称取50mg kenetin或ABT生根粉,先用少量1N KOH溶解,再用水稀释定容至100ml,4℃保存。 (8)其他附加物的溶解及配制 A、称取吗啉乙磺酸(MES)5g溶于水中,定容至10mL。4℃保存。 B、称取1g L-半胱氨酸(Cys) 溶于2mL 0.2mol/L或10%的NaOH溶液, 用蒸馏 水稀释定容至10mL,现用配制。4℃保存。 C、称取850mg硝酸银,用蒸馏水溶解后定容至100mL。4℃保存。 D、头孢霉素(cefotaxime)2500mg,用蒸馏水溶解后定容至10mL。4℃保存。 E、潮霉素(Hyg B),商品已溶解,筛选时一般加5、8、12mg/L梯度浓度。

植物组织培养的培养基

植物组织培养的培养基中,需要添加糖类作为碳源物质,因此糖类是影响植物组织培养成功与否的关键之一。高中生物教材中明确指出,植物组织培养的培养基中添加的糖类是蔗糖。那么为什么不添加葡萄糖呢?很多资料上解释为蔗糖较葡萄糖便宜,易被植物细胞吸收。其实并非如此。之所以以蔗糖作为碳源,主要有三个方面的原因: (1)同样作为碳源为植物细胞提供能量来源,蔗糖较葡萄糖能更好地调节培养基内的渗透压。配制相同质量分数的培养基,蔗糖形成的渗透压要明显低于葡萄糖,因此若采用葡萄糖作为碳源,易使植物细胞脱水而生长不良。同时,植物细胞吸收蔗糖的速率要明显慢于吸收葡萄糖的速率,所以蔗糖形成的渗透压可相对长期的保持稳定。 (2)植物组织培养过程中,要时刻注意防止培养基受到微生物的污染。微生物生长所需的碳源最常用的是葡萄糖,一般很少利用蔗糖。因此,采用蔗糖作为培养基的碳源,可一定程度上减少微生物的污染。 (3)诱导作用。在培养基成分中,增加生长素的浓度,导致木质部形成,增加蔗糖浓度则导致韧皮部形成。当生长素水平恒定时,2%蔗糖使分化出的全部是木质部,4%蔗糖使分化出的几乎全部是韧皮部,3%蔗糖则可以分化出两者。所以,生长素和蔗糖浓度决定愈伤组织中维管束的类型与数量。因此,在植物组培中要选用蔗糖而不选用葡萄糖。 通过细胞膜内外的液体的浓度差来调节 当细胞膜内的浓度小于细胞膜外的时候蔗糖救能进入细胞中了 植物细胞培养中最常用的培养基的碳源是蔗糖,已知葡萄糖和果糖也能使某些植物生长得很好。植物细胞可以分解蔗糖,蔗糖是由一分子果糖和一分子葡萄糖组成的,蔗糖是可以直接进入细胞的,蔗糖跨质膜从质外体进入细胞是由载体介导并需要消耗能量的质子-蔗糖共运输机制进行的,另外,植物能够利用的某些其他形式的碳源有麦芽糖、半乳糖、甘露糖和乳糖等。葡萄糖更不稳定,培养基需添加葡萄糖一般都在灭菌后再兑换。实在要添加葡萄糖那么灭菌温度一般控制在108~110左右,120度灭出来的就有一定程度的碳化了。所以用蔗糖更简单 动物细胞只能吸收葡萄糖,二糖蔗糖是无法吸收的。 以蔗糖为植物培养基碳源有两个原因: 1.抑制杂菌生长.细菌等不能直接以蔗糖为碳源,故可起抑制其生长的作用 2.蔗糖被植物细胞利用机理目还无定论.主要有以下两个学说(1)植物细胞先以次级主动运输的方式在细胞内外形成质子梯度,然后蔗糖就会利用这个梯度被吸收进细胞. (2).植物的细胞壁中含有能分解蔗糖的相关酶,蔗糖先在细胞膜外被分解为单糖,然后这些单糖再以主动运输的方式进入细胞,从而被细胞利用.

植物组织培养教学设计说明

课题1 菊花的组织培养 ★课题目标 (一)知识与技能 1、熟悉植物组织培养的基本过程 2、理解细胞分化的概念及离体植物细胞的脱分化和再分化 3、通过联系农业生产实际,培养学生活学活用,理论联系实际的能力[来源:学|科|网] (二)过程与方法 归纳MS培养基的配制方法,并设计表格比较微生物培养基与MS培养基的配方的异同。 (三)情感、态度与价值观 通过阅读植物组织培养技术的发展史,课下查阅植物组织培养技术在生产实践中应用的资料,关注学生科学态度的教育,拓展学生视野,感受科学技术在生产实践中的重要价值。★课题重点 植物组织培养过程中使用的无菌技术 ★课题难点 植物组织培养过程中使用的无菌技术 ★教学方法 启发式教学 ★教学工具 多媒体课件 ★教学过程 (一)引入新课 上节课我们探讨学习了如何从土壤中分离出尿素分解菌和纤维素分解微生物及其计数方法。这节课我们来学习研究植物的组织培养技术。

(二)进行新课 1.基础知识 知识回顾:联系“植物细胞工程”,回答下列问题: 1.1具有某种生物全套遗传信息的任何一个活细胞,都具有发育成完整个体的能力,即每个生物细胞都具有全能性。但在生物体的生长发育过程中并不表现出来,这是因为在特定的时间和空间条件下,通过基因的选择性表达,构成不同组织和器官。 1.2植物组织培养技术的应用有:实现优良品种的快速繁殖;培育脱毒作物;制作人工种子;培育作物新品种以及细胞产物的工厂化生产等。 活动1:阅读“植物组织培养的基本过程”,讨论并完成以下问题: 1.3细胞分化:个体发育中细胞在形态、结构和生理功能上出现稳定性差异的过程。 〖思考1〗细胞分化是一种持久性的变化,它有什么生理意义? 使多细胞生物体中细胞结构和功能趋向专门化,有利于提高各种生理功能的效率。 1.4愈伤组织是通过细胞分裂形成的,其细胞排列疏松而无规则,高度液泡化呈无定形状态的薄壁细胞。 〖思考2〗填表比较根尖分生组织和愈伤组织的异同: 1.5植物组织培养的过程可简单表示为: 活动2:阅读“影响植物组织培养的条件”,讨论并完成以下问题: 1.6材料:植物的种类、材料的年龄和保存时间的长短等都会影响实验结果。菊花组织培养一般选择未开化植物的茎上部新萌生的侧枝作材料。

植物组织培养基配制

培养基的配制 植物组织培养中常用的一种培养基是MS培养基。MS培养基的配制包括以下步骤。 培养基母液的配制和保存 MS培养基含有近30种营养成分,为了避免每次配制培养基都要对这几十种成分进行称量,可将培养基中的各种成分,按原量的20倍或200倍分别称量,配成浓缩液,这种浓缩液叫做培养基母液。这样每次使用时,取其总量的1/20(50 mL)或1/200(5 mL),加水稀释,制成培养液。现将制备培养基母液所需的各类物质的量列出,供配制时使用。 大量元素(母液Ⅰ) mg/L NH4NO3 33 000 KNO3 38 000 CaCl2·2H2O 8 800 MgSO4·7H2O 7 400 KH2PO4 3 400 微量元素(母液Ⅱ) KI 166 H3BO3 1 240 MnSO4·4H2O 4 460 ZnSO4·7H2O 1 720 Na2MoO4·2H2O 50 CuSO4·5H2O 5 CoCl2·6H2O 5 铁盐(母液Ⅲ) FeSO4·7H2O 5 560 Na2-EDTA·2H2O 7 460 有机成分(母液Ⅳ) ⅣA

肌醇 20 000 ⅣB 烟酸 100 盐酸吡哆醇(维生素B6) 100 盐酸硫胺素(维生素B1) 100 甘氨酸 400 以上各种营养成分的用量,除了母液Ⅰ为20倍浓缩液外,其余的均为200倍浓缩液。 上述几种母液都要单独配成1 L的贮备液。其中,母液Ⅰ、母液Ⅱ及母液Ⅳ的配制方法是:每种母液中的几种成分称量完毕后,分别用少量的蒸馏水彻底溶解,然后再将它们混溶,最后定容到1 L。 母液Ⅲ的配制方法是:将称好的FeSO4·7H2O和Na2-EDTA·2H2O 分别放到450 mL蒸馏水中,边加热边不断搅拌使它们溶解,然后将两种溶液混合,并将pH调至5.5,最后定容到1 L,保存在棕色玻璃瓶中。 各种母液配完后,分别用玻璃瓶贮存,并且贴上标签,注明母液号、配制倍数、日期等,保存在冰箱的冷藏室中。 MS培养基中还需要加入2,4-二氯苯氧乙酸(2,4-D)、萘乙酸(NAA)、6 苄基嘌呤(6BA)等植物生长调节物质,并且分别配成母液(0.1 mg/mL)。其配制方法是:分别称取这3种物质各10 mg,将2,4-D和NAA用少量(1 mL)无水乙醇预溶,将6BA用少量(1 mL)的物质的量浓度为0.1 mol/L的NaOH溶液溶解,溶解过程需要水浴加热,最后分别定容至100 mL,即得质量浓度为0.1 mg/mL的母液。 配制培养液用量筒或移液管从各种母液中分别取出所需的用量:母液Ⅰ为50 mL,母液Ⅱ、Ⅲ、ⅣA和ⅣB各5 mL。再取2,4-D 5 mL、NAA 1 mL,与各种母液一起放入烧杯中。 配制培养液时应注意:①在使用提前配制的母液时,应在量取各种母液之前,轻轻摇动盛放母液的瓶子,如果发现瓶中有沉淀、悬浮物或被微生物污染,应立即淘汰这种母液,重新进行配制;②用量筒或移液管量取培养基母液之前,必须用所量取的母液将量筒或移液管润洗2次;③量取母液时,最好将各种母液按将要量取的顺序写在纸上,量取1种,划掉1种,以免出错。

实验一 植物组织培养基母液配制的若干关键环节

实验一、植物组织培养基母液配制的若干关键环节目的与要求: 熟悉MS培养基的组成,掌握贮备液的配制方法. 植物组织培养(plant tissue culture)是指植物的任何器官、组织或细胞,在人工预知的控制条件下,放在含有营养物质和植物生长调节物质等组成的培养基中,使其生长、分化形成完整植株的过程.植物组织培养具有取材少,培养材料经济;人为控制培养条件,不受自然条件影响;生长周期短,繁殖率高;管理方便,利于自动化控制等特点.因而被广泛应用于各种植物的快速繁殖之中. 为了避免每次配制培养基都要对几十种化学药品进行称量,应该将培养基中的各种成分,按原量10倍、100倍或1000倍称量,配成浓缩液,这种浓缩液叫做母液。这样,每次配制培养基时,取其总量的1/10、1/100、1/1000,加以稀释,即成培养液。现将培养液中各类物质制备母液的方法说明如下。 以MS培养基为例,其母液的配制包括大量元素、微量元素、铁盐、维生素、氨基酸、植物生长调节物质和有机附加物等种类.(见表1) 表1 MS培养基母液的配制 成分规定用量 /mg.L-1 扩大倍 数 称取量/ mg 母液定溶 体积/ml 配1LMS培 养基吸取量 /ml 大量元素 KNO3 NH4NO3 MgSO4·7H2O KH2PO4 CaCl2·2H2O 微量元数 MnSO4·4H2O ZnSO4·7H2O 1900 1650 370 170 440 22.3 8.6 20 20 20 20 20 1000 1000 38000 33000 7400 3400 8800 22300 8600 1000 1000 1000 1000 1000 1000 1000 50 50 50 50 50 1 1

植物组织培养全过程

蝴蝶兰植物组织培养全过程 一实验目的: 1 掌握植物细胞组织培养的原理和方法; 2了解植物组织培养的方法; 3 学习植物组织培养的原理; 4 了解不同浓度BA对蝴蝶兰生根的影响; 5了解炼苗的作用; 6掌握训化的方法步骤; 7观察蝴蝶兰组织培养到种植的全过程,并注意其中出现的问题。 二实验原理: 蝴蝶兰为兰科蝴蝶兰属植物,因花型奇特、色彩艳丽、花期长久而享有“洋兰皇后”的美誉。蝴蝶兰原产于缅甸、菲律宾、台湾、马来西亚、印度尼西亚等热带亚洲地区,具有极高的观赏和经济价值,是国际上最具商业价值的四大观赏热带兰之一。蝴蝶兰属单茎性气生兰,再生能力弱,很难进行分株繁殖,且种子无胚乳,自然条件下难以萌发,增殖系数低,难以满足日益增长的市场需求。应用植物组织培养技术进行蝴蝶兰快速繁殖可以缩短繁育周期,获得大量成株,并可以保持优良性状,维护种质资源,是蝴蝶兰快速繁殖的有效途径。在以蝴蝶兰根尖、茎尖、叶片和花梗芽为外植体诱导原球茎时,由于根尖的诱导率低,摘取茎尖会损失母株等原因,因此在蝴蝶兰组织培养中根和茎都不是诱导原球茎的理想材料。而蝴蝶兰叶片和花梗芽作为外植体诱导圆球茎时,其诱导率较高、对母株伤害不大,是较为理想的外植体材料。 三材料与用具: 蝴蝶兰的茎尖、1/ 2MS +BA2. 5 mg/L + NAA0. 2 mg/L花梗腋芽诱导培养基、1/ 2 MS + BA3. 5 mg/L + KT1. 0 mg/L + NAA0. 5 mg/L + 椰乳10 %增殖培养基、母液、量筒、烧杯、玻璃棒、移液管、无菌水、高压灭菌器、容量瓶、pH试纸、75%酒精、2%次氯酸钠、镊子、解剖刀、超净工作台、95%酒精、穴盘等。 四方法与步骤 (1)母液的配制 根据需要的母液量配制母液,配好后要贴好标签,以防弄错。标签上要注明是什么母液和母液的稀释倍数。将配好的母液进行储藏,要用的时候可以方便使用。 配制培养液时应注意:

植物组织培养复习题 (标准)

植物组织培养复习题 一、填空题: 1.植物脱病毒一般采用茎尖培养脱毒和热处理两种方法。 2.最典型的培养基是1962年发表的的一种适合于烟草愈伤组织快速生长的改良培养基,该培养基后来被称为MS培养基,现已广泛用于植物组织培养。 3.胚状体发育顺次经过原胚期、球形胚期、心形胚期、鱼雷形胚期和子叶期。 4.具有防止褐变作用的维生素是Vc。 5.植物组织培养按培养对象分为愈伤组织培养、器官培养、胚培养、细胞和原生质体培 养等几种类型。 6.在通过微茎尖培养脱毒时,外植体的大小应以成苗率和脱毒率综合确定,一般以0.3~0.5mm、带1~3个叶原基为好。 7.对植物组织培养的培养基灭菌时,一般情况采用的条件是121温度,保持时间是15~ 20分钟。 8.在幼胚培养基中,蔗糖的主要作用是维持渗透压、提供碳源和能源和防止幼胚早熟萌 发。 9.植物组织培养中,微量元素铁的用量较大,由于在较高pH下,易形成Fe(OH)3沉淀,难以被吸收,所以多用硫酸亚铁(FeSO4·7H20)和乙二胺四乙酸(Na2-EDTA)形成的螯合物,并且单独配制。 10.种质保存大致分为原地保存和异地保寸两种方式。 11.外植体选择的原则是:选择优良的种质、选择健壮的植株、选择最适时期、选取适宜 的大小。 12.细胞悬浮培养的方法有成批培养和连续培养等。 13.植物原生质体分离的方法有酶解法和机械法。 14.植板率是指已形成细胞团的单细胞与接种总细胞数的百分数。 15.花粉分离的方法有挤压法、磁搅拌法、漂浮释放法。 16.植物组织培养发展可分为三个时期:萌芽阶段、奠基阶段、快速发展和应用阶段。 17.一个年产4-20万株苗的商业性组织培养实验室,其总面积不应少于60平方米,可划 分为准备室、缓冲室、无菌操作室和培养室。 18.盐酸硫胺素VB1是脱羧酶辅酶,吡哆醛VB6是转氨酶辅酶。 19.愈伤组织形成大致经历三个时期,即:诱导期、分裂期、分化期。

植物组织培养的一些注意事项

植物组织培养的一些注意事项 一、常用培养基主要特性 1、高盐成分培养基包括MS、LS、BL、BM、ER 等培养基。其中MS 培养基应用最广泛,其钾盐、铵盐及硝酸盐含量均较高, 微量元素种类齐全, 其养分数量及比例均比较合适, 广泛用于植物的器官、花药、细胞及原生质体的培养。LS、BM、ER 培养基由MS 培养基演变而来。 2 、硝酸钾含量较高的培养基包括B5 、N6 、LH、GS 等培养基。 ①B5 培养基B5 培养基除含有较高的钾盐外, 还含有较低的铵态氮和较高的盐 酸硫胺素, 较适合南洋杉、葡萄及豆科与十字花科植物等的培养。 ②N6 培养基N6 培养基( 朱至清等1975 ) 系我国学者创造, 获国家发明二等奖, 适用于单子叶植物花药培养, 柑橘花药培养也适合, 在楸树、针叶树等的组织培养中使用效果也好。 ③SH 培养基是矿盐浓度较高的一种培养基, 其中铵与磷酸是由磷酸二氢铵 ( NH4 H2 PO4 ) 提供的, 这种培养基适合于某些单子叶及双子叶植物的培养。 3 、中等无机盐含量的培养基 ①H 培养基本培养基大量元素约为MS 培养基的一半, 仅磷酸二氢钾及氯化钙稍低, 微量元素种类减少, 而含量较MS 为高, 维生素种类比MS 多。适于花药培养。 ②尼奇培养基(Niotsch 1969 ) 此培养基与H 培养基成分基本相同, 仅生物素比 H 培养基高10 倍。也适合于花药培养。 ③米勒培养基(Miller 1963 ) 此培养基和Blaydes(1966) 培养基二者成分完全相同。适合大豆愈伤组织培养和花药等培养用。 4 、低无机盐培养基大多情况下用于生根培养基。有以下几种: ①改良怀特培养基(White 1963 ) ②WS 培养基(Wolter & Skoog 1966) ③克诺普液( Knop 1965 ) 花卉培养上用得多。 ④贝尔什劳特液(Berthelot 1934) ⑤HB 培养基( Holley & Baker 1963) 此培养基在花卉脱毒培养和木本植物的茎尖培养中效果良好。其成分是大量元素比1/ 2 克诺普( Knop ) 液稍多, 微量元

最新植物组织培养知识点归纳

第一章 1、植物组织培养:是指在离体条件下,利用人工培养基对植物的器官、组织、细胞、原 生质体等进行培养,使其长成完整植株 2、外植体:在植物组织培养中,由活体(in vivo)植物上提取下来的、接种在培养基上的 无菌细胞、组织、器官等均称为外植体。 3、愈伤组织:指在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。 4、应用 一、农业上的应用 1. 种苗快速繁殖(rapid propagation) 2.无病毒苗(virus free)的培养 3.在育种上的应用(breeding) (1)倍性育种,缩短育种年限,杂种优势明显; (2)克服远缘杂交的不亲合性和不孕性(胚培养); (3)保存种质 (4)创造变异 二、在遗传学、分子生物学、细胞生物学、组织学、胚胎学、基因工程、生物工程等方面的应用。用于基因工程技术创造植物新种质。用于植物生长发育理论研究,包括生理学、病理学、胚胎学和细胞与分子生物学等。 三、利用组织培养材料作为植物生物反应器 第二章 1、细胞全能性(Totipotency):指任何具有完整的细胞核的植物细胞都拥有形成一个完整植 株所必须的全部遗传信息和发育成完整植株的能力。 2、细胞分化(cell differentiation):指导致细胞形成不同结构,引起功能或潜在的发育方式 改变的过程。 3、脱分化(Dedifferentiation):指离体条件下生长的细胞、组织或器官逐渐失去原来的结构 和功能而恢复分生状态,形成无组织结构细胞团或愈伤组织 的过程。 4、再分化(Redifferentiation):指脱分化的细胞重新恢复分化能力,形成具有特定结构和功 能的细胞、组织、器官甚至植株的过程。 5、植物组织培养中常遇到的问题以及解决措施 一、污染及防治: 1、真菌污染后,如果已形成孢子,则必须经高压灭菌后扔掉。但若是细菌污染,只 要及时发现,将材料上部未感菌的部分剪下转接,材料仍可使用。 2、用抗生素等杀菌药剂的处理,会影响植物材料正常生长。 二、褐变及防止 (1)选择合适的外植体

植物组织培养技术的应用以及

植物组织培养技术的应用以及在培养过程中存在的问题 摘要:介绍了植物组织培养技术的应用以及在培养过程中遇到的问题并提出解决的方法。植物组织培养技术的应用范围很广,目前主要用在离体无性系快速繁殖与无毒化、植物育种、遗传物质的保存、植物次生代谢物的生产和植物基因转化等方面。 关键词:植物组织培养;次生代谢物;基因转化;褐化 植物组织培养技术是指在无菌条件下,将离体的植物器官、组织、细胞以及原生质体,在人工配制的环境里培养成完整的植株。植物组织培养的依据是植物细胞“全能性”及植物的“再生作用”。1902年,德国著名植物学家G。Haberlanclt根据细胞学理论,大胆地提出了高等植物的器官和组织可以不断分割,直到单个细胞,即植物体细胞在适当的条件下,具有不断分裂和繁殖,发育成完整植株的潜力的观点。1943年,美国人White在烟草愈伤组织培养中,偶然发现形成一个芽,证实了G。Haberlanclt的论点。自G。Haberlandt提出的细胞全能性理论以来,在许多科学家的努力下,植物组织培养技术得到了迅速发展,其理论和方法逐渐趋于完善和成熟,并广泛应用于农业、林业、园艺、医药等行业,产生了巨大的经济效益和社会效益。 1 植物组织培养技术的应用前景 植物组织培养技术的应用前景很广泛,目前主要用在以下几个方面。 1.1 在植物脱毒和快速繁殖上的应用 植物脱毒和离体快速繁殖是目前植物组织培养应用最多、最有效的一个方面。很多农作物都带有病毒,特别是无性繁殖植物,如马铃薯、甘薯、草莓、大蒜等。但是,感病植株并非每个部位都带有病毒,White早在1943年就发现植物生长点附近的病毒浓度很低甚至无病毒。如果利用组织培养方法,取一定大小的茎尖进行培养,再生的植株有可能不带病毒,从而获得脱病毒苗,再用脱毒苗进行繁殖,则种植的作物就不会或极少发生病毒。此法已在马铃薯、大蒜、草莓、葡萄、康乃馨等多种作物上获得成功,并产生了明显的经济效益。国外40%~80%草莓是通过试管脱毒后繁殖的,意大利每个州都有年产百万草莓无毒种苗的工厂。由于运用组织培养法繁殖植物的明显特点是快速,每年可以数以百万倍的速度繁殖,因此,对一些繁殖系数低、不能用种子繁殖的名、优、特植物品种的繁殖,意义尤为重大。同时组织培养可不受地区、气候的影响,比常规方法快数万倍到数百万倍的速度扩大繁殖,及时提供大量优质种苗。目前,观赏植物、园艺作物、经济林木、无性繁殖作物等部分或大部分都用离体快繁提供苗木,试管苗已出现在国际市场上并形成产业化。 1.2 在植物育种上的应用 植物组织培养技术对培育优良作物品种开辟了新途径。目前,国内外把植物组织培养已普遍应用于作物育种,并在以下几个方面取得了较大进展: 1.2.1 单倍体育种 单倍体植株往往不能结实,在培养中用秋水仙素处理,可使染色体加倍,成为纯合二倍体植株,这种培养技术在育种上的应用称为单倍体育种。单倍体育种具有高速、高效率、基因型一次纯合等优点,因此,通过花药或花粉培养的单倍体育种,已经作为一种崭新的育种手段问世,自从1964年Guha和Maheshwari报道利用花药培养技术由蔓陀罗花药诱导单倍体植株以来,各国科学家致力于花药培养。1974年,我国科学家用单倍体育种法育成世界上第一个作物新品种---单育1号烟草品种,现已有300种植物花药培养成功。其中我国首先培育出来的就有40余种,它们主要是粮食、油料、蔬菜、林木、果树等重要经济作物。据报道,水稻品种

相关文档
最新文档