根轨迹法课程设计

根轨迹法课程设计
根轨迹法课程设计

1、根轨迹法简介---------------------------------------------------------------- 1

2、林士谔—赵访熊法(劈因子法)---------------------------------------- 3

3、根轨迹的在系统性能分析------------------------------------------------- 4

4、心的体会---------------------------------------------------------------------- 8 附录1 ------------------------------------------------------------------------------ 9 附录 2 ---------------------------------------------------------------------------- 11 参考文献 ------------------------------------------------------------------------ 14

1、根轨迹法简介

1948年,W.R.Evans提出了一种求特征根的简单方法,并且在控制系统的分析与设计中得到广泛的应用。这一方法不直接求解特征方程,用作图的方法表示特征方程的根与系统某一参数的全部数值关系,当这一参数取特定值时,对应的特征根可在上述关系图中找到。这种方法叫根轨迹法。根轨迹法具有直观的特点,利用系统的根轨迹可以分析结构和参数已知的闭环系统的稳定性和瞬态响应特性,还可分析参数变化对系统性能的影响。在设计线性控制系统时,可以根据对系统性能指标的要求确定可调整参数以及系统开环零极点的位置,即根轨迹法可以用于系统的分析与综合。

利用根轨迹分析和设计闭环控制系统的图解方法。特征方程的根随某个参数由零变到无穷大时在复数平面上形成的轨迹,称为根轨迹。在控制系统的分析中,对特征方程根的分布的研究,具有重要的意义。当特征方程的次数不高于2时,其根可用解析方法来简单地定出;但当特征方程的次数高于 2时,求根过程将变得相当复杂。美国学者W.R.埃文斯在1948年提出的根轨迹方法,为简化特征方程的求根过程提供了一种有效的手段。在把根轨迹技术应用于控制系统的分析时,常取系统的开环增益为可变参数,据此作出的根轨迹,表示闭环控制系统的极点在不同开环增益值下的分布。控制系统的极点在复数平面上的位置与系统的稳定性和过渡过程性能有密切的关系。根轨迹的建立,为分析控制系统在不同开环增益值时的行为提供了方便的途径。对于设计控制系统的校正装置,根轨迹法也是基本方法之一。根轨迹法和频率响应法被认为是构成经典控制理论的两大支柱。

对于图1中的控制系统,用G(s)和H(s)分别表示系统前馈通道和反馈通道中部件的传递函数,并且当s=0时它们的值均为1,而K表示系统的开环增益,则控制系统的根轨迹条件可表示为:

相角条件:开环传递函数KG(s)H(s)的相角值

{KG(s)H(s)}=±1800(2k+1)(k=0,1,2,…)

幅值条件:开环传递函数KG(s)H(s)的模│KG(s)H(s)│=1 系统的根轨迹,就是当开环增益K由零变化到无穷大时,由满足相角条件和幅值条件的 s值在复数平面上所构成的一组轨迹。

图--1 控制系统

根轨迹的精确化在有些情况下,有必要对按基本规则画出的根轨迹的粗略形状,特别是位于虚轴附近的部分,进行修正,使之精确化。实现精确化的一条比较简便的途径,是采用一种由埃文斯设计的所谓对数螺旋尺的专用工具。

根轨迹的计算机辅助制图70年代以来,随着电子计算机的普及,利用计算机对根轨迹的辅助制图的算法和程序都已建立,这大大减轻了系统分析和设计人员的繁重工作。

根轨迹的应用

根轨迹的应用主要有三个方面。

1、用于分析开环增益(或其他参数)值变化对系统行为的影响:在控制系统的极点中,离虚轴最近的一对孤立的共轭复数极点对系统的过渡过程行为具有主要影响,称为主导极点对。在根轨迹上,很容易看出开环增益不同取值时主导极点位置的变化情况,由此可估计出对系统行为的影响。

2、用于分析附加环节对控制系统性能的影响:为了某种目的常需要在控制系统中引入附加环节,这就相当于引入新的开环极点和开环零点。通过根轨迹便可估计出引入的附加环节对系统性能的影响。

3、用于设计控制系统的校正装置:校正装置是为了改善控制系统性能而引入系统的附加环节,利用根轨迹可确定它的类型和参数设计。

2、林士谔—赵访熊法(劈因子法)

由于解二次方程是容易的,因此在求实系数代数方程

f(x)=x n+a

1x n-1+ +a

n-1

x+a

n

=0

的复根时,如果找出f(x)的一个二次因子,就等于找到方程的一对复根.

设f(x)的一个近似二次因子(任意选取)为

ω(x)=x2+px+q

可用下述方法使它精确化:

(1)用ω(x)去除f(x),得到商式Q(x)和余式R(x),即

f(x)= ω(x)Q(x)+R(x)=(x2+px+q)(x n-2+b1x n-3+ +b n-3x+b n-2)+(r1 x +r2) 式中商式与余式的系数可用下面的递推公式算出:

b k =a

k

-pb

k-1

-qb

k-2

, k=1,2, ,n

b

-1

=0, b

=1

r

1

=b

n-1

=a

n-1

-pb

n-2

-qb

n-3

r

2

=b

n

+pb

n-1

=a

n

-qb

n-2

(2)用ω(x)去除xQ(x)得到余式

R[1](x)=R

11x+R

21

式中R

11,R

21

,由下面的递推公式算出:

c

k

=b

n

-pc

k-1

-qc

k-2

, k=1,2, ,n-3

c

-1

=0, c

=1

R

11

=b

n-2

-pc

n-3

-qc

n-4

R

21

=-qc

n-3

(3)用ω(x)去除Q(x)得到余式

R[2](x)=R

12x+R

22

式中R

12,R

22

,由下面的公式算出:

R

12

=b

n-3

-pc

n-4

-qc

n-5

R

21

=b

n-2

-qc

n-4

(4)解二元一次线性方程组

得到u,.

(5)修正后的二次式为

ω [1](x)=x 2+(p+u)x+(q+)

如果它还不够精确,再重复(1)至(5)的步骤进行修正,直到足够精确为止. 林士谔—赵访熊法求实系数代数方程的复根,其优点是避免了复数运算,缺点是程序比较复杂.

3、根轨迹的在系统性能分析

控制系统的稳定性、动态特性都与特征方程的根(即闭环极点)在s 平面上的分布有密切关系。时域分析中,依靠求解输入——输出微分方程或状态方程,只能确定控制系统闭环极点的具体分布。若要研究参数变化对控制系统性能的影响,特别是某些参数连续变化对系统性能的影响,依靠求解特征方程的方法来确定闭环极点的位置随参数变化的情况,计算量很大,有时甚至是不可能的。现在,我们则可以通过一种简便的图解方法,很方便地给出特征方程的根随参数变化在s 平面上分布位置变化的情况。我们先看下面的例子。 例1:设单位反馈系统的开环传递函数为:

)

2()

1()(H )(++=

s s s K s s G

当开环放大系数K 从零到无穷大变化时,系统的特征根在s 平面上分布情况:

系统有两个开环极点

01=s , 22-=s

系统的闭环传递函数为

k

k s k

ks s H s G ++++=+==

)2(G(s)H(s)1)()(X(s)Y(s)s)(G 20 系统的特征方程为

0)2(2=+++k s k s

特征方程的根

4

15.0415.02

221+---=++--=k k s k k s

可见特征根在s 平面的位置与K 有关。

K>0时,

都成为共轭复数。

415.022,1+±--=k k s

具有相同的负实部,且为常数,而虚部则随K 的增加其绝对值也增加。

图--2给出了系统的特征根在K 从零变化到无穷大时,相应位置的变化情况。

这种放大系数K 从零到无穷大变化时,特征方程的根在s 平面上相应变化的轨迹,称为根轨迹。根轨迹完整地反映了特征根随参数变化的情况。根据图1的根轨迹图,我们可以知道,不论K 怎样变化,系统始终是稳定的。因为全部根轨迹都分布在s 平面左半边。图—2和图—3分别为描点图像和实际图像。

图—2 例1描点图

图—3 例1实际图

自动控制系统的稳定性,由它的闭环极点唯一确定;其动态性能与系统的闭环极点和零点在S 平面上的分布有关。 因此确定控制系统闭环极点和零点在S 平面上的分布,特别是从已知的开环零极点的分布确定闭环零极点的分布,是对控制系统进行分析必须首先解决的问题。根轨迹法是解决上述问题的另一途径,它是在已知系统的开环传递函数零极点分布的基础上,研究某一个和某些参数的变化对系统闭环极点分布的影响的一种图解方法。由于根轨迹图直观、完整地反映系统特征方程的根在S 平面上分布的大致情况,通过一些简单的作图和计算,就可以看到系统参数的变化对系统闭环极点的影响趋势。这对分析研究控制系统的性能和提出改善系统性能的合理途径都具有重要意义。 例2:已知单位反馈系统的开环传递函数为

)

3)(2)(1()(H )(+++=

s s s s k

s s G

根据系统的根轨迹分析系统的稳定性,并进行结果分析。

根轨迹与虚轴相交时, K=10。所以,当开环放大系数K 的范围为0

系统是稳定的。描点根轨迹图像如图—4所示,实际根轨迹图像如图—5所示。

图—4 例2描点图

图—5 例2实际图

4、心的体会

通过本次针对基于劈因子法的根轨迹分析与仿真开展课程设计,我深刻理解根轨迹的在系统性能分析中的意义和作用,掌握劈因子方法的思想和算法实现。而且对于MATLAB知识有了进一步的了解。

附录1

算法的程序流程图

附录 2

主函数

p=[1];q=[1,1,0];s=[1];t=[1]; %输入

fz=cheng(p,s);fm=cheng(q,t);

fz=buzero(fz,length(fm));

zl=zeros(1,length(fm)-1);

for k=0:0.01:1000

z=pyz(k.*fz+fm); %劈因子求根

n=length(z);

for j=1:n

shi=sqrt((real(z(j))-real(zl(j)))^2);

xu=sqrt((imag(z(j))-imag(zl(j)))^2);

switch (shi>=0.01|xu>=1)

case 0

break;

case 1

plot(real(z(j)),imag(z(j)))%绘制根轨迹

hold on

zl(j)=z(j);

continue;

end

end

end

axis([-2 1 -100 100])

title('根轨迹')

xlabel('{\sigma}')

ylabel('jw')

jd=pyz(0+fm);

plot(real(jd),imag(jd),'r*')

text(-0.5,0,'\leftarrow k=1/4')

figure(2)

rlocus(p,q)

调用函数

劈因子:

function [x]=pyz(a) %输入

w=[1,1,1]; %任取一个二次因子while length(a)>3 %判断存在二次因子n=length(a);

u=1;b=0;Q=0; %设定初值

while (u>=0.1)|(u<=-0.1) %设定精度

p=w(2);q=w(3);

b(1)=1;b(2)=a(2)-p*b(1); %求商的系数

for i=3:n

b(i)=a(i)-p*b(i-1)-q*b(i-2);

end

for i=1:n-2

Q(i)=b(i); %商,为下次求因子准备

end

r1=b(n-1); %余式

r2=b(n)+p*b(n-1);

c(1)=0;c(2)=1;

if n>=6

for i=3:n-3

c(i)=b(n)-p*c(i-1)-q*c(i-2);

end

end

if n>=4

r=[b(n-2),b(n-3);0,b(n-2)];

r(2,1)=-q*c(n-3);

r(1,1)=b(n-2)-p*c(n-3);

end

if n>=5

r(1,1)=b(n-2)-p*c(n-3)-q*c(n-4);

r(2,2)=b(n-2)-q*c(n-4);

r(1,2)=b(n-3)-p*c(n-4);

end

if n>=6

r(1,2)=b(n-3)-p*c(n-4)-q*c(n-5);

end

u=(r1-r2*r(1,2)/r(2,2))/(r(1,1)-r(2,1)*r(1,2)/r(2,2)); %求偏差

v=(r1-r(1,1)*u)/r(1,2);

w=[1,p+u,q+v]; %矫正后的二次因子end

a=Q;

x(n)=(-w(2)-sqrt(w(2)*w(2)-4*w(1)*w(3)))/(2*w(1)); %求二次因子的根x(n-1)=(-w(2)+sqrt(w(2)*w(2)-4*w(1)*w(3)))/(2*w(1));

end

if length(a)==3

x(2)=(-a(2)-sqrt(a(2)*a(2)-4*a(1)*a(3)))/(2*a(1)); %求前两个根

x(1)=(-a(2)+sqrt(a(2)*a(2)-4*a(1)*a(3)))/(2*a(1));

elseif length(a)==2

x(1)=-a(2);

end

end

多项式的乘:

function [c]=cheng(a,b);

a=quzero(a);b=quzero(b);

c=zeros(1,length(a)+length(b)-1); for i=1:length(a)

for j=1:length(b)

c(i+j-1)=c(i+j-1)+a(i)*b(j);

end

end

对多项式补零:

function [b]=buzero(a,n)

m=length(a);

for i=1:n

if i<=n-m

b(i)=0;

else b(i)=a(m-n+i);

end

end

去掉多项式前置零:

function [b]=quzero(a)

n=length(a);

for i=1:n

switch a(i)~=0

case 1

c=i;

break;

case 0

c=i;

continue;

end

end

for j=1:n-c+1

b(j)=a(j+c-1);

end

参考文献

1叶庆凯.控制系统计算机辅助设计.北京:北京大学出版社,1990

2田作华.工程控制基础.北京:清华大学出版社,2008

3孙增析.计算机辅助设计.北京:清华大学出版社,1993

4 GB/T1526.信息处理—数据流程图、程序流程图、系统流程图、程序网络图和系统资源图的文件编制符号及约定,1989

(完整word版)自控 根轨迹法习题及答案

1 第四章 根轨迹法习题及答案 1系统的开环传递函数为 ) 4)(2)(1()()(* +++=s s s K s H s G 试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件π)12()()(+±=∠k s H s G ,如图解4-1所示。 对于31j s +-=,由相角条件 =∠)()(11s H s G =++-∠-++-∠-++-∠-)431()231()131(0j j j ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。将1s 代入幅值条件: 14 31231131)(* 11=++-?++-?++-= j j j K s H s G )( 解出 : 12* =K , 2 3 8*==K K 2 已知开环零、极点如图4-22所示,试绘制相应的根轨迹。

2 解根轨如图解4-2所示: 3已知单位反馈系统的开环传递函数,要求: (1)确定 ) 20 )( 10 ( ) ( ) ( 2+ + + = * s s s z s K s G产生纯虚根为1j ±的z值和* K值; (2)概略绘出 )2 3 )( 2 3 )( 5.3 )(1 ( ) ( j s j s s s s K s G - + + + + + = * 的闭环根轨迹图(要求

3 确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。 解(1)闭环特征方程 020030)()20)(10()(2342=++++=++++=***z K s K s s s z s K s s s s D 有 0)30()200()(3 2 4 =-++-=* * ωωωωωK j z K j D 令实虚部分别等于零即: ?????=-=+-**0 300 200324ωωωωK z K 把1=ω代入得: 30=* K , 199=z 。 (2)系统有五个开环极点: 23,23,5.3,1,054321j p j p p p p --=+-=-=-== ① 实轴上的根轨迹:[],5.3,-∞- []0,1- ② 渐近线: 1 3.5(32)(32) 2.15 (21)3,,555a a j j k σπππ?π--+-++--?==-???+?==±±?? ③ 分离点: 02 312315.31111=+++-++++++j d j d d d d 解得: 45.01-=d , 4.22-d (舍去) , 90.125.343j d ±-=、 (舍去) ④ 与虚轴交点:闭环特征方程为 0)23)(23)(5.3)(1()(=+-+++++=*K j s j s s s s s D 把ωj s =代入上方程,整理,令实虚部分别为零得: ?????=+-==-+=*0 5.455.43 )Im(05.795.10)Re(3 52 4ωωωωωωωj K j 解得: ???==*00K ω ,???=±=*90.7102.1K ω,???-=±=*3 .1554652.6K ω(舍去) ⑤ 起始角:根据法则七(相角条件),根轨迹的起始角为 74..923..1461359096..751804=----=p θ 由对称性得,另一起始角为 74.92,根轨迹如图解4-6所示。

根轨迹法习题和答案

第四章 根轨迹法习题及答案 4-1 系统的开环传递函数为 ) 4s )(2s )(1s (K )s (H )s (G * +++= 试证明3j 1s 1+-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 解 若点1s 在根轨迹上,则点1s 应满足相角条件 π)12()()(+±=∠k s H s G ,如图所示。 对于31j s +-=,由相角条件 =∠)s (H )s (G 11-++-∠-)13j 1(0 =++-∠-++-∠)43j 1()23j 1( ππ π π -=- - - 6 3 2 满足相角条件,因此311j s +-=在根轨迹上。 将1s 代入幅值条件: 14 3j 123j 113j 1K s H )s (G * 11=++-?++-?++-= )( 解出 : 12K * = , 2 3 8K K *== 4-2 已知单位反馈系统的开环传递函数如下,试求参数b 从零变化到无穷大时的根轨迹方程,并写出2b =时系统的闭环传递函数。 (1))b s )(4s (02)s (G ++= (2)) b s )(2s (s )b 2s (01)s (G +++= 解 (1) ) 4j 2s )(4j 2s () 4s (b 20s 4s )4s (b )s (G 2-++++=+++= '

28 s 6s 20 )s (G 1)s (G )s (2++=+=Φ (2) ) 10s 2s (s )20s 2s (b )s (G 2 2++++='=)3j 1s )(3j 1s (s ) 19j 1s )(19j 1s (b -+++-+++ 40 s 14s 4s ) 4s (10)s (G 1)s (G )s (23++++=+= Φ 4-3 已知单位反馈系统的开环传递函数) b s )(4s (s 2)s (G ++= ,试绘制参数b 从零变 化到无穷大时的根轨迹,并写出s=-2这一点对应的闭环传递函数。 解 ) 6s (s ) 4s (b )s (G ++= ' 根轨迹如图。 2s -=时4b =, ) 8s )(2s (s 216s 10s s 2)s (2 ++=++=Φ 4-4 已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。 ⑴ ) 1s 5.0)(1s 2.0(s k )s (G ++= (2) )1s 2(s )1s (k )s (G ++= (3) )3s )(2s (s ) 5s (k )s (G *+++= (4) ) 1s (s )2s )(1s (*k )s (G -++= 解 ⑴ ) 2s )(5s (s K 10)1s 5.0)(1s 2.0(s K )s (G ++=++= 三个开环极点:0p 1=,2p 2-=,5p 3-= ① 实轴上的根轨迹:(] 5,-∞-, []0,2-

第四章 根轨迹法习题

第四章 根轨迹法习题 4-1 系统的开环传递函数为 ) 4)(2)(1()()(* +++= s s s K s H s G 试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益*K 和开环增益K 。 4-2 已知开环零、极点如图4-2 所示,试绘制相应的根轨迹。 4-3 单位反馈系统的开环传递函数如下,试概略绘出系统根轨迹。 ⑴ ) 15. 0)(12.0()(++= s s s K s G ⑵ ) 3)(2()5()(* +++= s s s s K s G ⑶ ) 12()1()(++= s s s K s G 4-4单位反馈系统的开环传递函数如下,试概略绘出相应的根轨迹。 ⑴ ) 21)(21() 2()(* j s j s s K s G -++++= ⑵ ) 1010)(1010() 20()(*j s j s s s K s G -++++=

4-5 系统的开环传递函数如下,试概略绘出相应的根轨迹。 ⑴ ) 208()()(2 ++= * s s s K s H s G ⑵ ) 5)(2)(1()()(+++= * s s s s K s H s G ⑶ ) 22)(3() 2()()(2 ++++= * s s s s s K s H s G ⑷ ) 164)(1()1()()(2++-+=* s s s s s K s H s G 4-6 已知单位反馈系统的开环传递函数)(s G ,要求: (1)确定) 20)(10()()(2 +++= * s s s z s K s G 产生纯虚根为1j ±的z 值和*K 值; (2)概略绘出) 23)(23)(5.3)(1()(j s j s s s s K s G -+++++= * 的闭环根轨迹图(要求 确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。 4-7 已知控制系统的开环传递函数为 2 2 ) 94(2)()(+++=* s s s K s H s G )( 试概略绘制系统根轨迹。 4-8 已知系统的开环传递函数为 ) 93()(2 ++= * s s s K s G 试用根轨迹法确定使闭环系统稳定的K 值范围。 4-9单位反馈系统的开环传递函数为 ) 17 4( )1()12()(2 -++= s s s K s G 试绘制系统根轨迹,并确定使系统稳定的K 值范围。 4-10单位反馈系统的开环传递函数为

第4章根轨迹分析法知识题解答

第四章根轨迹分析法 4.1 学习要点 1根轨迹的概念; 2 根轨迹方程及幅值条件与相角条件的应用; 3根轨迹绘制法则与步骤; 4 应用根轨迹分析参数变化对系统性能的影响。 4.2 思考与习题祥解 题4.1 思考与总结下述问题。 (1)根轨迹的概念、根轨迹分析的意义与作用。 (2)在绘制根轨迹时,如何运用幅值条件与相角条件? (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 (4)总结增加开环零、极点对系统根轨迹的影响,归纳系统需要增加开环零、极点的情况。 答:(1)当系统某一参数发生变化时,闭环特征方程式的特征根在S复平面移动形成的轨线称为根轨迹。根轨迹反映系统闭环特征根随参数变化的走向与分布。 根轨迹法研究当系统的某一参数发生变化时,如何根据系统已知的开环传递函数的零极点,来确定系统的闭环特征根的移动轨迹。因此,对于高阶系统,不必求解微分方程,通过根轨迹便可以直观地分析系统参数对系统动态性能的影响。 应用根轨迹可以直观地分析参数变化对系统动态性能的影响,以及要满足系统动态要求,应如何配置系统的开环零极点,获得期望的根轨迹走向与分布。 (2)根轨迹上的点是闭环特征方程式的根。根轨迹方程可由闭环特征方程式得到,且为复数方程。可以分解为幅值条件与相角条件。运用相角条件可以确定S复平面上的点是否在根轨迹上;运用幅值条件可以确定根轨迹上的点对应的参数值。 (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。 考察开环放大系数或根轨迹增益变化时得到的闭环特征根移动轨迹称为常规根轨迹。除开环放大系数或根轨迹增益变化之外的根轨迹称为广义根轨迹,如系统的参数根轨迹、正反馈系统根轨迹和滞后系统根轨迹等。

自动控制原理课程设计题目(1)

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 ) 101.0)(11.0()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1 ; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 ) 2)(1()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1 ; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。

线性方程组的平方根解法

在求解线性方程组时,直接解法有顺序高斯消元法、列主元高斯消元法、全主元高斯消元法、高斯约当消元法、消元形式的追赶法、LU分解法、矩阵形式的追赶法,当我们遇到对称正定线性方程组时,我们就要用到平方根法(对称LLT 分解法)来求解,为了熟悉和熟练运用平方根法求解线性方程组,下面对运用平方根法求解线性方程组进行解析。 一、运用平方根法求解线性方程组涉及到的定理及定义 我们在运用平方根法求解线性方程组时,要判定线性方程组Ax=b的系数矩阵A是否是对称正定矩阵,那么我们就要了解正定矩阵的性质和如下定理及定义: 1、由线性代数知,正定矩阵具有如下性质: 1) 正定矩阵A是非奇异的 2) 正定矩阵A的任一主子矩阵也必为正定矩阵 3) 正定矩阵A的主对角元素均为正数 4) 正定矩阵 A的特征值均大于零 5) 正定矩阵A的行列式必为正数 定义一线性方程组Ax=b的系数矩阵A是对称正定矩阵,那么Ax=b是对称正定线性方程组。 定义二如果方阵A满足A=AT,那么A是对称阵。 2.1.4 平方根法和改进的平方根法 如果A是n阶对称矩阵,由定理2还可得如下分解定理: 定理2 若A为n阶对称矩阵,且A的各阶顺序主子式都不为零,则A可惟一分解为:A=LDLT,其中L为单位下三角阵,D为对角阵。 证明因为A的各阶顺序主子式都不为零,所以A可惟一分解为:A=LU 因为,所以可将 U分解为: 其中 D为对角矩阵,U1为单位上三角阵.于是:A=LDU1=L(DU1) 因为A为对称矩阵,所以,A=AT=U1TDTLT=U1T(DLT),由 A的 LU分解的惟一性即得:L=U1T,即U1=LT,故A=LDLT。 工程技术中的许多实际问题所归结出的线性方程组,其系数矩阵常有对称正定性,对于具有此类特殊性质的系数矩阵,利用矩阵的三角分解法求解是一种较好的有效方法,这就是对称正定矩阵方程组的平方根法及改进的平方根法,这种方法目前在计算机上已被广泛应用。 定理3 对称矩阵A为正定的充分必要条件是A的各阶顺序主子式大于零。 2 对称正定矩阵的三角分解 定理 (Cholesky分解)设A为n阶对称正定矩阵,则存在惟一的主对角线元素都是正数的下三角阵L,使得:A=LLT。 分解式A=LLT称为正定矩阵的Cholesky分解,利用Cholesky分解来求解系数矩阵为对称正定矩阵的方程组AX=b的方法称为平方根法。 设A为4阶对称正定矩阵,则由定理 4知,A=LLT,即: 将右端矩阵相乘,并令两端矩阵的元素相等,于是不难算得矩阵L的元素的计算公式为:

自动课程设计

课程设计任务书 院部名称机电工程学院 专业自动化 班级 M11自动化 指导教师陈丽换 金陵科技学院教务处制

摘要 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。 关键字:超前-滞后校正 MATLAB 仿真

1.课程设计应达到的目的 1. 掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 2. 学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。 2.课程设计题目及要求 题目: 已知单位负反馈系统的开环传递函数, 试用频率法设计串 联滞后——超前校正装置,使之满足在单位斜坡作用下,系统的速度误差系数1v K 10s -=,系统的相角裕量045γ≥,校正后的剪切频率 1.5C rad s ω≥。 设计要求: 1. 首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 2.. 利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否 稳 定 , 为 什 么 ? 3. 利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系。求出系统校正前与校正后的动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化。 4. 绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴 交点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系 统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由。 5. 绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由。 ()(1)(2) K G S S S S = ++

平方根法追赶法

§5 平方根法 一、教学设计 1.教学内容:对称正定矩阵的Cholesky 分解法、三对角线矩阵分解的追赶法。 2.重点难点:Cholesky 分解法、追赶法。 3.教学目标:掌握对称正定矩阵的Cholesky 分解的计算过程,掌握三对角线矩阵分解的追赶法。 4.教学方法:讲授与讨论。 二、教学过程 §5 平方根法 在工程计算中,常遇到求解解对称再正定线性方程组问题,如应用有限元法解结构力学问题,应用差分方法解椭圆型偏微分方程等,最后都归结为求解系数矩阵为对称正定阵的线性方程组。根据系数矩阵的特殊性,是否有更好的解决方案(在存贮空间上的好处是显而易见的),算法上是否有所简化? 5-0对称正定矩阵及性质复习 定义:设n n R A ?∈,如果A 满足条件 (1)A A T =;(2)对任意非零向量n R ∈x ,有0>x x A T ,则称A 为对称正定矩阵。 定理1 (对称正定矩阵的性质)如果n n R A ?∈为对称正定矩阵,则 (1)A 为非奇异阵,且1-A 亦是对称正定阵; (2)记k A 为A 的顺序主子阵,则k A 亦是对称正定阵),,2,1(n k =; (3)A 的特征值),,2,1(0)(n i A i =>λ; (4)A 的顺序主子式都大于零,即),,2,1(0)det(n k A k =>。 定理2 设n n R A ?∈为对称矩阵(判据)

(1)若A 的特征值),,2,1(0)(n i A i =>λ,则A 为对称正定矩阵; (2)若A 的顺序主子式都大于零,即),,2,1(0)det(n k A k =>,则A 为对称正定阵。 5-1 对称正定矩阵的三角分解 由前述定理 3.1知,若n 阶方阵A 的顺序主子式)1,,2,1 ()d e t (-=n k A k 均不为零,则A 有唯一的三角分解LU A =,其中L 为单位下三角阵,U 为上三角阵。n 阶对称正定阵A 的顺序主子式都大于零,当然有LU 分解,进一步地,此时U L ,之间有什么关系?这对解方程组有用处。由LU A L U A T T T ===及分解的唯一性,想到若U 的主对角元素皆为1,就有可能获得一些结果。为此,再将U 分解 DR u u u u u u u u u u u u u u u U n n nn nn n n ≡??? ?????? ???????? ?????? ??? ? ? ? ?=????????? ?? ?=111222********* 11222 11211 易知),,2,1(0n i u ii => (用k k k U L A ,,分别记矩阵U L A ,,的k 阶 顺序主子阵,容易验证k k k U L A =于是 ii k i i ii k i k k k k k k u a U U L U L A ∏∏ =======1 )(1det det det )det(det ) 于是LDR LU A ==,所以 A DR L LU DL R LDR A T T T T =====)()()(, 即 )()(DR L DL R A T T == 由分解的唯一性知:T R L =,R L T =,于是T LDL A = 自然地,若记

第四章 根轨迹法 习题

第四章 根轨迹法 4-1试粗略画出对应反馈控制系统具有以下前向和反馈传递函数的根轨迹图: ()()() ()s s H s s s K s G 6.01,01.01.02 +=++= 4-2 试粗略地画出反馈系统函数 ()()()() 2 411+-+= s s s K s G 的根轨迹。 4-3 对应负反馈控制系统,其前向和反馈传递函数为 ()()() ()1,42) 1(2 =+++= s H s s s s K s G 试粗略地画出系统的根轨迹。 4-4 对应正反馈重做习题4-3,试问从你的结果中得出什么结论? 4-5 试画出具有以下前向和反馈传递函数的,正反馈系统根轨迹的粗略图。 ()()()()1,412 2=++= s H s s K s G 4-6 试确定反馈系统开环传递函数为 ()()()()() 5 284) 2(2 +++++= s s s s s s K s H s G 对应-∞

自动控制原理_课后习题及答案

第一章绪论 1-1试比较开环控制系统和闭环控制系统的优缺点. 解答:1开环系统 (1)优点:结构简单,成本低,工作稳定。用于系统输入信号及扰动作 用能预先知道时,可得到满意的效果。 (2)缺点:不能自动调节被控量的偏差。因此系统元器件参数变化, 外来未知扰动存在时,控制精度差。 2 闭环系统 ⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量 偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。 它是一种按偏差调节的控制系统。在实际中应用广泛。 ⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。 1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。 解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。 闭环控制系统常采用负反馈。由1-1中的描述的闭环系统的优点所证 明。例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉 子的温度,再与温度值相比较,去控制加热系统,以达到设定值。 1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)? (1) (2) (3) (4) (5)

(6) (7) 解答:(1)线性定常(2)非线性定常(3)线性时变 (4)线性时变(5)非线性定常(6)非线性定常 (7)线性定常 1-4如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。控制的目的是保持水位为一定的高度。 试说明该系统的工作原理并画出其方框图。 题1-4图水位自动控制系统 解答: (1) 方框图如下: ⑵工作原理:系统的控制是保持水箱水位高度不变。水箱是被控对象,水箱的水位是被控量,出水流量Q2的大小对应的水位高度是给定量。当水箱水位高于给定水位,通过浮子连杆机构使阀门关小,进入流量减小,水位降低,当水箱水位低于给定水位时,通过浮子连杆机构使流入管道中的阀门开大,进入流量增加,水位升高到给定水位。 1-5图1-5是液位系统的控制任务是保持液位高度不变。水箱是被控对象,水箱液位是被控量,电位器设定电压时(表征液位的希望值Cr)是给定量。

自动控制原理课程设计

课程设计报告 (2014--2015年度第一学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化 班级:自动化 学号: 学生姓名: 指导教师: 设计周数:1周 成绩: 日期:2015年1月9日

目录 第一部分、总体步骤 (3) 一、课程设计的目的与要求 (3) 二、主要内容 (3) 三、进度计划 (4) 四、设计成果要求 (4) 五、考核方式 (4) 第二部分、设计正文 (5) 一控制系统的数学模型 (5) 二控制系统的时域分析 (9) 三控制系统的根轨迹分析 (15) 四控制系统的频域分析 (19) 五控制系统的校正 (22) 六非线性系统分析 (38) 第三部分、课程设计总结 (40)

第一部分、总体步骤 一、课程设计的目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM工具箱和SIMULINK仿真软件,分析系统的性能。 二、主要内容 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。 三、进度计划

笔算开平方方法

笔算开平方方法 一. 拿出一个数,以小数点为分界,两位为一节,从最高位开始开平方。 我们就拿256吧 两位一节,先看最高的是2,那最大开平方就是1,写下1,剩余1。 第二步就是重点了! 再取两个下来,也就是56。前面还有1,组合成156。 将第一次的开平方数1,先扩大20倍,得到20,加上可以取的最大值,这个最大值是什么最大呢?也就是x*(20+x)<=156的最大x,可以取6,也正好是6,所以开平方的结果是16。 再拿个比较大的数:15625 这个数,我们还是两位一节,看最高位1,那就写1,没剩余。 第二步:再取两个下来,也就是56,我们先将1扩大20倍,再用刚才的方法,取最大的x,可以取2,那就写2,剩余56-2*(20+2)=56-44=12 第三步:再取两个下来,也就是25,和刚才剩余的12组成1225,那我们再对刚才的开平方数12,再扩大20倍,得到240,再求最大的开平方数,正好是5,没有剩余。 所以结果是125 如果有剩余,那小数点后也是两位两位地加,也就是一次加两个0,方法和前面一样,对前面已开出来的先扩大20倍,再取最大开方数,一直到你所要的准确度。 二. 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是4,即试商是4); 5.用所求的平方根的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 例如求的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 实例 例如,A=5:5介于2的平方至3的平方;之间。我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取中间值2.5。 第一步:2.5+(5/2.5-2.5)1/2=2.2;即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2。 第二步:2.2+(5/2.2-2.2)1/2=2.23;即5/2.2=2.27272,2.27272-2.2=-0.07272,-0.07272×1/2=-0.03636,2.2+0.03636=2.23。取3位数2.23。 第三步: 2.23+(5/2.23-2.23)1/2=2.236。即5/2.23=2.2421525,,2.2421525-2.23=0.0121525,,0.0121525×1/2=0.00607,,2.23+0.006=2.236.,取4位数。每一步多取一位数。这个方法又叫反馈开方,即使你输入一个错误的数值,

自考自控复习题及答案

一、单项选择题 1. 对自动控制系统的性能最基本的要求为 【 A 】 A.稳定性 B.灵敏性 C.快速性 D.准确性 2. 有一线性系统,其输入分别为u 1(t) 和u 2(t) 时,输出分别为y 1(t ) 和y 2(t) 。当输入 为 a 1u 1(t)+a 2u 2(t) 时 (a 1,a 2 为常数),输出应为 【 B 】 A. a 1y 1(t)+y 2(t) B. a 1y 1(t)+a 2y 2(t) C.a 1y 1(t)-a 2y 2(t) D.y 1(t)+a 2y 2(t) 3. 如图所示的非线性为 【 D 】 A. 饱和非线性 B. 死区非线性 C. 磁滞非线性 D. 继电型非线性 4. 时域分析中最常用的典型输入信号是 【 D 】 A.脉冲函数 B.斜坡函数 C.抛物线函数 D.阶跃函数 5. 控制理论中的频率分析法采用的典型输入信号为 【 C 】 A. 阶跃信号 B. 脉冲信号 C. 正弦信号 D. 斜坡信号 6. 单位抛物线函数在0t ≥时的表达式为()x t = 【 C 】 A.t B.2t C.2/2t D.2 2t 7. 函数sin t ω的拉氏变换是 【 A 】 A. 22s ωω+ B.22s s ω+ C.22 1s ω + D.22 s ω+ 8. 函数cos t ω的拉普拉斯变换是 【 B 】

A. 22s ωω+ B.22s s ω+ C.22 1 s ω + D.22s ω+ 9. 线性定常系统的传递函数,是在零初始条件下 【 B 】 A. 系统输出信号与输入信号之比 B. 系统输出信号的拉氏变换与输入信号的拉氏变换之比 C. 系统输入信号与输出信号之比 D. 系统输入信号的拉氏变换与输出信号的拉氏变换之比 10. 传递函数反映了系统的动态性能,它 【 C 】 A. 只与输入信号有关 B. 只与初始条件有关 C. 只与系统的结构参数有关 D. 与输入信号、初始条件、系统结构都有关 11. 控制系统中,典型环节的划分是根据 【 D 】 A. 元件或设备的形式 B. 系统的物理结构 C. 环节的连接方式 D. 环节的数学模型 12. 令线性定常系统传递函数的分母多项式为零,则可得到系统的 【 D 】 A.代数方程 B.差分方程 C.状态方程 D.特征方程 13. 主导极点的特点是 【 C 】 A. 距离实轴很近 B. 距离实轴很远 C. 距离虚轴很近 D. 距离虚轴很远 14. 设控制系统的开环传递函数为()(1)(2) k G s s s s = ++,该系统为 【 B 】 A. 0型系统 B. 1型系统 C. 2型系统 D. 3型系统 15. 控制系统的上升时间 t r 、调整时间 t S 等反映出系统的 【 C 】 A. 相对稳定性 B. 绝对稳定性 C. 快速性 D. 准确性 16. 控制系统的稳态误差e ss 反映了系统的 【 A 】 A.稳态控制精度 B.相对稳定性 C.快速性 D.绝对稳定性 17. 一阶系统单位阶跃响应的稳态误差为 【 A 】

时域分析法与根轨迹练习题

1. 自动控制系统对输入信号的响应,一般都包含两个分量,即一个是____________,另一个是__________分量。 2. 函数f(t)=t e 63-的拉氏变换式是________________________________。 3. 积分环节的传递函数表达式为G (s )=_________________________。 4. 在斜坡函数的输入作用下,___________型系统的稳态误差为零。 四、控制系统结构图如图2所示。 (1)希望系统所有特征根位于s 平面上s =-2的左侧区域,且ξ不小于0.5。试画出特征根在s 平面上的分布范围(用阴影线表示)。 (2)当特征根处在阴影线范围内时,试求,K T 的取值范围。 (20分) 五、已知系统的结构图如图3所示。若()21()r t t =?时,试求 (1)当0f K =时,求系统的响应()c t ,超调量%σ及调节时间s t 。 (2)当0f K ≠时,若要使超调量%σ=20%,试求f K 应为多大?并求出此时的调节时间s t 的值。 (3)比较上述两种情况,说明内反馈f K s 的作用是什么? (20分) 图3 六、系统结构图如图4所示。当输入信号()1()r t t =,干扰信号()1()n t t =时,求系统总 的稳态误差e ss 。 (15分) 图4 1、 根轨迹是指_____________系统特征方程式的根在s 平面上变化的轨迹。 2、 线性系统稳定的充分必要条件是闭环传递函数的极点均严格位于s______________半平面

3、在二阶系统中引入比例-微分控制会使系统的阻尼系数________________。 9、已知单位反馈系统的开环传递函数 50 ( ) (0.11)(5) G s s s s = ++ ,则在斜坡信号作用下的稳态误差为_________。 3、某控制系统的方框图如图所示,试求(16分) (1)该系统的开环传递函数) (s G k 、闭环传递函数 ) ( ) ( s R s C 和误差传递函数 ) ( ) ( s R s E 。 (2)若保证阻尼比0.7 ξ=和单位斜坡函数的稳态误差为0.25 ss e=,求系统参数K和τ。(3) 计算超调量和调节时间。 1、已知单位反馈系统的开环传递函数为 * ()() (2)(3) K G s H s s s s ,试绘制闭环系统的根轨迹,并判断使系统稳定的* K范围。 R(s)C(s) - 2 K s N(s) 1 K 5.图4 6.在二阶系统中引入测速反馈控制会使系统的开环增益________________。 7.已知单位反馈系统的开环传递函数 100 () (0.11)(5) G s s s = ++ ,则在斜坡信号作用下的稳态误差为________________。 8.闭环系统的稳定性只决定于闭环系统的________________。

自动控制根轨迹课程设计(精髓版)

西安石油大学 课程设计 电子工程学院自动化专业 1203班题目根轨迹法校正的设计 学生郭新兴 指导老师陈延军 二○一四年十二月

目录 1. 任务书.........................................1 2.设计思想及内容.................................2 3.编制的程序.....................................2 3.1运用MATLAB编程............................ 2 3.2由期望极点位置确定校正器传递函数...........4 3.3 校正后的系统传递函数.......................5 4.结论...........................................7 5.设计总结.......................................8 6.参考文献.......................................8

《自动控制理论》课程设计任务书

2.设计内容及思想 : 1) 内容:已知单位负反馈系统被控对象传递函数为: ) 25(2500 )(0 0+=s s K s G ,试用根轨迹几何设计法对系统进行滞后串联校正 设计,使之满足: (1)阶跃响应的超调量:σ%≤15%; (2)阶跃响应的调节时间:t s ≤0.3s ; (3)单位斜坡响应稳态误差:e ss ≤0.01。 2)思想: 首先绘出未校正系统得bode 图与频域性能,然后利用MATLAB 的SISOTOOL 软件包得到系统的根轨迹图,对系统进行校正,分析系统未校正前的参数,再按题目要求对系统进行校正,计算出相关参数。最后观察曲线跟题目相关要求对比看是否满足要求,并判断系统校正前后的差异。 3 编制的程序: 3.1运用MATLAB 编程: 根据自动控制理论,对 I 型系统的公式可以求出静态误差系数 K 0=1。再根据要求编写未校正以前的程序 %MATLAB PROGRAM L1.m K=1; %由稳态误差求得; n1=2500;d1=conv([1 0],[1 25]); %分母用conv 表示卷积;

笔算开平方法的计算步骤

笔算开平方法的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。 2.根据左边第一段里的数,求得平方根的最高位上的数。 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。 6.用同样的方法,继续求平方根的其他各位上的数。 如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍. 手工开根号法,只适用于任何一个整数或者有限小数开二次方. 因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释: 假设一个整数1456456,开根号首先要从个位开始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下: 解法中需要说明的几个问题: 1,算式中的....没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的 2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要 3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响 ...........1..2..0..6。8 .........----------------------- .....1../..1'45'64'56.00.. (1) (1) ............-------- .......22..|.45.. (2) (44) ..............-------- ........240.|.1'64.. (3)

自动控制原理-第四章习题集配套答案

第四章 根轨迹分析法习题 4-2 单位回馈控制系统的开环传递函数1 )(+= s K s G r ,试用解析法绘出r K 从零变化到无穷时的死循环根轨迹图,并判断-2, j1, (-3+j2)是否在根轨迹上。 解:1-s 01s 0r =?=+=时,K 2-s 02s 1r =?=+=时,K 3-s 03s 2r =?=+=时,K …… -2 在根轨迹上,(-3+j2),j1不在根轨迹上。 4-3 回馈控制系统的开环传递函数如下,0≥r K ,试画出各系统的根轨迹图。 (2) )4)(1() 5.1()(+++=s s s s K s G r (3) 2 ) 1()(+=s s K s G r , 解:(2) 1)开环零、极点:p 1=0,p 2=-1,p 3=-4,z=-1.0,n=3,m=1 2)实轴上根轨迹段:(0,-1),(-1.5,-4) 3)根轨迹的渐近线: ? ±=±=-+±= -=----= 902 )12(, 75.12 )5.1(410)2( π π?σm n k a a 夹角交点条渐近线 4)分离点和会合点 6 .05.1141111-=+= ++++d d d d d 试探法求得 (3) 1)开环零、极点:p 1=0,p 2,3=-1,n=3 2)实轴上根轨迹段:(0,-1),(-1,-∞) 3)根轨迹的渐近线:

±=-+±= -=--= 3 )12(,3 2 3110)3( π π?σm n k a a 夹角交点条渐近线 4)分离点和会合点 3 1 01 21- =?=++d d d 5)与虚轴交点:22 3++s s 4-5 系统的开环传递函数为) 1() 2()(++= s s s K s G r , (1) 画出系统的根轨迹,标出分离点和会合点; (2) 当增益r K 为何值时,复数特征根的实部为-2?求出此根。 解: (1) 1)开环零、极点:p 1=0,p 22)实轴上根轨迹段:(0,-13)分离点和会合点 .3,586.02 11112 1 -=-=?+= ++d d d d d (2)系统特征方程为02)1(r r 2 =+++K s K s 2j 2322 122 ,1r r ±-==-=+-=- s K K a b ,,得:由0 1 23 s s s s r 2K -r 21 1K r K j ,20 2r r ±==?=-s K K

相关文档
最新文档