变速恒频双馈风力发电机的最优功率控制

变速恒频双馈风力发电机的最优功率控制
变速恒频双馈风力发电机的最优功率控制

2011年第8期 1

变速恒频双馈风力发电机的最优功率控制

姚兴佳1 韩嵩崟1 赵希梅2 郭庆鼎2

(1.沈阳工业大学风能技术研究所,沈阳 110023;2.沈阳工业大学电气工程学院,沈阳 110870)

摘要 本文针对风力发电机组的不确定性及多干扰的问题,以追踪最大风能作为有功功率控制目标。提出了采用模糊逻辑推理控制的方法得到低风速时发电机的参考转速,利用自适应最优模糊控制与直接转矩控制相结合的方法来控制发电机的电磁转矩的方案,并且使用Matlab 软件对该方案应用于1.5MW 双馈型风电机组系统进行仿真研究。仿真结果表明了在风速变化时,发电机实际转速可以很快跟踪最佳理论值,转矩平衡,变速恒频风电机组功率输出具有较好的跟踪效果,系统性能稳定,达到了最优功率的目标。

关键词:模糊逻辑推理控制;参考转速;自适应最优模糊控制;直接转矩控制;变速恒频

Optimal Power Control of Variable Speed Constant Frequency Doubly-fed Wind Turbines

Yao Xingjia 1 Han Songyin 1 Zhao Ximei 2 Guo Qingding 2

(1.Wind Energy Institute, Shenyang University of Technology, Shenyang 110023; 2.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870)

Abstract In this paper, considering many uncertain factors and disturbances of wind power generating systems, taking maximum wind power tracking as active power control target. It proposes to use fuzzy logic inference control obtaining reference rotation of generator below rated wind speed, combining adaptive optimal fuzzy and direct torque(DTC) to control generator torque ,the proposed method is simulated with Matlab based on SUT-1500 doubly-fed wind turbine prototype. The simulation results show that when changes in wind speed, actual rotation speed of generator tracks optimal one quickly and torque is balance, output power of VSCF wind turbine has better tracking effects, the system performance is stable, and reaching the target of optimal power.

Key words :fuzzy logic inference control ;reference rotation ;adaptive optimal fuzzy control ;DTC ;VSCF

到目前为止,为了提高风力发电机组的效率和改善风电的质量,大量的研究都集中在额定风速以下来提高风能利用系数。目前主要方法有叶尖速比控制,爬山法和功率信号反馈控制[1]。作为叶尖速比控制的输入信号是风机的转速值和风速值,并且都要给定,

最优叶尖速比可以通过实验或计算的途径获得,虽然

此方法有一个PI 控制器就可以达到要求,控制过程相

对简单,但是要求到达风机上的风速值要准确。由于

风速随机性的特点,要想测得到达风机上的风速值是

很困难的且叶尖速比的最优值在不同的系统中也不一样,因此在实际控制中采用叶尖速比控制方法较为困难[2]。爬山法的控制原理是通过实时测量风轮的转速和输出机械功率,发电机的转速利用经典数学寻优

的方法来调节使其跟踪最大功率点,此方法虽然解决

了测量风速不准确的问题,但缺点是比较依赖风机的

参数,因而参数的准确性很大关系到控制效果;功率信号反馈控制则需要查表,即需要找出风机转速和最大功率之间对应的关系,该控制方法大多数还需要附加额外测量风速的设备,用风速代替转速。目前有些

功率控制器采用了模糊控制,利用参考功率轨迹的思想调节控制系统的输出功率,有些则利用神经网络控制来记录并修正风机的转速和参考功率之间的关系,但是此方法最大的不足是,要想找到风机转速和最大功率之间的准确关系是非常困难的[3-4]。 为此,针对以上的算法需要改进的地方,本文提出一种不依赖于风速测量就可实现最大风能捕获的控制策略,即根据风力机最大风能捕获控制机理,把给定的

高速轴转速和有功功率作为控制器的输入信号,运用模糊逻辑推理的控制方法得到低风速时发电机的参考转速,利用自适应最优模糊控制与直接转矩控制相结合的

2011年第8期

2

复合控制方法来控制发电机的电磁转矩的方案,使发电机转速跟随风速的变化而变化,从而捕获最大风能。

1 风力机最大风能捕获控制机理

根据贝兹理论,风机吸收的机械功率和气动转矩为

23r p ω1

(,)π2

P C R V βλρ= (1) 32m T ω1

(,)π2

T C R V βλρ=

(2) 式中,P r 为风轮吸收的机械功率; T m 为风轮的气动转矩;ρ为空气密度;V ω为上风向的风速;C p 为风力机的功率系数,不是常数,叶尖速比λ和桨叶节距角β的函数,m /R v λω=;m ω为风力机机械角速度;R 为风轮半径;C T 为气动转矩系数。

在式(2)中,T m 为风轮上的机械转矩,假定T 为低速轴侧的转矩,T e 为发电机电磁转矩。则双馈风力发电系统的运动方程如下:

m e J B K T T ωωθγ++=? (3)

2m e

2m e 2m e J J J B B B K K K

γγγ?=+?

=+??=+?

(4)

将以上两式转化成高速轴侧的转速得

2e 1e 2e 3e e d a a a AT ωωωωτ=++?∫ (5) 式中,2

A J

γ=

。在机组运行过程中,由于B,K 受多

种因素的影响,因此i (1,2,3)a i =为时变系数[5]。 图1给出了不同桨叶节距角下的风力机功率系数曲线。从图中可以看出,对于任意已经给定的风力发电机,在桨叶节距角β一定时,会有一个最佳叶尖速比λopt 与最佳功率系数C pmax 相对应,使风力机吸收的风能最多。也就是说,对于特定风速v ,风力机只有运行在一个特定转速ω下才会具有最高的风能转换效率[6]。

p

C

图1 风机风能利用系数曲线图

2 双馈风力发电机组最优控制策略

在低风速时,保持桨叶节距角β=0不变,由模糊逻辑推理控制得到发电机的参考转速,自适应最优模糊控制方法求得发电机的电磁转矩指令,最后,由直接转矩控制来控制发电机的电磁转矩,使发电机的转速跟随风速的变化而改变,从而达到变速恒频风力发电机组捕获最大风能的目的。图2所示是低风速时风力发电机组控制系统框图。

图2 低风速时风力发电机组控制系统

2.1 参考转速模糊推理控制

目前在大多数的风电系统控制中,风轮转速都是根据风速仪测得的风速信号来进行调节的。但是在实际风场中整个风轮旋转平面上风速分布不均,而且受湍流、塔架等很多因素的影响,因此测量的风速往往存在误差。本文提出利用模糊逻辑推理控制的方法得到发电机的参考转速,该算法避免了测量风速,控制器的输入量为有功功率及其增量(1)(1)(2)P k P k P k ??=???,高速轴侧的转速及其变化量e e e (1)(1)(2)k k k ωωω??=???,输出量为发电机在额定风速以下时的参考转速增量ref ()k ω?。并且由参考转速增量可知实际参考转速ref ref ref ()(1)()k k k ωωω=?+?。输入输出变量正规化以后可划分成7个模糊集:负大(NL )、负中(NM )、负小(NS )、零(ZE )、正小(PS )、正中(PM )、正大(PL )。依据专家经验知识建立模糊规则表的原则是:如果前一个转速(正或负)增量为正,机组的输出功率增量也为正,那么参考转速保持与前一个转速增量相同的增长方向,否则,参考转速的增长方向与之相反。模糊规则表见表1。

模糊逻辑控制可以得出参考转速值,使风力发电机组在给定风速下获得最大风能,但是如果参考转速变化太大就会引起机组运行到最优点时发生振荡,在

2011年第8期 3

这种情况下可以通过调整模糊逻辑系统的量化参数、模糊划分和隶属函数获得合适的参考转速增量[7]。

表1 模糊规则表

NL NM NS ZE PS PM PL NL PL PL PM NS NM NL NL NM PL PM PS NS NS NM NL NS PM PS PS ZE NS NS NL ZE NL NM NS ZE PS PM PL PS NM NS NS ZE PS PS PM PM NL NM NS PS PS PM PL PL NL NL NM PS PM PL PL

2.2 自适应最优模糊控制

只要在样本集合中的所有输入-输出数据对都会拟合到任意的给定精度,这样的模糊控制就称为自适应最优模糊控制[8]。本文使用自适应模糊控制器作为风力发电机组速度调节器的基本组成单元,自适应模糊控制器由两部分组成,即一个辨识器和一个控制器。辨识器的未知非线性函数g 在闭环系统中并且由自适应模糊函数f 来逼近,然后再把f 函数复制到模糊控制器中[9]。将式(5)离散化得

e

e

e

e

e 23e 2e 22**1e 1e **e e (1)(2)()(1)(1)()(1)[()(1)][(),(1)][()(1)]

k a a k a k a k a k A T k T k g k k A T k T k ωωωωωωω+=++?+?+?????=???? (6) 参考转速模糊推理控制得到)1(ref +k ω,代入式(6)中,得

e e **re

f e e [()(1)](1)[(),(1)]A T k T k k

g k k ωωω????=+

?? (7) 这里的g (*)是未知的,通过自适应最优模糊逻辑辨识g (*),电磁转矩指令控制为

e e **re

f e e [()(1)](1)[(),(1)]A T k T k k f k k ωωω????=+?? (8) 从式(8)得到发电机的电磁转矩指令,然后由直接转矩控制技术直接控制发电机的电磁转矩。 2.3 双馈发电机的直接转矩控制

在双馈发电机的直接转矩控制中控制电机转矩是通过控制转子磁链速度来实现的,进而控制发电机的输出功率。电机的数学模型建立在转子坐标系上,定子绕组直接连接电网,所以定子磁链基本上保持恒定;馈入的三相交流电压决定了转子磁链的幅值,转矩的大小则是通过磁通角θ的变化和空间电压矢量的选择来控制的。在低风速时,保持最优桨距角不变,风轮转速则是通过控制发电机的电磁转矩并且使其跟随风速的变化,从而获得最大风能利用系数[10]。双馈电机直接转矩控制系统原理如图3所示。

图中的双馈电机直接转矩控制系统由三个闭环结构组成,外环控制发电机转速,内环则是同时实现转子磁链和电磁转矩两者的控制。通过转速反馈

的信号与转速参考值比较的偏差,经过速度调节器,

输出转矩指令信号T e *;

速度调节器的输出转矩指令信号T e *与实际电磁转矩T e 相比较的偏差通过三电平滞环比较器后,输入到电压矢量查询表,最后经过运算得出转矩电流分量i D ,由此来控制双馈电机的转矩,从而控制了转速使其捕获最大风能。

图3 双馈电机直接转矩控制系统原理框图

3 系统仿真与结果分析

本文使用Matlab/simulink 软件对该方案应用于水平轴、上风向、3叶片的双馈型风电机组系统SUT-1500进行仿真研究,仿真系统中的风速模型采用了随机风模型,并仿真出在此风况下发电机转速、

电磁转矩、输出有功功率的变化情况和转子磁链轨迹。并通过仿真结果验证了控制器的最大风能追踪能力。为验证本文方案的可行性,进行了基于Matlab 软件仿真,仿真参数见表2。

表2 1.5MW 机组的设计参数

参数名称 取值 参数名称

取值

风轮直径/ m 70.5 额定风速/(m/s) 12 叶尖速比 6.15 齿轮箱传动比 1:90

额定功率/ MW 1500 额定转速/(r/min)1800 风轮转速范围/(r/min)

12~20 发电机转速 范围//(r/min)

1080~1800

切入风速/ m/s

3

切出风速/(m/s) 25

发电机极数/极 4

电机转动惯量/ kg·m 2 97.5

风轮转动惯量/ kg.m 2

5.4×106

电网频率/Hz 50

仿真中风速变化如图4所示,随机风起始于3.2s ,终止于8s ,最大峰值为1m/s 。

图4 随机风

2011年第8期

4

图5 发电机转速曲线

图6 发电机电磁转矩曲线

图7 输出有功功率曲线

图8 转子磁链轨迹

从图5可以看出,在风速变化的情况下,控制器从3.2s 开始可以改变电机转速,经过0.1s 短暂的调整,使得实际转速与最佳参考转速基本吻合,并跟踪风速的变化,具有很好的动态性能,因此本文所提方案能实现无需检测风速下的最大风能捕获。图6所示的发电机电磁转矩曲线说明了稳态时转矩平衡并跟随风速的变化。图7所示说明了在风速变化时,发电机输出有功功率随着转速的变化而变化,具有很快的响应速度,功率输出稳定,可以确保风电机组并网后的稳定运行。图8所示的转子磁链轨迹接近于圆形旋转磁场,脉动小,说明了直接转矩控制可以不需要观测转子磁链的方向和大小,受电机参数变化的影响小,证明了直接转矩控制效果理想。

4 结论

对1.5MW 风电机组进行的仿真运行结果表明: 在低于额定风速的条件下,本文提出的控制策略均取得了比较满意的控制效果,实现了变速恒频风电机组在不需要测量风速的情况下就可以对发电机转速进行有效的控制,控制器鲁棒性能好,并且可以灵活、有效地调节发电机输出有功功率,从而达到了最大风能捕获的目的,提高了低风速下风电系统的运行效率。

参考文献

[1] 刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大

风能追踪[J].电力系统自动化,2003,27(20):62-67. [2] Rajib Datta, V.T. Ranganathan. A method of tracking

the peak power points for a variable speed wind energy conversion system[J]. IEEE Transactions on Energy Conversion, 2004,18(1):163-168.

[3] Yifan Tang, Longya Xu. A Flexible Active and Reactive

Power Control Strategy for a Variable Speed Constant Frequency Generating System[J]. IEEE Transactions on Power Electronics, 1995,10(4):472-478.

[4] 高景德,王祥珩,李发海.交流电机及其系统的分析[M].

北京:清华大学出版社,1993.

[5] Slootweg J G, Kling W L, Polinder H. Dynamic

modelling of a wind turbine with doubly fed-induction generator[J].IEEE Power Engineering Society Summer Meeting, 2001,1:644-649.

[6] 叶杭冶.风力发电机组的控制技术[M].北京:机械工

业出版社,2002.

[7] 张新房,徐大平,吕跃刚等.大型变速风力发电机组的自

适应模糊控制[J].系统仿真学报,2004,16(3): 573-577. [8] 王立新.自适应模糊系统与控制-设计与稳定行分析

[M].北京:国防工业大学出版社,1995.

[9] Chen Z, M McCormick. A Fuzzy Logic Controlled

Power Electronic System for Variable Speed Wind Energy Conversion Systems[J]. IEEE Power Electronics and Variable Speed Drivers, Conference publication, 2000,114-119.

[10] 李珍国.交流电机控制基础[M].北京:化学工业出版

社,2009.

作者简介

姚兴佳(1948-),男,辽宁抚顺人,教授,博士生导师,主要从事风力发电方面的研究。

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

风电场风电机组优化有功功率控制的研究

2017年度申报专业技术职务任职资格 评审答辩论文 题目:风电场风电机组优化有功功率控制的研究 作者姓名:李亮 单位:中核汇能有限公司 申报职称:高级工程师 专业:电气 二Ο一七年六月十二日

摘要 随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下: (1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风力发电机组控制策略、风电场的控制策略。 (2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。 (3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有方法进行了比较,验证了所提方法的合理性。 关键词:风电机组、风电场、有功功率控制、AGC

Abstract With increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows: (1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms. (2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit. (3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified. Keywords:wind turbine, wind farm, active power control

风力发电机组主控制系统

密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。 图0-1-1

大型风力发电机组控制系统的安全保护功能(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 大型风力发电机组控制系统的安全保护功能(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

大型风力发电机组控制系统的安全保护功 能(新编版) 1制动功能 制动系统是风力发电机组安全保障的重要环节,在硬件上主要由叶尖气动刹车和盘式高速刹车构成,由液压系统来支持工作。制动功能的设计一般按照失效保护的原则进行,即失电时处于制动保护状态。在风力发电机组发生故障或由于其他原因需要停机时,控制器根据机组发生的故障种类判断,分别发出控制指令进行正常停机、安全停机以及紧急停机等处理,叶尖气动刹车和盘式高速刹车先后投入使用,达到保护机组安全运行的目的。 2独立安全链 系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链采用反逻辑

设计,将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后,将引起紧急停机,执行机构失电,机组瞬间脱网,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、看门狗、扭缆、24V电源失电、振动和紧急停机按钮动作。 3防雷保护 多数风机都安装在山谷的风口处或海岛的山顶上,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其控制系统最容易因雷电感应造成过电压损害,因此在600kW风力发电机组控制系统的设计中专门做了防雷处理。使用避雷器吸收雷电波时,各相避雷器的吸收差异容易被忽视,雷电的侵入波一般是同时加在各相上的,如果各相的吸收特性差异较大,在相间形成的突波会经过电源变压器对控制系统产生危害。因此,为了保障各相间平衡,我们在一级防雷的设计中使用了3个吸收容量相同的避雷器,二、三级防雷的处理方法与此类同。控制系统的主要防雷击保护:①主电路三相690V输入端(即供给偏航电机、液压泵等执行机构的前段)

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

风力发电系统的控制原理

风力发电系统的控制原理 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。 涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统

风力发电机组控制系统

风力发电机组控制系统

风力发电机组控制系统功能研究 风力发电机组控制系统简介 风力发电机组由多个部分组成,而控制系统贯穿到每个部分,其相当于风电系统的神经。因此控制系统的质量直接关系到风力发电机组的工作状态、发电量的多少以及设备的安全性。 自热风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对封以及运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是边远地区或是海上,分散布置的风力发电机组通常要求能够无人值班运行和远程控制,这就对风力发电机组的控制系统的自动化程度和可靠性提出了很高的要求。与一般的工业控制过程不同,风力发电机组的控制系统是综合性控制系统。他不仅要监视电网、风况和机组运行参,对机组进行控制。而且还要根据风速和风向的变化,对机组进行优化控制,以提高机组的运行效率。 控制系统的组成 风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。 风力发电控制系统的基本目标分为三个层次:这就是保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。 控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最

风力发电机变桨系统DOC

风力发电机变桨系统 1、综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2、变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 SSB变桨系统为寒冷环境设计。环境温度定义如下 工作温度为 -30 ~ +40 ℃ 静态温度为 -40 ~ +50 ℃ 在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。在每个柜体的温度到达 5 ℃一段时间后,系统被启动,这个默认的时间是60分钟。 在这段可调整的时间过后,这个系统被释放和通电。 3、主要部件 电控柜(一个主控柜、三个轴柜)4套 变桨电机(配有变桨系统主编码器:A编码器)3套 备用电池3套 直流电机3个 机械式限位开关3套(6个) 冗余编码器(B编码器)3套

风力发电机的几种功率调节方式

风力发电机的几种功率调节方式 作者:佚名发布时间:2009-5-5 随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍。 l 定桨距失速调节型风力发电机组 定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。 2 变桨距调节型风力发电机组 变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大 风力发电机的几种功率调节方式 作者:佚名发布时间:2009-5-5 调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组 将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,

大型风力发电机组控制系统的安全保护功能正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 大型风力发电机组控制系统的安全保护功能正式版

大型风力发电机组控制系统的安全保 护功能正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1 制动功能 制动系统是风力发电机组安全保障的重要环节,在硬件上主要由叶尖气动刹车和盘式高速刹车构成,由液压系统来支持工作。制动功能的设计一般按照失效保护的原则进行,即失电时处于制动保护状态。在风力发电机组发生故障或由于其他原因需要停机时,控制器根据机组发生的故障种类判断,分别发出控制指令进行正常停机、安全停机以及紧急停机等处理,叶尖气动刹车和盘式高速刹车先后投入使用,达到保护机组安全运行的目的。

2 独立安全链 系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链采用反逻辑设计,将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后,将引起紧急停机,执行机构失电,机组瞬间脱网,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、看门狗、扭缆、24V电源失电、振动和紧急停机按钮动作。 3 防雷保护 多数风机都安装在山谷的风口处或海岛的山顶上,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其

风力发电机功率过高或过低的处理

风力发电机功率过高或过低的处理 1.功率过低 如果发电机功率持续(一般设置30~60s)出现逆功率,其值小于预置值Ps,风力发电机组将退出电网,处于待机状态。脱网动作过程如下:断开发电机接触器,断开旁路接触器,不释放叶尖扰流器,不投入机械刹车。 重新切入可考虑将切人预置点自动提高0.5%,但转速下降到预置点以下后升起再并网时,预置值自动恢复到初始状态值。 重新并网动作过程如下:合发电机接触器,软启动后晶闸管完全导通。当输出功率超过Ps3s时,投入旁路接触器,转速切人点变为原定值。功率低于Ps,时由晶闸管通路向电网供电,这时输出电流不大,晶闸管可连续工作。 这一过程是在风速较低时进行的。发电机出力为负功率时,吸收电网有功,风力发电机组几乎不做功。如果不提高切人设置点,起动后仍然可能是电动机运行状态。 2.功率过高 一般说来,功率过高现象由两种情况引起:一是由于电网频率波动引起的。电网频率降低时,同步转速下降,而发电机转速短时间不会降低,转差较大;各项损耗及风力转换机械能瞬时不突变,因而功率瞬时会变得很大。二是由于气候变化,空气密度的增加引起的。功率过高如持续一定时间,控制系统应作出反应。可设置为:当发电机出力持续10min大于额定功率的15%后,正常停机;当功率持续2s大于额定功率的50%,安全停机。 风力发电机组退出电网

风力发电机组各部件受其物理性能的限制,当风速超过一定的限度时,必需脱网停机。例如风速过高将导致叶片大部分严重失速,受剪切力矩超出承受限度而导致过早损坏。因而在风速超出允许值时,风力发电机组应退出电网。 由于风速过高引起的风力发电机组退出电网有以下几种情况: 1)风速高于25m/s,持续10min。一般来说,由于受叶片失速性能限制,在风速超出额定值时发电机转速不会因此上升。但当电网频率上升时,发电机同步转速上升,要维持发电机出力基本不变,只有在原有转速的基础上进一步上升,可能超出预置值。这种情况通过转速检测和电网频率监测可以做出迅速反应。如果过转速,释放叶尖扰流器后还应使风力发电机组侧风90°,以便转速迅速降下来。当然,只要转速没有超出允许限额,只需执行正常停机。 2)风速高于33m/s,持续2s,正常停机。 3)风速高于50m/s,持续ls,安全停机,侧风90°。

风力发电机组主控制系统

. 密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

. 编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。

风力发电机组控制系统

风力发电机组控制系统 一风电控制系统简述 风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。现场风力发电机组控制单元是每台风机控制的核心,实现机组的参数监视、自动发电控制和设备保护等功能;每台风力发电机组配有就地HMI人机接口以实现就地操作、调试和维护机组;高速环型冗余光纤以太网是系统的数据高速公路,将机组的实时数据送至上位机界面;上位机操作员站是风电厂的运行监视核心,并具备完善的机组状态监视、参数报警,实时/历史数据的记录显示等功能,操作员在控制室内实现对风场所有机组的运行监视及操作。 风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而风电控制系统是专门针对大型风电场的运行需求而设计,应具有极高的环境适应性和抗电磁干扰等能力,其系统结构如下: 风电控制系统的现场控制站包括:塔座主控制器机柜、机舱控制站机柜、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。风电控制系统的网络结构。 1、塔座控制站 2、塔座控制站即主控制器机柜是风电机组设备控制的核心,主要包括控制器、I/O 模件等。控制器硬件采用32位处理器,系统软件采用强实时性的操作系统,运行机组的各类复杂主控逻辑通过现场总线与机舱控制器机柜、变桨距系统、变流器系统进行实时通讯,以使机组运行在最佳状态。 3、控制器的组态采用功能丰富、界面友好的组态软件,采用符合IEC61131-3标准的组态方式,包括:功能图(FBD)、指令表(LD)、顺序功能块(SFC)、梯形图、结构化文本等组态方式。 4、2、机舱控制站 5、机舱控制站采集机组传感器测量的温度、压力、转速以及环境参数等信号,通过现场总线和机组主控制站通讯,主控制器通过机舱控制机架以实现机组的偏航、解缆等功能,此外还对机舱内各类辅助电机、油泵、风扇进行控制以使机组工作在最佳状态。

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发 电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。

风力发电机功率调整方法

风力发电机功率调整方法 风力发电的功率调整 1.功率过低 如果发电机功率持续(一般设置30~60s)出现逆功率,其值小于预置值Ps,风力发电机组将退出电网,处于待机状态。脱网动作过程如下:断开发电机接触器,断开旁路接触器,不释放叶尖扰流器,不投入机械刹车。重新切入可考虑将切人预置点自动提高0.5%,但转速下降到预置点以下后升起再并网时,预置值自动恢复到初始状态值。 重新并网动作过程如下:合发电机接触器,软启动后晶闸管完全导通。当输出功率超过Ps3s时,投入旁路接触器,转速切人点变为原定值。功率低于Ps,时由晶闸管通路向电网供电,这时输出电流不大,晶闸管可连续工作。 这一过程是在风速较低时进行的。发电机出力为负功率时,吸收电网有功,风力发电机组几乎不做功。如果不提高切人设置点,起动后仍然可能是电动机运行状态。 2.功率过高 一般说来,功率过高现象由两种情况引起:一是由于电网频率波动引起的。电网频率降低时,同步转速下降,而发电机转速短时间不会降低,转差较大;各项损耗及风力转换机械能瞬时不突变,因而功率瞬时会变得很大。二是由于气候变化,空气密度的增加引起的。功率过高如持续一定时间,控制系统应作出反应。可设置为:当发电机出力持续10min大于额定功率的15%后,正常停机;当功率持续2s大于额定功率的50%,安全停机。 风力发电机组退出电网 风力发电机组各部件受其物理性能的限制,当风速超过一定的限度时,必需脱网停机。例如风速过高将导致叶片大部分严重失速,受剪切力矩超出承受限度而导致过早损坏。因而在风速超出允许值时,风力发电机组应退出电网。 由于风速过高引起的风力发电机组退出电网有以下几种情况: 1)风速高于25m/s,持续10min。一般来说,由于受叶片失速性能限制,在风速超出额定值时发电机转速不会因此上升。但当电网频率上升时,发电机同步转速上升,要维持发电机出力基本不变,只有在原有转速的基础上进一步上升,可能超出预置值。这种情况通

风力发电机组控制技术教案

第一章绪论 能源是人类社会存在与发展的物质基础。过去200多年,建立在煤炭、石油、天然气等化石燃料基础上的能源体系,极大地推动了人类社会的发展。然而,人们在物质生活和精神生活不断提高的同时,也越来越感悟到大规模使用化石燃料所带来的严重后果;资源日益枯竭,环境不断恶化,还诱发了不少国与国之间、地区之间的政治经济纠纷,甚至冲突和战争。因此,人类必须寻求一种新的、清洁、安全、可靠的可持续能源系统。 风能是太阳能的一种转化形式,是一种不产生任何污染物排放的可再生的自然资源。 风能的开发利用已有数千年历史。在蒸气机发明以前,风能就曾作为重要的动力,由于船舶航行、提水饮用和灌溉、排水造田、磨面和锯木等。在几千年前,埃及的风帆船就在尼罗河上航行。中国是最早使用帆船和风车的国家之一,至少在三千年前的商代就出现了帆船。 受化石能源资源日趋枯竭、能源供应安全和保护环境等的驱动,自20世纪70年代中期以来,世界主要发达国家和一些发展中国家都重视风能的开发利用。特别是自20世纪90年代初以来,风力发电的发展十分迅速,世界风电机装机容量的年平均增长率超过了30%,从1993年的216万kW上升到20XX年的4030万kW。 我国对现代风力机的研制可以追溯到20世纪50年代,但系统的研究始于20世纪70年代。20世纪80年代中期开始,我国从国外引进了一些大、中型风力发电机组并入电网。1986年山东荣成市建成中国第一个风电场,年均发电量为33万kwh,以后相继在福建平潭、广东南澳岛、新疆达坂城及内蒙古朱日和等地建立了风电场。 进入20世纪90年代以来,我国风电发展势头强劲,成为我国发展速度最快的能源工业,但是,我国安装的大型风力发电机组中90%是从国外进口。我国对现代并网型风力发电机的研究工作始于20世纪80年代,我国自行研制出的有20kw,30kw,75kw,120kw,200kw,600kw和1MW风力发电机组。 目前世界上有几十种型号的大型风力发电机组在商业化运行,大体可分为四种类型。第一种为双绕组定桨距恒速机型,以Bounsl,BOUNS2,Nordex60和Nordex63为代表。第二种为变滑差变速机型,主要代表VestasV63,VstasV66,VstasV80.第三种是采用双馈发电机转差励磁方案,实现变速变距运行的机型,主要代表机型有DeWind公司的

相关文档
最新文档