带时滞环节的系统稳定性分析

带时滞环节的系统稳定性分析
带时滞环节的系统稳定性分析

问题2:带时滞环节的系统稳定性分析

线性时滞系统稳定性分析综述

从工程实践的角度来看, 时滞的存在往往导致系统的性能指标下降,甚至使系统失去稳定性. 例如系统

?x(t) = - 0. 5 x ( t) (1)

是稳定的,但加入时滞项后,系统

?x( t) = - 0. 5 x ( t) + 1. 3 x ( t - 1) (2)

变得不稳定。同时,时滞也可以用来控制动力系统的行为,例如时滞反馈控制已成为控制混沌的主要方法之一。通常用泛函微分方程来描述时滞系统, 以含单时滞的微分方程为例,即

?x( t) = A x + B x ( t - h)

其中 A , B ∈Rn×n ,x ( t) = φ( t) , t ∈[ - h ,0 ] (3)

其中: h > 0 为时滞,初始条件由定义在[ - h ,0 ] 的连续可微函数φ(·) 确定,系统t > 0 时的行为不仅依赖于0 时刻的状态,而且与时间段[ - h ,0 ] 内的运动有关,因此解空间是无穷维的. 其特征方程是含有指数函数的超越方程,即

det (λI - A - exp ( - λh) B) = 0 (4)

讨论特征根需要用到很多复变函数的知识. 早在1942 年, Pont ryagin 就提出了一种原则性方法———Pont ryagin 判据来解决这一问题, 之后很多工作致力于对这一判据具体化,使之更加实用。总之,时滞系统稳定性分析方法可分成3 类。

2. 1 无限维系统理论方法

这种方法是将时滞系统看成无穷维系统, 用无穷维空间的适当算子来描述时滞系统的状态变化,一方面可对时滞系统进行一般建模;另一方面,也可表述系统的可观性和可控性等结构方面的概念。

2. 2 代数系统理论方法

代数系统理论对于时滞系统的建模和分析都比较方便,但在控制器的设计方面目前尚处于初期阶段,还缺乏有效方法。

2. 3 泛函微分方程理论方法

泛函微分方程理论考虑了系统的过去对系统变化率的影响,利用有限维空间以及泛函空间提供一套适当的数学结构以描述时滞系统的状态变化。目前,研究时滞系统主要是应用泛函微分方程理论,研究范围涉及稳定性分析、控制器设计、H∞控制、无源与耗散控制、可靠控制、保成本控制、H∞滤波、Kalman 滤波以及随机控制等. 不管研究哪个分支,稳定性都是基础,对最终形成控制方案具有

非常重要的理论和现实意义。时滞系统稳定性分析的目的是希望找到计算简单、切实有效并且保守性尽可能小的稳定性判据, 研究方法主要分为两类: 一类是以研究系统传递函数为主的频域方法;另一类是以研究系统状态方程为主的时域(状态空间) 方法。

2.3.1 频域法

频域法是最早提出的稳定性分析方法,它基于超越特征方程根的分布或复Lyapunov 矩阵函数方程的解来判别稳定性. 类似于不包含时滞的线性系统,线性时滞系统稳定的充要条件是闭环特征方程的解均具有负实部。由于时滞系统闭环特征方程是一个具有无穷多解的超越方程,其稳定性分析比无时滞系统要复杂得多。但是利用频域法对系统进行分析具有直观易懂的特点,只要分析系统的特征根分布就可在一定程度上了解系统的稳定性和动态性能,并且计算量小、物理意义强,因此采用频域方法进行线性时滞系统稳定性分析,具有重要的理论意义和实际价值.从频域角度出发,对系统进行稳定性分析的方法主要包括: 图解法、解析法和复Lyap unov 方法。

2.3.2 时域法

时域法是目前时滞系统稳定性分析和综合的主要方法,易于处理含有不确定项、时变参数和时变时滞的系统以及非线性时滞系统。

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

时滞微分方程解的存在性

时滞微分方程解的存在性 时滞方程更能反映真实的自然现象,关于Banach 空间中具有整数阶物质导数的时滞微分方程解的存在性的研究已有了不少,包括积分方程最优控制,边值问题,方法也都类似,但对于分数阶导数的方程的研究不多。可能是因为分数阶导数问题还没有被应用到更广泛的领域,或者是因为分数阶导数较整数阶研究更为困难。 一般研究微分方程是在实数空间内,为了使结果更具一般性,下面本文研究抽象空间中一般分数阶物质导数的方程解的存在性,从而得到一般性的结论。为后文的工作做理论准备。 现有的研究分数阶导数的微分方程解的存在性的文章不多,事先查得的的一篇文章是研究整数阶的有时滞项的微分方程的解的存在性的。由于分数阶导数和整数阶导数的性质有很大差异,研究整数阶导数方程的方法不能照搬到分数阶导数方程上,所以我们研究时加上了一条限制条件,即方程右端的非线性项的范数小于一个常数加上一个常数和解函数范数的乘积,之后用了皮卡迭代方法,得到一个函数序列,然后用数学归纳法证明此序列一致有界且等度连续,然后结合相关文献,就证明了上面得到的函数序列有弱收敛子列,最后证明弱收敛子列的极限函数就是方程的解。从而证明了该方程解的存在性。具体过程如下: 令E 为Banach 空间,E*为其对偶空间并且E 0 =C([?h,0],E),上面的范数分别为:,* 和 0E ,0 [,0]max ()t h E t ??∈-=,同时, 00(,){:},X X B y r y X y y r =∈-≤ 其中,X E =或0E ,(), 表示E 和E*中的元素的内积。考虑如下Banach 空间分数阶微分方程的初值问题: 00()(,),0,01,(2.0.1)t D u t f t u t u E ααψ?=≥<

性能稳定性分析

性能稳定性分析 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447 (2)t=0.447时,

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

时滞微分方程

function sol = ch4ex1 global tau omega tau = 42.0; omega = 0.15; sol = dde23(@ddes, [tau, omega], [15; 0; 2; 3], [0, 350]); plot(sol.x,sol.y) legend(’S(t)’, ’E(t)’, ’I(t)’, ’R(t)’) %========================================== function dydt = ddes(t,y,Z) global tau omega % Parameters: A = 0.330; d = 0.006; lambda = 0.308; gamma = 0.040; epsilon = 0.060; % Variable names used in stating the DDEs: S = y(1); E = y(2); I = y(3); R = y(4); % Z(:,1) corresponds to the lag tau. Itau = Z(3,1); % Z(:,2) corresponds to the lag omega. Somega = Z(1,2); Eomega = Z(2,2); Iomega = Z(3,2); Romega = Z(4,2); Noft = S + E + I + R; Nomega = Somega + Eomega + Iomega + Romega; dSdt = A - d*S - lambda*((S*I)/Noft) + gamma*Itau*exp(-d*tau); dEdt = lambda*((S*I)/Noft) - ... lambda*((Somega*Iomega)/Nomega)* exp(-d*omega) - d*E; dIdt = lambda*((Somega*Iomega)/Nomega)*exp(-d*omega) ... - (gamma+epsilon+d)*I; dRdt = gamma*I - gamma*Itau*exp(-d*tau) - d*R;

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

系统频域分析课程设计报告

系统频域分析课程设计 报告 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《综合仿真》课程设计报告 姓名 学号 同组成员 指导教师 时间 11周至14周

系统的频域分析 【目的】 (1) 加深对系统频域分析基本原理和方法的理解。 (2) 加深对信号幅度调制与解调基本原理和方法的理解。 (3) 锻炼学生综合利用所学理论和技术,分析与解决工程实际 问题的能力。 【研讨内容】 题目1.幅度调制和连续信号的Fourier 变换 本题研究莫尔斯码的幅度调制与解调。本题中信号的形式为 )π2sin()()π2sin()()π2cos()()(132211t f t m t f t m t f t m t x ++= 其中信号x (t )由文件定义,可用命令Load ctftmod 将文件定义的变量装入系统内存。运行命令Load ctftmod 后,装入系统的变量有 af bf dash dot f1 f2 t x 其中 bf af : 定义了一个连续系统H (s )的分子多项式和分母多项式。可利用freqs(bf,af,w)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim 求出信号通过该系统的响应。 dash dot : 给出了莫尔斯码中的基本信号dash 和dot 的波形 f1 f2: 载波频率 t: 信号x (t )的抽样点 x: 信号x (t )的在抽样点上的值 信号x (t )含有一段简单的消息。Agend 007的最后一句话是

The future of technology lies in ··· 还未说出最后一个字,Agend 007就昏倒了。你(Agend 008)目前的任务就是要破解Agend 007的最后一个字。该字的信息包含在信号x (t )中。信号x (t )具有式(1)的形式。式中的调制频率分别由变量f1和f2给出,信号m 1(t ),m 2(t )和m 3(t )对应于字母表中的单个字母,这个字母表已用国际莫尔斯码进行编码,如下表所示: (1)字母B 可用莫尔斯码表示为b=[dash dot dot dot],画出字母B 莫尔 斯码波形; (2) 用freqs(bf,af,w)画出系统的幅度响应; (3) 利用lsim 求出信号dash 通过由sys=tf(bf,af)定义的系统响应,解释你所获得的结果; (4)用解析法推导出下列信号的Fourier 变换 )π2cos()π2cos()(21t f t f t m )π2sin()π2cos()(21t f t f t m

时滞微分方程的定性研究

时滞微分方程的定性研究 【摘要】:微分方程是近代数学的一个重要的学科分支,随着现代化社会的发展,无论是在工程、宇航等自然科学领域还是在经济、金融等社会科学领域,都有着广泛的应用。在力学、物理学、生态学、生物学、经济学等多种应用技术中往往用时滞微分方程比常微分方程来刻划更符合实际。国内外学者也对时滞泛函微分方程的基本理论及定性理论进行了卓有成效的研究。有关时滞泛函微分方程的研究无论在理论上还是在应用上都具有非常重要的意义。开展这方面的研究,一方面将丰富和发展时滞泛函微分方程理论,另一方面也为一些问题的实际应用提供必要的理论基础。本文就时滞微分方程定性理论中的一些问题作了深入系统的研究,主要围绕以下几个方面展开:1、时滞微分方程周期解的存在性问题。本文第二章第一节,第三章第二节中给出了描述两个种群的捕食系统的时滞微分方程模型,并利用重合度理论中的延拓定理给出了周期解存在的充分条件。利用重合度研究周期解的多重性的问题已有许多工作。第三章第二节在研究具非单调功能性反应的捕食一食饵系统时,通过选择不同的相空间,区域划分,解的先验估计等手段,克服了计算算子拓扑度的困难,保证了系统至少有两个正周期解。这两类系统的正周期解的存在性不仅具有生态学应用价值,同时对时滞泛函微分方程理论研究也非常重要。第二章第二节利用非紧性测度的k-集压缩原理及某些分析技巧研究了二阶时滞微分方程,推广与改进了一些相关结果。第三章第一节利用锥映射

不动点定理研究了时滞微分方程周期解的多重性问题,得到了多个正解存在的充分条件,所用的手段是比较新的。2.时滞微分方程周期解的存在性,唯一性及全局吸引性。第四章利用比较原理及不动点定理得到了时滞微分方程的正周期解存在性定理。一方面在非时滞的情况下通过构造比较函数,利用Brouwer不动点定理得到非时滞微分方程正周期解的存在唯一性,及周期解全局吸引的充分条件。另一方面,在时滞存在的情况下利用周期性与非时滞情况相比较得到周期解的存在性,唯一性。由于此时构造Lyapunov泛函比较困难,【关键词】:时滞微分方程重合度周期解积分方程不动点定理渐近稳定性全局吸引性 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2006 【分类号】:O175 【目录】:中文摘要4-6英文摘要6-9中文目录9-11英文目录11-13主要符号表13-14第一章序言14-251.1研究背景14-181.2本文主要工作及内容安排18-201.3预备知识20-25第二章时滞微分方程周期解的存在性25-402.1一类时滞捕食系统周期解的存在性25-322.2一类时滞微分方程的周期解32-40第三章时滞微分方程多个周期解的存在性

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

实验四 频域稳定性分析

实验四 频域稳定性分析 一、实验目的 (1)巩固系统频域稳定性的概念; (2)利用MATLAB绘制Nyquist图、Bode图和Nichols图进行频域分析; (3)学习利用MATLAB进行系统参数设计的方法。 二、实验设备 (1)硬件:个人计算机; (2)软件:MATLAB仿真软件(版本6.5或以上)。 三、实验内容和步骤 1.熟悉本实验涉及的部分MATLAB函数 本实验涉及的MATLAB函数包括nyquist、nichols、margin、pade等。 调用函数nyquist可以绘制出系统的Nyquist图,调用方法见图4.1。如果只输入等式的右边,会直接生成Nyquist图。 图4.1 函数nyquist的调用 例1 函数nyquist调用示例 某闭环控制系统如图4.2所示,利用函数nyquist绘制其Nyquist图的程序段及运行结果如图4.3所示。 图4.2 某闭环控制系统

图4.3 例1系统的Nyquist图及相关程序 系统的增益裕量和相位裕量既可借助Nyquist图也可通过Bode图来确定。图4.4说明了利用函数margin由Bode图确定例1系统相对稳定性的方法。如果只输入等式的右边,会自动生成Bode图并 标注增益与相位裕量,如图4.5所示。 图4.4 函数margin的调用方法一

图4.5 函数margin的调用方法二 系统的Nichols图可以利用函数nichols生成,如图4.6所示。如果只输入等式的右边,会自动生 成Nichols图。 图4.6 函数nichols的调用

函数pade 可以用来近似表示延迟环节sT e ?,如图4.7所示。 图4.7 函数pade 的调用 2.利用函数nyquist 和margin 分析系统的相对稳定性 修改本实验所附程序lab4_1.m 并运行之,分析K = 0.5、2、3.013、4和10时,开环传递函数为 5 .02)(23+++=s s s K s G 某单位负反馈闭环系统(如图4.8所示)的相对稳定性。 图4.8 某闭环系统二 3.利用函数nichols 分析系统的相对稳定性 修改本实验所附程序lab4_2.m 并运行之,分析图4.8所示系统中开环传递函数分别为 (1))12.0)(1(1)(++=s s s s G ; (2) ) 1(64.0)(2++=s s s s G 时该系统的稳定性。 4.液位控制系统的稳定性分析 修改本实验所附程序lab4_3.m 并运行之,分析图4.9所示液位控制系统(T = 1秒)的相对稳定性。如若要求系统具有至少30°的相位裕量,试借助程序lab4_3.m 寻找合适的系统开环增益。 四、实验预习 (1)分析源程序,了解本实验所涉及MATLAB 函数和符号的功能与用法; (2)根据实验内容作出理论分析和计算。

(整理)MATLAB实现控制系统稳定性分析.

MATLAB 实现控制系统稳定性分析 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨. 1 系统稳定性分析的Matlab 实现 1.1 直接判定法 根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为 ()24 5035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序: G=tf([1,7,24,24],[1,10,35,50,24]); roots(G.den{1}) 运行结果: ans = -4.0000 -3.0000 -2.0000 -1.0000 由此可以判定该系统是稳定系统. 1.2 用根轨迹法判断系统的稳定性 根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值. 已知一控制系统,H(s)=1,其开环传递函数为: ()()() 21++=s s s K s G (2) 绘制系统的轨迹图. 程序为: G=tf(1,[1 3 2 0]);rlocus(G); [k,p]=rlocfind(G) 根轨迹图如图1所示,光标选定虚轴临界点,程序 结果为:

系统的频域分析

第六章系统的频域分析 1、内容提要 在连续时间系统频域分析中,首先介绍了连续系统的频率响应的概念,系统零状态响应的频域求解方法。然后介绍了两类典型系统——无失真传输系统和理想滤波器。 2、学习目标 通过本章的学习,应达到以下要求: (1)掌握连续系统特性的频域表示。 (2)掌握连续系统响应的频域分析,重点掌握正弦稳态响应的特点。 (3)掌握无失真系统与理想低通滤波器的特性。 (4)熟练掌握和灵活应用抽样定理。 (5)能够利用MATLAB进行连续系统的频域分析。 3、重点难点 1、无失真传输系统的概念,求解无失真传输系统的频域响应。。 2、理想滤波器以及低通、高通、带通和带阻滤波器的概念,冲激信 号和阶跃信号通过理想滤波器的频域响应。 3、抽样定理及其应用。 4、应用 非周期信号频域分析的MATLAB实现

5、教案内容 1. 连续时间系统的频响特性 从上面的分析可见,虚指数信号()jwt e t -∞<<∞作用与LTI 系统时,系统的零状态响应仍为同频率的虚指数信号,虚指数信号幅度和相位由系统的频率响应()()()()j H j H j e h t ?ωωω=()H j ω确定,所以()H j ω反映了连续LTI 系统对不同频率信号的响应特性。 在一般情况下,系统的频率响应()H j ω是复值函数,可用幅度和相位表示为 ()H j ω称为系统的幅度响应,()?ω称为系统的相位响应,当()h t 是实函数时,()H j ω是ω的偶函数,()?ω是ω的奇函数。 2. 连续时间系统响应的频域分析 由虚指数信号()jwt e t -∞<<∞作用于LTI 系统响应的特点,可以推出正弦信号作用在系统的稳态响应和任意信号作用在系统上的响应。 正弦信号作用在系统上的稳态响应为

基于MATLAB的控制系统稳定性分析报告

四川师范大学本科毕业设计 基于MATLAB的控制系统稳定性分析 学生姓名宋宇 院系名称工学院 专业名称电气工程及其自动化 班级 2010 级 1 班 学号2010180147 指导教师杨楠 完成时间2014年 5月 12日

基于MATLAB的控制系统稳定性分析 电气工程及其自动化 本科生宋宇指导老师杨楠 摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。 关键词:系统稳定性 MATLAB MATLAB稳定性分析

ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability. Keywords: system stability MATLAB MATLAB stability analysis

相关文档
最新文档