朱军遗传学(第3版)知识点总结笔记课后答案

朱军遗传学(第3版)知识点总结笔记课后答案
朱军遗传学(第3版)知识点总结笔记课后答案

第一章绪言

1.1 复习笔记

一、遗传学研究的对象和任务

1.遗传学的定义

遗传学(genetics)是研究生物遗传和变异的科学。

2.遗传和变异

(1)遗传的定义

遗传(heredity)是指亲代与子代相似的现象。

(2)变异的定义

变异(variation)是指亲子之间以及子代个体之间性状表现存在差异的现象。

(3)遗传、变异和选择是生物进化和新品种选育的三大因素。

3.遗传学研究的任务

① 阐明生物遗传和变异的现象及其表现的规律。

② 深入探索遗传和变异的原因及其物质基础,揭露其内在的规律。

③ 指导动物、植物和微生物的育种实践,提高医学水平,为人民谋福利。二、

遗传学的发展

1.古代遗传学知识的累积

人类在长期的农业生产和饲养家畜过程中,早已认识到遗传和变异现象,并且通过选择,育成大量的优良品种。

2.近代遗传学的发展

① 18世纪下半叶,拉马克提出器官的用进废退和获得性状遗传等学说。

② 1859年,达尔文发表《物种起源》,提出自然选择和人工选择的进化学说,后又提出泛生假说。

③ 魏斯曼是新达尔文主义的首创者,提出种质连续论。

④ 1856至1864年,孟德尔从事豌豆杂交试验,提出分离和独立分配两个遗传基本规律。

⑤ 1906,贝特生(Bateson,W.)提出遗传学作为一个学科的名称。

⑥ 1901至1903年,狄弗里斯发表了“突变学说”。

⑦ 1906年,贝特生等在香豌豆杂交试验中发现性状连锁现象。

⑧ 1909年,约翰生发表了“纯系学说”。

⑨1903年,萨顿提出染色体在减数分裂期间的行为。

⑩1910年以后,摩尔根等用果蝇发现连锁遗传规律。

?1913年,斯特蒂文特绘制出第一张遗传连锁图。

?20世纪30年代,布莱克斯里等提出了杂种优势的遗传假说。

?1930至1932年,费希尔、赖特和霍尔丹等人应用数理统计方法分析性状的遗传变异,推断遗传群体的各项遗传参数,奠定了数量遗传学和群体遗传学的数学分析基础。

?1941年,比德尔等人提出“一个基因一个酶”的假说。

?1944年,阿委瑞用试验方法直接证明DNA是转化肺炎球菌的遗传物质。

3.现代遗传学的发展

① 1953年,瓦特森和克里克提出DNA分子结构模式理论。

② 20世纪70年代初,分子遗传学成功地进行人工分离基因和人工合成基因,开始建立了遗传工程这一个新的研究领域。

③ 20世纪90年代初美国率先实施的“人类基因组计划”。

④ 在21世纪,遗传学的发展将进入“后基因组时代”。

三、遗传学在科学和生产发展中的作用

① 在理论上对于探索生命的本质和生物的进化,对于推动整个生物科学和有关科学的发展都有着巨

大的作用。

② 在生产实践上,遗传学对于农业科学起着直接的指导作用。如品种选育和良种繁育工作。

③ 遗传学在医学中起着重要的指导作用。如疾病的诊断和预防。

1.2 名校考研真题详解

一、选择题

经典遗传学与现代遗传学对基因这一遗传单位的认识有不同之处,也有相同之处,其中下面在()点是两者相同的。[沈阳农业大学2012研]

A.突变单位

B.交换单位

C.功能单位

D.修复单位

【答案】C

二、名词解释题

variation[华中农业大学2015研]

答:variation的中文名称是变异,是指亲子之间以及子代个体之间性状表现存在差异的现象。变异可分为可遗传的变异与不可遗传的变异。可遗传的变异包括基因重组﹑基因突变与染色体变异。

三、问答题

1.遗传学的发展与模式生物的应用分不开,试举一种模式生物。说明它在推动遗传性发展中的作用,论述遗传学创新与试验材料创新的关系。[电子科技大学2011研]

答:常用的模式生物包括豌豆、玉米、果蝇、拟南芥等。拟南芥(Arabidopsis)是一种十字花科植物,广泛用于植物遗传学、发育生物学和分子生物学的研究,已成为一种典型的模式植物。

(1)拟南芥在推动遗传性发展中的作用主要基于该植物具有以下特点:

① 植株形态个体小,高度只有30cm左右,1个茶杯可种植5~6棵。

② 生长周期快,每代时间短,从播种到收获种子一般只需6周左右。

③ 种子多,每株每代可产生数千粒种。

④ 形态特征简单,生命力强,用普通培养基就可作人工培养。

⑤ 基因组小,只有5对染色体,基因组简单可用于各种与染色体相关的研究。

⑥ 全部基因组测序已经完成,为人类基因组测序计划打下基础。

(2)以拟南芥来论述遗传学创新与试验材料创新的关系

遗传学创新与试验材料创新密不可分。

① 拟南芥的基因组是目前已知植物基因组中最小的。克隆它的有关基因相对说来比较容易。

② 拟南芥是自花受粉植物,基因高度纯合,用理化因素处理突变率很高,容易获得各种代谢功能的

缺陷型。

③ 拟南芥具有丰富的生态型材料和近缘物种,为开展功能基因组学提供了方便。

因此拟南芥是进行遗传学研究的好材料,被科学家誉为“植物中的果蝇”,使遗传学创新与试验材料创新密切关联。

2.小鼠(Mus musculus)作为重要模式生物,它有哪些其他遗传学材料难以取代的特点,简述它对遗传学研究的贡献。[电子科技大学2010研]

答:(1)小鼠(Mus musculus)作为重要模式生物,具有的其他遗传学材料难以取代的特点包括:

① 小鼠是哺乳动物,与人的亲缘关系比较近,这是小鼠作为医学研究模式生物的首要优势。

② 小鼠在交配时形成阴栓,易判断交配时间,对研究中判断发育时间十分重要。

③ 在技术上,长期的实验研究,培养了大批的实验人员,建立了广泛地实验体系,如基因陷阱、化

学诱变、基因定向突变等。

(2)小鼠对遗传学研究的贡献

小鼠作为哺乳动物中的唯一模式生物,在人的生理病理研究中担负着重要角色。根据经典遗传学,现在正在建立100多种的重组近交系,通过对这些近交系与亲本近交系在生理生化表形以及基因型的连锁比较,有可能对一些复杂性状的调控做深入的遗传分析从而发现复杂疾病的发病机制,同时通过开展大规模的基因删除研究,建立删除基因小鼠品系,分析基因的功能,也是现在小鼠研究的热点。

第二章遗传的细胞学基础

2.1 复习笔记

一、细胞的结构和功能

1.原核细胞

(1)原核细胞的特点(与真核生物相比)

① 原核细胞外面是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用的细胞壁。

② 原核细胞的细胞质内不存在线粒体、叶绿体、内质网、高尔基体等有膜的细胞器,仅有核糖体。

③ 细胞质内没有分隔,是个有机的整体;无任何内部支持结构,主要靠其坚韧的外壁来维持其形状。

④ 其DNA存在的区域称为拟核(nucleoid),外面并无外膜包裹。

(2)原核细胞的结构(图2-1)

图2-1 原核细胞的结构

2.真核细胞

(1)真核细胞的特点(与原核生物相比)

① 真核细胞一般较大,其结构和功能也复杂得多。

② 真核细胞不仅含有核物质,而且有核结构,即核物质被核膜包被在细胞核里。

③ 真核生物含有线粒体、叶绿体、内质网等各种由膜包被的细胞器。

④ 尽管真核细胞形态和功能各不相同,但有一些特点是所有真核细胞所共有。如所有的真核细胞都

由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架,以及各种细胞器等。

(2)真核细胞的结构

① 细胞膜

细胞膜是一切生活细胞不可缺少的表面结构,是包被细胞内原生质(protoplasm)的一层薄膜,简称质膜。

a.作用

第一,主动而有选择地通透某些物质,既能阻止细胞内许多有机物质的渗出,同时又能调节细胞外一些营养物质的渗入。

第二,使细胞成为具有一定形态结构的单位,借以调节和维持细胞内微小环境的相对稳定性。

第三,在信息传递、能量转换、代谢调控、细胞识别和癌变等方面都具有重要的作用。

b.组成

主要由蛋白质和磷脂组成,还含有少量的糖类物质、固醇类物质及核酸等。

c.结构特性

细胞膜具有一定的流动性。

d.功能特性

细胞膜具有选择透过性。

② 细胞质

细胞质是在质膜内环绕着细胞核外围的原生质胶体溶液,内含许多蛋白质分子、脂肪、溶解在内的氨基酸分子和电解质。

a.功能

细胞质是生命活动进行的场所。

b.组成

细胞质包括基质、细胞器和内含物。

③ 细胞器

细胞器是指细胞质内除了核以外的一些具有一定形态、结构和功能的物体。

a.线粒体

第一,线粒体是动植物细胞质中普遍存在的细胞器。

第二,线粒体含有多种氧化酶,能进行氧化磷酸化,可传递和贮存所产生的能量。

第三,线粒体含有DNA,有自己的遗传体系。

第四,线粒体是由内外两层膜组成,外膜光滑,内膜向内回旋折叠,形成许多横隔。

b.叶绿体

第一,叶绿体是绿色植物细胞中所特有的一种细胞器。

第二,叶绿体具有双层膜结构,内含叶绿素的基粒是由内膜的折叠所包被。

第三,叶绿体的主要功能是光合作用,利用光能和CO2合成碳水化合物。

第四,叶绿体具有特定的遗传功能,是遗传物质的载体之一。

c.核糖体

第一,核糖体是动植物细胞共有的细胞器。

第二,核糖体是合成蛋白质的主要场所。

第三,外面没有膜包被,在细胞质中数量很多。

d.内质网

第一,内质网是在真核细胞质中广泛分布的膜相结构。

第二,内质网是蛋白质合成的主要场所,并通过内质网将合成的蛋白质运送到细胞的其他部位。第三,内质网外面附有核糖体的,称为粗糙内质网或颗粒内质网,它是蛋白质合成的主要场所。第四,内质网外面不附着核糖体的,称为平滑内质网,它可能与某些激素合成有关。

e.中心体

第一,中心体是动物和某些蕨类及裸子植物细胞特有的细胞器。

第二,中心体与细胞纤毛和鞭毛的形成有关。

④ 细胞核

a.作用

细胞核,简称核,是遗传物质集聚的主要场所,对控制细胞发育和性状遗传都起主导作用。

b.组成

核是由核膜、核液、核仁和染色质4部分组成。

c.染色体与染色质

第一,染色质(chromatin)是指在细胞尚未进行分裂的核中,染色较深、纤细的网状物。

第二,染色体(chromosome)是指细胞分裂时,核内的染色质卷缩而形成的物质。

第三,染色质和染色体实际上是同一物质在细胞分裂过程中所表现的不同形态。

3.细菌、动物与植物细胞的比较(表2-1)

表2-1 细菌、动物与植物细胞的比较

二、染色体的形态和数目

1.染色体的形态特征

(1)基本概念

① 着丝粒(centromere)是指真核细胞在进行减数分裂和有丝分裂时,染色体分离的一种“装置”。

② 主缢痕(primary constriction)是指着丝点所在的区域,染色体的缢缩部分。

③ 次缢痕(secondary constriction)是指某些染色体的一个或两个臂上除主缢痕外的缢缩部位,染色较淡。

④ 随体(satellite)是指染色体次缢痕的末端所具有的圆形或略呈长形的突出体。

⑤ 染色体组型分析(genome analysis),又称核型分析(analysis of karyotype),是指对生物细胞核内全部染色体的形态特征所进行的分析。

⑥ 同源染色体(homologous chromosome)是指形态和结构相同的一对染色体。

⑦ 非同源染色体(non-homologous chromosome)是指形态结构不同的各对染色体之间的互称。

(2)染色体的形态(图2-2)

① 一般以有丝分裂中期的染色体进行染色体形态的认识和研究。

② 主缢痕、次缢痕、随体这些形态特征是识别某一特定染色体的重要标志。

图2-2 中期染色体形态的示意图

1.长臂;2.主缢痕;3.着丝点;4.短臂;5.次缢痕;6.随体

(3)染色体的分类(图2-3)

① 中间着丝点染色体

着丝点位于染色体的中间,两臂大致等长,在细胞分裂后期表现为V形。

② 近中着丝点染色体

着丝点较近于染色体的一端,两臂长短不一,形成为一个长臂和一个短臂,表现为L形。

③ 近端着丝点染色体

着丝点靠近染色体末端,有一个长臂和一个极短的臂,近似于棒状。

④ 端着丝点染色体

着丝点在染色体末端,只有一个臂,呈棒状。

⑤ 此外,某些染色体的两臂都极其粗短,则呈颗粒状。

图2-3 后期染色体的形态

1.V形染色体;2.L形染色体;3.棒状染色体;4.粒状染色体

2.染色体的数目

① 各种生物的染色体数目都是恒定的,而且在体细胞中是成对的。生物的体细胞的染色体数目是其

性细胞的两倍,通常分别以2n和n表示。

② 各物种的染色体数目往往差异很大。

③ 有些生物的细胞中除了具有正常恒定数目的染色体以外,常出现额外的染色体。

④ 原核生物虽然没有一定结构的细胞核,但具有染色体。其染色体通常为DNA分子或RNA分子,

不与组蛋白结合。

3.研究染色体数目和形态特征的意义

染色体的数目和形态特征对于鉴定系统发育过程中物种间的亲缘关系,特别是对植物近缘类型的分类,具有重要的意义。

三、细胞的有丝分裂

1.细胞周期

(1)细胞分裂方式的分类

① 无丝分裂

a.无丝分裂又称直接分裂,主要是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞。

b.无丝分裂是低等生物如细菌等的主要分裂方式,在高等动物中较为少见。

② 有丝分裂

高等生物的细胞分裂主要是以有丝分裂方式进行的。

(2)细胞周期

① 定义

细胞周期是指细胞从一次分裂完成开始到下一次分裂结束所经历的全过程。主要包括细胞有丝分裂过程及其两次分裂之间的间期(interphase)。

② 间期

a.间期是为下一次有丝分裂做物质和能量准备的时期。

b.根据间期DNA合成的时期,间期又可分为3个时期:

第一,DNA合成前期G1:又称G0期,细胞体积增长,并为DNA合成作准备。不分裂细胞则停留在

G1期。

第二,DNA合成期S:DNA合成时期,染色体数目在此期加倍。

第三,DNA合成后期G2:为细胞分裂作准备。

c.间期特点

第一,这三个时期的长短因物种、细胞种类和生理状态的不同而不同。

第二,一般S的时间较长,且较稳定;G1和G2的时间较短,变化也较大。

图2-4 细胞有丝分裂周期

(3)基因调控细胞周期

① 基因通过控制细胞周期过程中所需的关键蛋白质或者酶的合成来调控细胞周期。

② 直接控制细胞进入细胞周期各个时期的基因。

a.在细胞周期中,G1、S、G2、M等各个时期之间都存在着控制点。

b.控制点决定细胞是否进入该时期。由细胞周期蛋白(cyclicprotein)及依赖于周期蛋白的激酶(CDK)共同调控。

c.细胞周期中一个最重要的控制点即决定细胞是否进行入S期的控制点。

2.有丝分裂过程

(1)有丝分裂包含两个紧密相连的过程:

① 细胞核先分裂,即核分裂为两个。

② 细胞质再分裂,即细胞分裂为二,各含有一个核。

(2)核分裂的过程(图2-5)

① 前期

a.细胞核内出现染色体,缩短变粗。

b.核仁和核膜逐渐模糊不明显。

c.动物细胞中心体分裂为二,并向两极分开;每个中心体周围出现星射线,在前期最后阶段将逐渐形成丝状的纺锤丝。

d.高等植物细胞没有中心体,只从两极出现纺锤丝。

② 中期

医学遗传学笔记

绪论 (重点:遗传病定义及特征) 1.遗传病:一般把遗传因素作为唯一或主要病因的疾病成为遗传病 2.医学遗传学:用人类遗传学的理论和方法来研究遗传病从亲代传递至子代的特点,规律、起源和发生、病理机制、病变过程及其与临床关系的一门综合学科。 3.简要说明遗传病的特征? 答:①遗传病的传播方式:一般是以垂直方式出现的,不延伸至无亲缘个体②遗传病的数量分布:亲祖代和子孙代是以一定数量比例出现的,社会上总体数量少,分布不均③遗传病的先天性:但并非所有的遗传病都是先天的④遗传病的家族性:发生具有家族聚集性,发病年龄通常一代比一代早,病情加重⑤遗传病的传染性:一般无传染性,但人类阮粒蛋白是一种遗传又具有传染性的疾病。 第一章人类基因和基因组 (重点:断裂基因及其英文) 1.割裂基因((split gene)是真核生物的结构基因,由编码序列和非编码序列组成,二者相间排列。 第二章基因突变 重点(基因突变,DNA的修复系统有哪些) 1.基因突变:发生在分子水平上DNA碱基对组成与序列的变化。 2. DNA的修复系统有哪些? (1)紫外线照射引起的DNA损伤与修复 ①光复活修复,在可见光的作用下,光复活酶被激活,能够特异性的识别、结合嘧啶二聚体,形成酶-DNA复合体,利用可见光的能量,嘧啶二聚体解聚,修复完成,酶也从DNA上解离,释放。 ②切除修复,也称暗修复,无需光能。发生在DNA复制之前。 ③重组修复,发生在DNA复制过程之中和复制完成之后的一种不完全的修复形式。(2)电离辐射引起的DNA损伤和修复 ①超快修复②快修复③慢修复 第四章单基因病的遗传 重点:判断遗传方式,并且加上特点;不规则显性遗传;遗传印记 1.遗传方式的特点 (1)常染色体显性遗传特点:①男女患病机会均等②患者双亲必有一个是患者③患者的子代有1/2的发病可能。④连续传递 (2)常染色体隐形遗传特点:①男女患病机会均等患者双亲往往表型正常,但都是致病基因的携带者。②患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3是携带者,患者的子女一般不发病,但肯定都是携带者。③没有连续传递的现象 (3)伴X显性遗传的特点:①人群中女性患者数目多于男性患者②患者双亲中一方患病。③交叉遗传,男传女,不传男。女性杂合子患者的子女中各有50%的可能性发病。 ④有连续传递的现象。

遗传学课后习题答案

遗传学复习资料 第一章绪论 1、遗传学:是研究生物遗传和变异的科学 遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆” 变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。 2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗 传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。 3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构 模式理念,这是遗传学发展史上一个重大的转折点。 第二章遗传的细胞学基础 原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为: (1)DNA合成前期(G1期);(2)DNA合成期(S期); (3)DNA合成后期(G2期);(4)有丝分裂期(M期)。 同源染色体:生物体中,形态和结构相同的一对染色体。 异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。 无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。 有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。

最新遗传学(朱军-第三版)第二章基因突变复习总结

一、基因突变的概念 1.基因突变(gene mutation):染色体上某一基因位点内部发生了化学性质(结构)的变化,与原来基因形成对性关系。 二、基因突变的分子机制 基因突变的分子机制(本质)是DNA分子结构的改变,分子结构的改变可以分为以下几类:替换(substitution)/点突变(point mutation)指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。 倒位(transposition)指DNA链重组使其中一段核苷酸链方向倒置。 缺失(deletion)指DNA链上一个或一段核苷酸的消失。 插入(insertion)指一个或一段(例如:转座子)核苷酸插入到DNA链中。 发生替换、倒位、缺失和插入的结果可能造成 错义突变(missense mutation):是指DNA分子中碱基改变后引起密码子变化,导致所编码的氨基酸发生替代,从而影响蛋白质功能,以至影响到突变体的表型。 无义突变(nonsense mutation):是指由于DNA的碱基改变导致编码氨基酸的密码子突变成终止密码子。这种突变引起mRNA 翻译提前终止,产生一条短的不完整的多肽链。无义突变通常对所编码的蛋白活性有严重影响,产生突变的表型。 移码突变(frame-shift mutaion)在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,产生突变的表型。 同义突变(沉默突变silent mutation):是指DNA分子中的碱基改变后,突变的密码子仍然编码原来的氨基酸,并没有引起多肽链中氨基酸的变化。 三、基因突变的分类 1、根据突变所引起的表型改变分为:形态突变型;生化突变型;致死突变型;条件致死突变型。 2、根据基因结构的改变方式分为:分子结构改变(碱基替换;倒位)、移码突变(插入与缺失)。 3、根据突变所引起的遗传信息意义的改变分为:错意突变、无义突变、移码突变和同义突变 4、根据突变发生的方式: 自发突变(spontaneous mutation)是指在自然状态下未经诱变剂处理而出现的突变。 自发突变可能是由于DNA复制错误、碱基的异构互变效应、自发的化学变化(碱基的脱嘌呤和脱氨基)和转座因子等多种原因引起的。 人工诱发基因突变:包括物理诱变和化学诱变 缺少碱基会引起碱基的转替换(转换和颠换) 四、基因突变的诱发 1、物理因素诱变 1)分类 物理因素诱变包括电离辐射诱变和飞电离辐射诱变。 电离辐射: 包括α射线、β射线和中子的粒子辐射,还包括X射线和γ射线的电磁波辐射。非电离辐射:紫外线。

浙江大学遗传学习题答案

朱军遗传学(第三版)习题答案第一章绪论 1.答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2.答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。 遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3.答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4.答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。生物与环境的统一,是生物科学中公认的基本原则。所以,研究生物的遗传和变异,必须密切联系其所处的环境。 5.答:孟德尔在前人植物杂交试验的基础上,于1856~1864年从事豌豆杂交试验,通过细致的后代记载和统计分析,在1866年发表了"植物杂交试验"论文。文中首次提出分离和独立分配两个遗传基本规律,认为性状传递是受细胞里的遗传因子控制的,这一重要理论直到1900年狄·弗里斯、柴马克、柯伦斯三人同时发现后才受到重视。因此,1900年孟德尔遗传规律的重新发现,被公认为是遗传学建立和开始发展的一年。1906年是贝特生首先提出了遗传学作为一个学科的名称。 6.答:遗传学100余年的发展历史,已从孟德尔、摩尔根时代的细胞学水平,深入发展到现代的分子水平。其迅速发展的原因是因为遗传学与许多学科相互结合和渗透,促进了一些边缘科学的形成;另外也由于遗传学广泛应用了近代化学、物理学、数学的新成就、新技术和新仪器设备,因而能由表及里、由简单到复杂、由宏观到微观,逐步深入地研究遗传物质的结构和功能。因此,遗传学是上一世纪生物科学领域中发展最快的学科之一,遗传学不仅逐步从个体向细胞、细胞核、染色体和基因层次发展,而且横向地向生物学各个分支学科渗透,形成了许多分支学科和交叉学科,正在为人类的未来展示出无限美好的前景。 7.答:在生物科学、生产实践上,为了提高工作的预见性,有效地控制有机体的遗传和变异,加速育种进程,开展动植物品种选育和良种繁育工作,都需在遗传学的理论指导下进行。例如我国首先育成的水稻矮杆优良品种在生产上大面积推广,获得了显著的增产。又例如,国外在墨西哥育成矮杆、高产、抗病的小麦品种;在菲律宾育成的抗倒伏、高产,抗病的水稻品种的推广,使一些国家的粮食产量有所增加,引起了农业生产发展显著的变化。医学水平的提高也与遗传学的发展有着密切关系。 目前生命科学发展迅猛,人类和水稻等基因图谱相继问世,随着新技术、新方法的不断出现,遗传学的研究范畴更是大幅度拓宽,研究内容不断地深化。国际上将在生物信息学、功能基因组和功能蛋白质组等研究领域继续展开激烈竞争,遗传学作为生物科学的一门基础学科越来越显示出其重要性。 第二章遗传的细胞学基础 1.答:原核细胞:一般较小,约为1~10mm。细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。细胞壁内为细胞膜。内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。其DNA存在的区域称拟核,但其外面并无外膜包裹。各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。

最新医学遗传学试题及答案合集

1.遗传病特指__C______。 A.先天性疾病 B.家族性疾病 C.遗传物质改变引起的疾病 D.不可医治的疾病 E.既是先天的,也是家族性的疾病 2、___B_____于1953年提出DNA双螺旋结构,标志分子遗传学的开始。 A. Jacob和Momod B. Watson和Crick C. Khorana和Holley D. Avery和McLeod E. Arber和Smith 3.环境因素诱导发病的单基因病为___B_____。 A.Huntington舞蹈病 B.蚕豆病 C.白化病 D.血友病A E.镰状细胞贫血 4.传染病发病__D______。 仅受遗传因素控制 主要受遗传因素影响,但需要环境因素的调节 以遗传因素影响为主和环境因素为辅 以环境因素影响为主和遗传因素为辅 仅受环境因素影响 5.种类最多的遗传病是___A_____。 A.单基因病 B.多基因病 C.染色体病 D.体细胞遗传病 6.发病率最高的遗传病是__B______。 A.单基因病 B.多基因病 C.染色体病 D.体细胞遗传病 7.最早被研究的人类遗传病是___A_____。 A.尿黑酸尿症 B.白化病 C.慢性粒细胞白血病 D.镰状细胞贫血症 8.有些遗传病家系看不到垂直遗传的现象,这是因为__D______。 A. 该遗传病是体细胞遗传病 B. 该遗传病是线粒体病 C. 该遗传病是性连锁遗传病 D. 该遗传病的患者活不到生育年龄或不育 9、下列___D_____碱基不存在于DNA中。 A. 胸腺嘧啶 B. 胞嘧啶 C. 鸟嘌呤 D. 尿嘧啶 E. 腺嘌呤 10.基因表达时,遗传信息的基本流动方向是__C______。 A.RNA→DNA→蛋白质 B.hnRNA→mRNA→蛋白质 C.DNA→mRNA→蛋白质 D.DNA→tRNA→蛋白质 E.DNA→rRNA→蛋白质 11、人类基因组中存在着重复单位为2~6bp的重复序列,称为:__C______。 A. tRNA B. rRNA C. 微卫星DNA D. 线粒体DNA E. 核DNA 12.基因突变对蛋白质所产生的影响不包括__E______。 A.影响活性蛋白质的生物合成 B. 影响蛋白质的一级结构 C.改变蛋白质的空间结构 D. 改变蛋白质的活性中心 E.影响蛋白质分子中肽键的形成 13.脱氧核糖核酸分子中的碱基互补配对原则为___C_____。 A.A-U,G-C B.A-G,T-C C.A-T,C-G D.A-U,T-C E.A-C,G-U 14.由于突变使编码密码子形成终止密码,此突变为___B_____。 A.错义突变 B.无义突变 C. 终止密码突变 D. 移码突变 E.同义突变15.DNA复制过程中,5’→3’亲链作模板时,子链的合成方式为___B_____。

水产生物遗传育种学:遗传学试题和答案

遗传学答案(朱军教材) 遗传学 习题与参考答案 第二章遗传的细胞学基础(练习) 一、解释下列名词:染色体染色单体着丝点细胞周期同源染色体异源染色体无丝分裂有丝分裂单倍体联会胚乳直感果实直感 二、植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞? 三、玉米体细胞里有10对染色体,写出下列各组织的细胞中染色体数目。 四、假定一个杂种细胞里含有3对染色体,其中A、B、C来自父本、A’、B’、C’来自母本。通过减数分裂能形成几种配子?写出各种配子的染色体组成。 五、有丝分裂和减数分裂在遗传学上各有什么意义? 六、有丝分裂和减数分裂有什么不同?用图解表示并加以说明。 第二章遗传的细胞学基础(参考答案) 一、解释下列名词: 染色体:细胞分裂时出现的,易被碱性染料染色的丝状或棒状小体,由核酸和蛋白质组成,是生物遗传物质的主要载体,各种生物的染色体有一定数目、形态和大小。 染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两条遗传内容完全一样的子染色体。 着丝点:即着丝粒。染色体的特定部位,细胞分裂时出现的纺锤丝所附着的位置,此部位不染色。 细胞周期:一次细胞分裂结束后到下一次细胞分裂结束所经历的过程称为细胞周期(cell cycle)。 同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体(homologous chromosome)。两条同源染色体分别来自生物双亲,在减数分裂时,两两配对的染色体,形状、大小和结构都相同。 异源染色体:形态结构上有所不同的染色体间互称为非同源染色体,在减数分裂时,一般不能两两配对,形状、大小和结构都不相同。 无丝分裂:又称直接分裂,是一种无纺锤丝参与的细胞分裂方式。 有丝分裂:又称体细胞分裂。整个细胞分裂包含两个紧密相连的过程,先是细胞核分裂,后是细胞质分裂,核分裂过程分为四个时期;前期、中期、后期、末期。最后形成的两个子细胞在染色体数目和性质上与母细胞相同。 单倍体:指具有配子染色体数(n)的个体。 联会:减数分裂中同源染色体的配对。 联会复合体——减数分裂偶线期和粗线期在配对的两个同源染色体之间形成的结构,包括两个侧体和一个中体。 胚乳直感:又称花粉直感。在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状。果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状 二、可以形成:40个花粉粒,80个精核,40个管核;10个卵母细胞可以形成:10个胚囊,10个卵细胞,20个极核,20个助细胞,30个反足细胞。 三、(1)叶(2)根(3)胚乳(4)胚囊母细胞(5)胚 (6)卵细胞(7)反足细胞(8)花药壁(9)花粉管核 (1)叶:20条;(2)根:20条;(3)胚乳:30条;(4)胚囊母细胞:20条;(5)胚:20条;

医学遗传学基础复习题

习题七 医学遗传学基础复习题 一、名词解释 1 遗传学 2 医学遗传学 3 遗传和变异 4 单基因病 5 多基因病 6 染色体病 7 基因 8 结构基因 9 调控基因10 断裂基因11 基因组12 基因家族 13 基因簇14 假基因15 基因表达16 转录 17 翻译18 基因突变19 点突变20 同义突变 21 错义突变22 无义突变23 移码突变24 等位基因 25 分离定律26 复等位基因27 自由组合定律28 连锁与互换定律 29 单基因遗传30 系谱31 携带者32 完全显性 33 不完全显性34 不规则显性35 共显性36 延迟显性 37 表现度38 外显率39 交叉遗传40 遗传异质性 41 多基因遗传42 数量性状43 微效基因44 易患性 45 遗传率46 早发现象47 从性遗传48 限性遗传 49 阈值50 染色体组51 染色体核型52 显带技术 53 丹佛体制54 染色体带型55 高分辨带56 染色体畸变 57 整倍体58 非整倍体59 假二倍体60 易位 61 倒位62 插入63 重复64 等臂染色体 65 双着丝粒染色体66 嵌合体67 三体型68 单体型 69 多体型70 TDF基因71 SRY基因72 AZF基因 73 Lyon假说74 真两性畸形75 假两性畸形76 分子病 77 遗传性酶病78 基因定位79 遗传图谱80 物理图谱 二、填空题 1 生物的正常性状和绝大多数的异常性状(疾病)都是因素和因素相互作用的结果。 2 在人类不同疾病的病因中,根据遗传因素和环境因素所起作用的大小,可将人类疾病分为等三种情况。 3 生殖细胞或受精卵的遗传物质发生突变所引起的疾病,称为。具有传递的特征。 4 染色体数目、结构畸变所引起的疾病称为。 5 基因病是由于突变而引起的疾病。其可分为病和病两类。 6 主要受一对等位基因所控制的疾病,即一对染色体上单个基因或一对等位基因发生突变所引起的疾病称为。 7 多对基因和环境因素共同作用所引起的疾病称为。 8 DNA具有、和等遗传物质的基本特性。 9 DNA的组成单位是后者由、和组成。 10 DNA和RNA的共有碱基是、和。 11 双链DNA中,碱基对A和T之间形成的氢键数目是、G和C之间的氢键数目是。 12 基因的化学本质是。 13 人类基因根据其功能不同可分成和。 14 人类基因组包括基因组和基因组,人类DNA中的重复序列、基因家族主要存在于基因组。

遗传学课后习题与答案

第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律就是生物界普遍存在的一种遗传现象,而显性现象的表现就是相对的、有条件的;2、只有遗传因子的分离与重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R)对黄果色(r)就是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr (2)Rr×rr (3)Rr×Rr (4) Rr×RR (5)rr×rr 3、下面就是紫茉莉的几组杂交,基因型与表型已写明。问它们产生哪些配子?杂种后代的基因型与表型怎样?(1)Rr × RR (2)rr × Rr (3)Rr × Rr 粉红 红色白色粉红粉红粉红 合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd 5、在豌豆中,蔓茎(T)对矮茎(t)就是显性,绿豆荚(G)对黄豆荚(g)就是显性,圆种子(R)对皱种子(r)就是显性。

现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6、在番茄中,缺刻叶与马铃薯叶就是一对相对性状,显性基因C控制缺刻叶,基因型cc就是马铃薯叶。紫茎与绿茎就是另一对相对性状,显性基因A控制紫茎,基因型aa的植株就是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何? 解:题中F2分离比提示:番茄叶形与茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交:

遗传学笔记整理

遗传学 一、名词解释 基因型:是指一个个体染色体上基因的集合,即它所包含的每一对基因。 表现型:也简称表型,是指一个个体所含有的各种基因所制造的产物如蛋白质、酶等,以及个体的各种表现特征,甚至包括它的行为等。 染色质:是一种纤维状结构,叫做染色质丝,它是由最基本的单位——核小体(nucleosome)成串排列而成的。 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 有丝分裂:又称间接分裂,通过纺锤体的形成、运动以及染色体的形成,将S期已经复制好的DNA平均分配到两个子细胞中,以保证遗传的稳定性和连续性的分裂方式。由于这一分裂方式的主要特征是出现纺锤丝,特称为有丝分裂。 减数分裂:有性繁殖生物为形成单倍体配子以完成生殖过程而进行的一种特殊的有丝分裂方式,包括两次细胞分裂而只有一次染色体复制,最终子细胞染色体数目减半。 同源染色体:是在二倍体生物细胞中,形态、结构基本相同的染色体,并在减数第一次分裂的四分体时期中彼此联会,最后分开到不同的生殖细胞(即精子、卵细胞)的一对染色体,在这一对染色体中一个来自母方,另一个来自父方。 遗传密码:指mRNA链上每三个核甘酸翻译成蛋白质多肽链上的一个氨基酸,这三个核甘酸就称为密码子或三联子密码(triplet coden) 。 中心法则:是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。在某些病毒中的RNA 自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程。 假基因:是基因组中因突变而失活的基因,无蛋白质产物。一般是启动子出现问题。 超基因:是指作用于一种性状或作用于一系列相关性状的几个紧密连锁的基因。 内含子(Intron) :真核细胞基因DNA中的间插序列,这些序列被转录成RNA,但随即被剪除而不翻译。

遗传学课后习题及答案

Chapter 1 AnIntroduction toGenetics (一)名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题:?1.1900年(2))规律的重新发现标志着遗传学的诞生. ?(1)达尔文(2)孟德尔(3) 拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学, 称之( 4 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学?3.遗传学中研究基因化学本质及性状表达的内容称(1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学 (4)细胞遗传学 4. 通常认为遗传学诞生于(3)年。?(1)1859 (2)1865 (3) 1900 (4)1910?5.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan(3)G·J·Mendel (4)C·R·Darwin?6.公认细胞遗传学的奠基人是(2):?(1)J·Lamarck (2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin Chapter2Mitosisand Meiosis 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表:

有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。 例如,水稻n=12,其非同源染色体分离时的可能组合数为212 =4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2。水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3。用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示: 4. 某生物有两对同源染色体,一对是中间着丝粒,另一对是端部着丝粒,以模式图方式画出:(1)减数第一次分裂的中期图; (2)减数第二次分裂的中期图。

《遗传学》朱军版习题与答案教学文案

遗传学(第三版)》 朱军主编 课后习题与答案 目录 第一章绪论 (1) 第二章遗传的细胞学基础 (2) 第三章遗传物质的分子基础 (6) 第四章孟德尔遗传 (9) 第五章连锁遗传和性连锁 (12) 第六章染色体变异 (15) 第七章细菌和病毒的遗传 (21) 第八章基因表达与调控 (28) 第九章基因工程和基因组学 (32) 第十章基因突变 (34) 第十一章细胞质遗传 (36) 第十二章遗传与发育 (39) 第十三章数量性状的遗传 (40) 第十四章群体遗传与进化 (44) 第一章绪论 1. 解释下列名词:遗传学、遗传、变异。 答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2. 简述遗传学研究的对象和研究的任务。答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3. 为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新 陈代谢进行生长、发育和繁殖,从而表

2020刘庆昌《遗传学(第三版)》第1-7章部分课后作业参考答案

第一章 第二章 第三章孟德尔遗传 4.大豆的紫花基因P对白花基因p为显性,紫花′白花的F1全为紫花,F2共有1653株,其中紫花1240株,白花413株,试用基因型说明这一试验结果。

紫花×白花→紫花→紫花(1240株):白花(413株) PP ×pp→Pp→3P_:1pp 10.光颖、抗锈、无芒(ppRRAA)小麦和毛颖、感锈、有芒(PPrraa)小麦杂交,希望从F3选出毛颖、抗锈、无芒(PPRRAA)的小麦10个株系,试问在F2群体中至少应选择表现型为毛颖、抗锈、无芒(P_R_A_)的小麦若干株? 由于F3表现型为毛颖抗锈无芒(P_R_A_)中PPRRAA的比例仅为1/27,因此,要获得10株基因型为PPRRAA,则F3至少需270株表现型为毛颖抗锈无芒(P_R_A_)。 14.设玉米籽粒有色是独立遗传的三显性基因互作的结果,基因型为A_C_R_的籽粒有色,其余基因型的籽粒均无色。有色籽粒植株与以下三个纯合品系分别杂交,获得下列结果: (1) 与aaccRR品系杂交,获得50%有色籽粒; (2) 与aaCCrr品系杂交,获得25%有色籽粒; (3) 与AAccrr品系杂交,获得50%有色籽粒。 试问这些有色籽粒亲本是怎样的基因型? 根据(1)试验,该株基因型中A或C为杂合型; 根据(2)试验,该株基因型中A和R均为杂合型; 根据(3)试验,该株基因型中C或R为杂合型; 综合上述三个试验,该株的基因型为AaCCRr 15.假定某个二倍体物种含有4个复等位基因(如a1、a2、a3、a4),试决定在下列这三种情况可能有几种基因组合?(1)一条染色体;(2)一个个体;(3)一个群体。(1)四种可能,但一个特定染色体上只有其中一种,即a1或a2或a3或a4。 (2)十种可能,但一个特定个体只有其中一种,即a1a1或a2a2或a3a3或a4a4或a1a2或a1a3或a1a4或a2a3或a2a4或a3a4。 (3)十种都会出现,即a1a1,a2a2,a3a3,a4a4,a1a2,a1a3,a1a4,a2a3,a2a4,a3a4。

医学遗传学期末复习资料

医学遗传学 题型:1.词解释20分5个 2.单选10分10个 3.简答50分5个 4.谱系分析12分 5.开放题8分 考试时间:12月18日 一、名词解释 1.基因突变:是指基因组DNA分子某些碱基顺序发生改变。 2.点突变:基因突变中最小的变化是DNA链中的一个或一对碱基的改变称为点突变。 3.亲缘系数:又称血缘系数,指将群体中个体之间基因组成的相似程度用数值来表示。意义即拥有共同祖先的两个人,在某一位点上具有同一基因的概率。 4.同源染色体:是在二倍体生物细胞中,形态、结构基本相同的染色体,在这一对染色体中一个来自母方,另一个来自父方。 5.遗传印记:来自父母双方的同源染色体或等位基因存在功能上的差异,由不同性别的亲代传给子代的同一染色体或基因,可以引起不同的表型,我们把这种现象称为遗传印记。 6.遗传异质性:一种遗传病在不同家庭中,由不同的遗传改变所引起,称为遗传异质性。可分为基因异质性和等位基因异质性。基因异质性指同一疾病是由不同基因座上的突变所引起。等位基因异质性是指同一疾病由同一基因座上不同的突变等位基因所致。 7.整倍体:染色体数目整组地增加,即形成整倍体。例如,由三个或四个染色体组组成的三倍体.四倍体。三倍体以上的细胞称多倍体。 8.基因型频率:指某一等位基因占该基因座上全部等位基因的比率。 9.非整倍体:如果体细胞中的染色体不是整倍体,而是比二倍体少一条(2n-1)或多一条(2n+1)甚至多几条.少几条染色体,这样的细胞或个体即称非整倍体。 10.嵌合体:有丝分裂中,某一条染色体的姐妹染色单体不分离,导致产生由两种或两种以上的细胞组成的个体,称为嵌合体 11.分子病:如果DNA分子的碱基顺序发生改变,由它编码的蛋白质就发生相应的变化,由此可能引起一系列病理变化,导致疾病。这种疾病是蛋白质分子的结构和数量的异常所引起,所以称分子病。 12.代谢病:编码酶蛋白的基因发生突变导致合成的酶蛋白结构异常,或者由于基因调通系统突变导致酶蛋白合成数量减少,均可导致遗传性酶缺失,引起代谢紊乱。所以酶蛋白病也可称为先天性代谢缺陷或遗传性代谢病。 13.癌基因:是指能引起细胞恶性转化的基因,它首先发现于病毒的基因组,继之又发现于动物和人的细胞基因组中。 14.抑制癌基因:又称抗癌基因,是人类正常细胞中所具有的一类基因,对细胞的增殖分化有调节作用。 15.Hardy-Weinberg平衡:在一定条件性下,即①在一个很大的群体中;②进行随机婚配而非选择性婚配;③没有自然选择;4.没有突变发生;5没有大规模的迁徙等条件下,群体中的基因频率和基因型频率在一代代繁殖传代中,保持不变,这就是遗传平衡定律,又称~~ 16.Ph染色体:在慢性粒细胞白血病患者de骨髓和外周血淋巴细胞中,有一个很小的近端着丝粒染色体,小于G组染色体,称为~~ 二.问答 1.简述染色体数目畸变中三倍体产生的机理。 答:①双雄受精,即受精时有两个精子入卵受精,可形成69,XXX;69,XYY;69,XXY三种类型的受精;②双雌受精,即卵子发生的第二次减数分裂时,次级卵母细胞由于某种原因,其第二极体的那一个染色体组未排出卵外,而仍留在卵内,这样的卵与一个正常精子受精后,

《遗传学》朱军版习题与答案

《遗传学(第三版)》 朱军主编 课后习题与答案 目录 第一章绪论 (1) 第二章遗传的细胞学基础 (2) 第三章遗传物质的分子基础 (6) 第四章孟德尔遗传 (8) 第五章连锁遗传和性连锁 (12) 第六章染色体变异 (15) 第七章细菌和病毒的遗传 (20) 第八章基因表达与调控 (26) 第九章基因工程和基因组学 (30) 第十章基因突变 (33) 第十一章细胞质遗传 (35) 第十二章遗传与发育 (37) 第十三章数量性状的遗传 (38) 第十四章群体遗传与进化 (42) 第一章绪论 1.解释下列名词:遗传学、遗传、变异。 答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2.简述遗传学研究的对象和研究的任务。 答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。 遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素? 答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4. 为什么研究生物的遗传和变异必须联系环境? 答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。生物与环境的统一,是生物科学中公认的基本原则。所以,研究生物的遗传和变异,必须密切联系其所处的环境。

完整word版,刘祖洞遗传学第三版答案 第9章 数量性状遗传

第九章数量性状遗传 1.数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传和质量性状遗传有什么主要区别? 解析:结合数量性状的概念和特征以及多基因假说来回答。 参考答案: 数量性状在遗传上的特点: (1)数量性状受多基因支配 (2)这些基因对表型影响小,相互独立,但以积累的方式影响相同的表型。 (3)每对基因常表现为不完全显性,按孟德尔法则分离。 数量性状在实践上的特点: (1)数量性状的变异是连续的,比较容易受环境条件的影响而发生变异。 (2)两个纯合亲本杂交,F1表现型一般呈现双亲的中间型,但有时可能倾向于其中的一个亲本。F2的表现型平均值大体上与F1相近,但变异幅度远远超过F1。F2分离群体内,各种不同的表现型之间,没有显着的差别,因而不能得出简单的比例,因此只能用统计方法分析。 (3)有可能出现超亲遗传。 数量性状遗传和质量性状遗传的主要区别: (1)数量性状是表现连续变异的性状,而质量性状是表现不连续变异的性状; (2)数量性状的遗传方式要比质量性状的遗传方式复杂的多,它是由许多基因控制的,而且它们的表现容易受环境条件变化的影响。 2.什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度? 解析:根据定义回答就可以了。 参考答案:遗传率指亲代传递其遗传特性的能力,是用来测量一个群体内某一性状由遗传因素引起的变异在表现型变异中所占的百分率,即:遗传方差/总方差的比值。广义遗传率是指表型方差(Vp)中遗传方差(Ve)所占的比率。狭义遗传率是指表型方差(Vp)中 加性方差(V A〔在数量性状的遗传分析中,对于单位点模型,可以用显性效应和加性效应的比值d/a来表示显性程度。但是推广到多基因

医学遗传学重点总结 医学遗传学笔记(期末考研复试)

医学遗传学笔记 ——2012级临床五年五班整理 绪论 1、遗传病的特点: 第一、遗传病是垂直传播的,不同于传染病的水平传播。 第二、遗传病的患者在亲祖代与子孙中是以一定数量比例出现的,患者与正常者有一定的数量关系。 第三、遗传病是先天性的但不是所有的先天性疾病都是遗传病(如孕妇妊娠时风疹感染在成患儿的先天性心脏病)同时也不是所有的遗传病都在出生时都表现出来(如亨廷顿氏病) 第四、遗传病往往呈现出家族聚集性。但不是所有的有家族聚集性的疾病都是遗传病(如某些与饮食习惯有关的疾病)。第五、遗传病的传染性。由于朊病毒的发现,现代遗传病的概念得到了进一步的拓展。PrP基因的突变会影响蛋白质的构象称为蛋白折叠病。错误折叠的蛋白可以诱导正常蛋白的变化所以也具有传染性。故从这个角度来讲遗传病也有传染性。 2、遗传病的分类可以分为: 1.单基因病 ?常染色体显性AD ?常染色体隐性AR ?性染色体显性XD ?性染色体隐性XR 2.多基因病 3.染色体病 4.体细胞遗传病(这类疾病包括恶性肿瘤、自身免疫缺陷、衰老等。传统意义上的遗传病不包括这种) 5.线粒体疾病 第二章基因突变 1、一切生物细胞内的基因都能保持其相对稳定性,但在一定内外因素的影响下,遗传物质就可能发生变化,这种遗传物质的变化及其所引起的表型改变称为突变(mutation)。 2、基因突变的特征:多向性(同一基因座上的基因可独立发生多次不同的突变而形成复等位基因)、重复性、随机性、稀有性(在自然状态下发生突变的频率很低)、可逆性(可以发生回复突变)、有害性、突变(多数是有害的) 3、基因突变可以分为:自发突变、诱发突变。增加突变率的物质称为诱变剂。 4、诱变因素: 1.物理因素 a)紫外线(嘧啶二聚体,光复活修复(photoreactivation repair),哺乳动物没有) b)电离和电磁辐射(DNA链的断裂与染色体链的断裂;染色体重排、染色体结构改变)所引起的修复为: ●超快修复:修复速度极快,在适宜条件下,大约2分钟内即可完成修复。 ●快修复:一般在X线照射后数分钟内,即可使超快修复所剩下的断裂单链的90%被修复。 ●慢修复:是由重组修复系统对快修复所不能修复的单链断裂加以修复的过程。一般修复时间较长。 c)高温严寒(据王亚馥的《遗传学》所讲是对染色体倍性的影响)(可信性值得怀疑) 2.化学因素 a)羟胺(hydroxylamine,HA)碱基颠换 b)亚硝酸或含亚硝基化合物脱氨基从而导致碱基错配 c)碱基类似物代替碱基插入导致错配(5-溴尿嘧啶,EB) d)芳香族化合物插入导致碱基移码突变(丫啶类,焦宁类) e)烷化剂高度诱变活性(引起错配) f)烧烤兴奋剂也会有影响 3.生物因素 a)病毒如风疹、麻疹、流感、疱疹等(分为DNA病毒和RNA病毒,前者的致病机理尚不知晓后者多半 由于逆转录的cDNA分子的插入)

朱军遗传学第三版习题答案

朱军遗传学(第三版)习题答案 第三章遗传物质的分子基础 1.半保留复制:DNA分子的复制,首先是从它的一端氢键逐渐断开,当双螺旋的一端已拆开为两条单链时,各自可以作为模板,进行氢键的结合,在复制酶系统下,逐步连接起来,各自形成一条新的互补链,与原来的模板单链互相盘旋在一起,两条分开的单链恢复成DNA双分子链结构。这样,随着DNA分子双螺旋的完全拆开,就逐渐形成了两个新的DNA分子,与原来的完全一样。这种复制方式成为半保留复制。 冈崎片段:在DNA复制叉中,后随链上合成的DNA不连续小片段称为冈崎片段。 转录:由DNA为模板合成RNA的过程。RNA的转录有三步: ① RNA链的起始;② RNA链的延长;③ RNA链的终止及新链的释放。 翻译:以RNA为模版合成蛋白质的过程即称为遗传信息的翻译过程。 小核RNA:是真核生物转录后加工过程中RNA的剪接体的主要成分,属于一种小分子RNA,可与蛋白质结合构成核酸剪接体。 不均一核RNA:在真核生物中,转录形成的RNA中,含有大量非编码序列,大约只有25%RNA经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA 在分子大小上差别很大,所以称为不均一核RNA。 遗传密码:是核酸中核苷酸序列指定蛋白质中氨基酸序列的一种方式,是由三个核苷酸组成的三联体密码。密码子不能重复利用,无逗号间隔,存在简并现象,具有有序性和通用性,还包含起始密码子和终止密码子。 简并:一个氨基酸由一个以上的三联体密码所决定的现象。 多聚核糖体:一条mRNA分子可以同时结合多个核糖体,形成一串核糖体,成为多聚核糖体。 中心法则:蛋白质合成过程,也就是遗传信息从DNA-mRNA-蛋白质的转录和翻译的过程,以及遗传信息从DNA到DNA的复制过程,这就是生物学的中心法则。 2.答:DNA作为生物的主要遗传物质的间接证据: (1)每个物种不论其大小功能如何,其DNA含量是恒定的。 (2)DNA在代谢上比较稳定。(3)基因突变是与DNA分子的变异密切相关的。 DNA作为生物的主要遗传物质的直接证据: (1)细菌的转化已使几十种细菌和放线菌成功的获得了遗传性状的定向转化,证明起转化作用的是DNA; (2)噬菌体的侵染与繁殖主要是由于DNA进入细胞才产生完整的噬菌体,所以DNA是具有连续性的遗传物质。 (3)烟草花叶病毒的感染和繁殖说明在不含DNA的TMV中RNA就是遗传物质。 3.答:根据碱基互补配对的规律,以及对DNA分子的X射线衍射研究的成果,提出了DNA双螺旋结构。 特点:(1)两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行的环绕于同一轴上,很像一个扭曲起来的梯子。(2)两条核苷酸链走向为反向平行。(3)每 - 1 - / 36

相关文档
最新文档