LTE时代的基站天线解决方案

LTE时代的基站天线解决方案
LTE时代的基站天线解决方案

一.前言

在国外,LTE(Long Term Evolution,长期演进)是3GPP组织制定的作为UMTS 技术长期演进的移动通讯制式,该标准于2004年12月召开的3GPP多伦多TSG RAN#26会议上正式立项并启动;自此,LTE FDD技术在全球范围内逐步得到了发展及商用。在国内,TD-LTE(Time Division Long Term Evolution,时分长期演进)则是由我国独立自主提出的4G移动通讯制式标准,并分别于2011及2012年度成功进行两次规模试验网的测试验证,预计不久将来,在国内乃至国外将得到大规模商用。LTE FDD及TD-LTE两大制式标准都基于OFDM(正交频分复用)技术,而全球范围内的2G、3G频谱的拥挤,导致LTE时代无线频谱的分布非常离散。同时,两大标准分别支持射频端的MIMO(多入多出)及Beam-forming(波束赋型)技术,对基站天线的物理布局及性能指标提出了全新的要求。

二.TD-LTE基站天线解决方案

1. TD-LTE基站天线概述

TD-LTE基站天线延续了3G时代TD-SCDMA的主流设计理念,即8天线技术支持波束赋型。在TD-LTE的未来应用中,F(1880~1920 MHz)及D(2500~2690 MHz)频段将分别作为广覆盖及城区连续覆盖的选用频段,同时还要考虑TD-SCDMA的兼容,以及未来深度覆盖后基站天线倾角调整的需求。TD-LTE基站天线的整体形态,将体现宽带化、电调化以及独立调整的趋势。通宇通讯作为TD-SCDMA基站天线解决方案的领先供应商,应TD-LTE的发展需要,将推出一系列的基站天线新型产品。

2. 不同场景下TD-LTE基站天线选型

根据现有TD-LTE布站的特点,给出各个场景下基站天线分析及选用型号推荐。

1)场景1-密集城区F段或D段LTE单独组网

此类场景一般需要宏站覆盖,具有高密集话务量及大数据流量特点,覆盖距离一般要求500m以上,有邻区抗干扰需要。该场景可使用常规增益FAD天线(通宇型号

TYDA-202616D4T0/3/6/9)及常规增益FA天线(通宇型号TYDA-2015D4T0/3/6/9)。在机械倾角调整不方便的情况下,可以使用FA电调天线(通宇型号TYDA-2015DE4,支持0~14度电大下倾)或FAD宽带电调天线(通宇型号TYDA-202616DE4,支持2~12度电下倾范围)。

2)场景2-密集城区F段LTE组网,兼容TD-SCDMA。

此类场景需求宏站覆盖,具有高密集话务量及大数据流量的特点,覆盖距离一般要求500m以上,F/A干扰严重。原有TD-SCDMA和升级后新的TD-LTE,设备提供商可能不一致。该场景可使用常规增益FAD天线、常规增益FA天线、FA电调天线。在设备商不一致的情况下,可选用F/A内置合路器天线(通宇型号TYDA-1914/2015D4T6-BC)。

3)场景3-密集城区D段LTE组网,兼容TD-SCDMA

该场景也需要宏站覆盖,有高密集话务量及大数据流量特点,覆盖距离通常要求500m 以上。而D频段覆盖距离比常规F频段明显短,TD-SCDMA及升级后的D频段TD-LTE 设备商可能不一致。此类场景可使用常规增益FAD天线,加外置合路器方案,也可以使用内置合路器FAD天线(通宇型号TYDA-2015/2616D4T0/3/6/9-BC)。在TD-SCDMA 及TD-LTE业务量大大提升以后,为满足两套不同系统的网络规划及优化,需要基站天线下倾角在FA及D段做互不干扰得独立调整,这时需要用到FA/D内置合路独立电调天线(通宇型号TYDA-2015/2616DE4-BC)。

4)场景4-热点城区F或D段LTE组网,兼容TD-SCDMA,微站或街道站覆盖

微站或街道站覆盖需求是支持高密集数据流量,覆盖距离小,一般为200~300m。推荐使用小型化FAD八天线(通宇型号TYDA-202615D4T0/3/6/9,尺寸652 * 320 * 105mm)。

还有一类场景,需要支持高密集数据流量,覆盖距离为200m左右或更低,需求场景对天馈及RRU的尺寸非常敏感,宜采用“小型化双通道RRU+小型化超薄双通道天线”解决方案,推荐使用小型化超薄型FA天线(通宇型号TDI-182010DM-A,尺寸

290*100*15mm)。

5)场景5-宏站小密度F或D段LTE组网,兼容TD-SCDMA

这类场景一般分布在山村、沿海空旷地、农村或城郊结合部,其话务量及数据流量相对较小,覆盖距离1km以上。这类场景推荐使用高增益FAD天线(通宇型号

TYDA-202618D4T6)以降低建站成本,F、A及D频段增益分别支持16、16.5及18dBi,为业界同类产品中增益最高。同时,为了适应网络规划需要,需要维持高增益FAD天线和常规增益FAD天线一样的垂直面波束宽度。

6)场景6-F或D段LTE组网,兼容DCS及TD-SCDMA

此类场景一般需要宏站覆盖,支持高密集话务量及数据流量,覆盖距离500m以上,同时也是GSM重要覆盖区域。该场景推荐使用宽频双通道天线(通宇型号

TDJ-172718D-65PT0/3/6/9)及宽频双通道电调天线(通宇型号

TDJ-172718DE-65P)。

三.FDD LTE基站天线解决方案

在全球范围内,由于传统3G制式占据了绝大多数份额,作为延续,自然LTE FDD制式的使用会比TD-LTE更加广泛。由于传统的2G、3G服务仍占主流,其频谱资源在未来很长一段时间将继续沿用,无线频谱的拥挤,导致LTE FDD制式的频谱分布在世界范围内比较零散。作为基站天线,应对LTE的发展,首要任务就是开发超宽频(1710~2690MHz)以及超双宽频天线(698~960/1710~2690MHz),这样,全部移动通讯制式包括

700MHz、800MHz、900MHz、1800MHz、2.1GHz、2.3GHz、2.5GHz及2.6GHz 在内全部覆盖。

LTE FDD的一大技术特点是采用了MIMO技术,客观上要求基站天线支持同频多个端口;同时,为了应对LTE发展起来后的高密度数据流量,多端口备份应付未来通讯扩容成为上佳之选。另外,海外同区域多家运营商共站共天馈的现象较为普遍,使得超宽频多端口基站天线成为LTE FDD解决方案的趋势。通宇通讯作为宽频移相器及多端口基站天线开发的领先者,应LTE FDD技术发展的需要,将推出种类繁多的超宽频多端口基站天线。

超宽频基站天线,双频天线为698~960/1710~2690MHz(通宇典型型号

TDJ-609015/172717DE-65F),三频天线应不同基站天线宽度需要有肩并肩类1710~2690/698~960/1710~2690MHz(通宇典型型号

TTB-609015/172717/172717DE-65F)以及共轴类698~960/1710~2690/1710~2690MHz(通宇典型型号TTB-609017/172717/172717DE-65F),四频天线有双频肩并肩类698~960/1710~2690&698~960/1710~2690MHz(通宇典型型号

TDQ-609015/172717DE-65F),五频天线有一低四高1710~2690/1710~

2690/698~960/1710~2690/1710~2690MHz(通宇典型型号

TQB-609017/Q172717DE-60F),六频天线有三频肩并肩698~960/1710~

2690/1710~2690&698~960/1710~2690/1710~2690MHz(通宇典型型号

TQB-D609017/Q172717DE-60F)。同时,由于不同覆盖距离的需要,各类多端口超宽频天线拥有不同增益档的系列化产品。

四.总结

本文从国内TD-LTE及国外LTE FDD发展特点出发,简要描述了两大制式下基站天线的特点,提出两类LTE制式下基站天线的解决方案,以及通宇通讯在两类不同制式下基站天线选用的推荐型号。

作者简介:

丁勇,毕业于香港城市大学电子工程系毫米波国家重点实验室,获博士学位,现任广东通宇通讯股份有限公司技术专家兼基站天线研发部副总监。他在中国大陆地区首次提出非完整球面螺旋天线用以解决大俯仰角、低轴比方向图问题,及在世界上首次提出基于法布里谐振腔原理的平行板天线,他在移动通讯天线与射频行业分别主创2项发明、14项实用新型及13项外观专利授权,是2项国家科技重大专项的完成人,获广东省科技进步奖1项。他在国际顶尖天线学术杂志IEEE Trans. on AP上发表4篇论文,是国际权威学术杂志IET MAP及PIER & JEMWA的审稿人,并多次在国际权威学术会议上宣读及展示论文。

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.360docs.net/doc/f415474638.html,。

基站天线选型

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

5g微带阵列天线

5G 微带阵列天线 要求:利用介质常数为2.2,厚度为1mm ,损耗角为0.0009的介质,设计一个工作在5G 的4X4的天线阵列。 评分标准: 良:带宽〈7% 优:带宽〉7%且效率大于60% 1微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基板,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度W ,即为: 1 21()2 r c w f ε-+= 式中,c 是光速,辐射贴片的长度一般取为/2e λ;这里e λ是介质的导波波长,即为: e λ= 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: 2L L = -? 式中,e ε是有效介电常数,L ?是等效辐射缝隙长度。它们可以分别用下式计算,即为: 1 211 (112)22r r e h w εεε-+-= ++

(0.3)(/0.264) 0.412 (0.258)(/0.8) e e w h L h w h ε ε ++ ?= -+ 2.单元的仿真 由所给要求以及上述公式计算得辐射贴片的长度L=19.15mm,W=23.72mm。采用非辐射边馈电方式,模型如图1所示: 图1 单元模型 此种馈电方式,可以通过移动馈电的位置获得阻抗匹配,设馈电点距离上宽边的偏移量为dx,经仿真得到当dx=4mm时,阻抗匹配最好。另外,之前计算出的尺寸得到的谐振点略有偏移,经过仿真优化后贴片尺寸变为L=19mm,W=23.72mm。仿真结果图如图2,图3所示。

图2 S11参数 图3 增益图 从图中可以看出谐振点为5GHz,计算的相对带宽为2.2%,增益为5.78dB。 2. 2×2阵列设计

通信基站安装步骤

基站设备安装步骤(移动通信基站施工过程),并说明施工要点和注意事项。 一.安装机柜流程。 二.安装电源线和系统接地。 安装电源机柜时应直流配电柜接出-48V直流电源至RNC810机柜和NodeB机柜顶端配线盒。 将保护地线接至机柜接地螺栓上并紧固螺栓。 三.天馈系统安装。 1.天馈系统安装前的准备。 (1)基站环境的检查 基站环境的检查是在天馈系统安装前,需先就基站的环境进行检查,也就是对施工环境的检查。

(2)铁塔、抱杆、增高架的检查 铁塔、抱杆、增高架的检查是检查铁塔平台上、增高架上是否具有天馈安装的抱杆,检查抱杆是否固定牢靠。 (3)走线架的检查 走线架的检查是检查室外走线架是否安装,是否符合要求。 (4)馈窗的检查 检查馈窗是否有足够的馈线穿线孔供馈线布放使用。 (5)室内馈线走线位置的检查 室内馈线走线位置的检查是检查室内走线架机柜位置,以确定每个扇区的馈线线序。 (6)安全检查 安全检查是检查馈窗入线后是否有障碍物。 (7)确定馈线的长度 确定馈线的长度是馈线的长度以实际长度多预留3%为宜。 2.货物的检查。 (1)天线的检查 (2)馈线的检查 (3)附件的检查 3.工具的准备。 4.人员的准备。 5.天线组装。 6.天线的安装。

7.吊装过程。 四.注意事项。 1)天线支架与铁塔连接要求牢固可靠。 2)馈线连接正确,扇区方位正确。 3)馈线无明显折、拧现象,馈管无裸露铜皮。 4)馈线接头制作规范,无松动。 5)所有室外跨接线接头处按规范操作防水密封处理,且入室处天线和天线出线处跨接线应做避水湾。 6)天线应在避笛针保护区域内。 7)全向天线应保持垂直,误差应小于土2°。 8)定向天线方位角误差不大于±5°,定向天线倾角误差应不大于±0.5°。 9)GPS天线支架安装稳固,天线垂直张角90。范围没有遮挡(有GPS天线时检查)。 10)按照规范要求粘貼和绑扎通信电缆、馈线、跨接线标签,标签排列应整齐美观,方向一致。 11)中继电缆采用上走线时,可将电缆布放在机柜顶部上方;馈线最小弯曲半径应不小于憤管直径的20倍。 12)安装后的馈线固定夹间距应均匀,方向应一致,固定夹应牢固安装不松动。 13)馈线布放不得交叉,要求入室行、列整齐、平直,弯曲度一致。 14)天线的安装位置应与设计文件相符。 15)全向天线离塔体距离应不小于1.5m,定向天线离塔体距离应不小于lm。

三线天线的安装

三线式宽带短波基站天线 高效、全频段、全方向、架设简单、抗强风 三线式天线的结构完全不同于宽带双极天线。它是一种性能优秀的新型短波基站天线,它采用独特的三线偶极结构、损耗小、辐射效率高、重量轻、全频带内保持低驻波比。三线式天线架设状态平稳彻底克服了普通宽带双极天线重心偏斜、随风摇摆、易损坏的毛病。不但保证通信效果的稳定、而且抗风能力强。 实践证明:原来配用宽带双极天线的台站,换用三线后信号等级显着提升。此外三线天线造价较低,适合在我国推广应用,大面积提高短波通信的质量。 三线式天线可以选择两种架设方式(如下图示),分别适应不同的用途: 倒‘V ’方式架设 (用于全方向通信) 倒V 架设是将天线中央部位悬挂在支撑杆顶端,两边斜向拉直,振子对地夹角约55°。这种架设方式产生全方位辐射,而且兼顾水平极化波和垂直极化波,对外围各方向的水平天线、鞭状天线、环状天线的通信效果都很好,适合做中心站天线,配用125W 电台通信半径可达1500公里。 天线长度为30米时,中央架高15米,两侧架高2米,间距18米。 平拉方式架设 (用于定向通信) 这种架设方式在天线的宽边方向的辐射强于窄边方向(例如:东西向架设时,南北向为宽边),因此适合点对点,点对扇面定向通信。配用125W 电台最大通信距离可达2000~3000公里。 两侧支架高度以1/4波长为佳(例如:F=10MHz ,支架最佳高度约7.5米),通常以常用频率的均值设计支架高度。若受场地限制,也可以利用建筑物作为支架。 技术参数: 频率范围: 2到30 MHz 输入功率: 125瓦等幅报,250瓦峰值 驻波比: :1 阻抗: 50 欧姆 最大耐风阻力: 207 公里/每小时 展开长度: 28米 重量: 6公斤 包装尺寸: 1.4米 x 0.15米 x 0.1米

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

线极化微带天线阵列的设计

线极化微带天线阵列的设计 摘要 微带、微波起源于上世纪中期,在上世纪末就已经展开了对实用天线的研究并制成了第一批实用天线,现在微带天线方面,无论在理论还是应用,都已经取得了很大进展,并在深度和广度上都获得了进一步发展。微带天线技术越来越成熟,其应用与我们的生活、军事、科技都息息相关。体积小、重量轻、剖面薄是微带天线优于普通天线的特点,并且它适合用于印刷电路技术大批量生产,所以能够制成与导弹、卫星表面相共型的结构。因此微带天线在军事、无线通信、遥感、雷达等领域得到了广泛的应用。但是根据微带天线自身的结构特点,仍存在一些缺点,例如频带窄、效率低、增益低、方向性差。解决这些问题的方法就是:将若干个天线单元有规律的排列起来,通过利用这些天线单元构成天线阵列,从而来提高天线的增益、增强天线的方向性。 本文在学习微带天线理论及微带天线阵列基本理论的基础上,利用高频电磁仿真软件HFSS对阵列天线进行仿真设计。设计了中心频率在5.8GHz的阵列天线,对天线的特性进行了深入细致的研究。分别对单个天线阵元和天线阵列进行了仿真,天线阵列的增益明显大于单个微带天线,且方向性更好。因此采用天线阵列的形式进行仿真并对结果中各相关参数进行对比分析差异,优化调整了相关参数。仿真天线的各项指标均达到要求,进行了对实物的加工,在微波暗室内测试出天线的相关参数并与设计指标、仿真结果进行比较,最终达到了设计要求。 关键词:微带天线天线阵方向性增益 HFSS仿真

ABSTRACT Microstrip, microwave, originated in the middle of the last century, in the end of la st century has launched the research of practical antenna and made the first batch of pra ctical antenna, the microstrip antenna has made breakthrough progress now, no matter in theory or application on the depth and width of further development, this new antenna has been increasingly mature, its application to our daily life, military, science and techn ology are closely related. Compared with the common antenna microstrip antenna with small volume, light weight, the characteristics of thin section, it can be made with missil e and satellite surface phase structure, and suitable for mass production printed circuit te chnology. Therefore, microstrip antenna has been widely used in wireless communicatio n, remote sensing and radar. However, according to the structure of microstrip antenna, t here are still some shortcomings, such as narrow band, low efficiency, low gain and poo r directivity. The way to solve these problems is to arrange a number of antenna element s in a regular arrangement, and make up the antenna array to improve the gain and direc tion of the antenna. Based on the theory of microstrip antenna and basic theory of microstrip antenna ar ray, HFSS is used to analyze the array antenna. The array antenna with the center freque ncy of 5.8GHZ is designed, and the characteristics of the antenna are studied in detail. T he gain of antenna array is obviously larger than that of single microstrip antenna, and t he direction is better. Therefore, the antenna array was used for simulation and the corr elation parameters in the results were compared and analyzed, and the correlation param eters were optimized and adjusted. Simulation of the antenna of the indicators are up to par, the physical processing, and testing in microwave dark room to the related paramete rs of the antenna, and comparing with design index, the simulation results, finally reach ed the design requirements. Keywords: miccrostrip antennas antenna array directivity gain HFSS simulation

基站天线安装规范..

常规基站天线安装规范 ?离开铁塔平台距离: >1M ?天线间距: 同一小区分集接收天线:>3M 全向天线水平间距:>4M 定向天线水平间距:>2.5M 不同平台天线垂直间距:>1M ?收发天线除说明书特别指明不可倒置安置。 ?处于避雷针保护范围内。 ?天线方位:对于定向天线,第一扇区XX度,第二扇区XX度, 第三扇区XX度(根据SE设计要求设定调整)。 ?天线倾角:保证天线实际倾角符合SE设计要求,误差小于2度。 ?天线垂直度:除有天线倾角的基站外,保证天线的垂直度不大于2度

用螺栓、平垫、螺母将U 型槽夹板安装在角臂座上。 ? 安装支架至天线 用螺栓、平垫、螺母将上支架、下支架安装在天线安装板上。 U 型槽夹板 角臂座 上支架 角臂座 下支架

、安装天线 装天线至抱杆 使上支架\下支架的夹板和U型槽夹板抱住抱杆,将螺栓穿过上述夹板的安装孔,然后套入平垫和螺母并锁紧螺母。 安装天线至抱杆时,暂不要 把上、下支架的螺丝拧紧, 以便于调整天线方位角度。 但也不能过松,要保证天线 不会向下滑落。 天线方位角调整好后,再拧 紧上下支架的螺丝。

?调整天线下倾角 根据上支架上的角度标签,将天线调整至所需的下倾角。 ?天线安装结束 下倾角调节好之后,旋紧节点处的螺母(如图中标A处),天线安装结束。

A ●使用6根定长跳线。 ●(可选)若现场无定长跳线,则需裁剪合适长度的跳线,并在跳线两端制作DIN公型 接头。 可选

? 粘贴色环 ● 缠绕色环应方向一致,不能错位,每道缠绕2~3层,相邻两道色环间距为10mm ~15mm 。 ● 在距跳线接头200mm 处粘贴对应扇区的色环。 ? 密封接头 ● 缠绕胶带时,须保证上一层胶带覆盖下一层的50%以上。 ● 缠绕防水胶带时,均匀拉伸防水胶带,使其宽度为原宽度的1/2后再缠绕。每缠一层都要拉紧压实。 绝缘胶带 跳线 天线 缠绕三层防水胶带 缠绕三层绝缘胶带 绑扎线扣 天线 防水胶带 跳线

阵列原计划微带天线设计要点

编号:毕业设计(论文)说明书 题目:圆极化微带4单元阵列天线 学院: 专业: 学生姓名: 学号: 指导教师: 职称: 题目类型:理论研究实验研究工程设计工程技术研究软件开发 2012 年 6 月 5 日 摘要

圆极化天线具有一些显著的优点: 任意线极化的来波都可以由圆极化天线收到, 圆极化天线辐射的圆极化波也可以由任意极化的天线收到; 圆极化天线具有旋向正交性, 圆极化波入射到对称目标反射波变为反旋向等。正是由于这些特点使圆极化天线具有较强的抗干扰能力, 已经被广泛地应用于电子侦察和干扰,通信和雷达的极化分集工作和电子对抗等领域。

目录 第一章微带天线简介 ............................. 错误!未定义书签。

§1.1微带天线的发展............................. 错误!未定义书签。 §1.2微带天线的定义和结构....................... 错误!未定义书签。 §1.3微带天线的优缺点........................... 错误!未定义书签。 §1.4微带天线的应用 (6) 第二章微带天线的辐射原理与分析方法.............. 错误!未定义书签。 §2.1微带天线的辐射原理......................... 错误!未定义书签。 §2.2微带天线的分析方法......................... 错误!未定义书签。 §2.2.1 传输线模型法 (8) §2.2.2 空腔模型法........................... 错误!未定义书签。 §2.2.3 积分方程法........................... 错误!未定义书签。 §2.3微带天线的馈电方法......................... 错误!未定义书签。 第三章圆极化微带天线单元的设计与仿真............ 错误!未定义书签。 §3.1A NSOFT HFSS高频仿真软件的介绍............... 错误!未定义书签。 §3.2微带天线圆极化技术 (14) §3.2.1 圆极化天线的原理..................... 错误!未定义书签。 §3.2.2 圆极化实现技术 (15) 第四章圆极化微带4单元阵列天线的设计与仿真...... 错误!未定义书签。 §4.1圆极化微带天线单元的设计与仿真............. 错误!未定义书签。 §4.1.1圆极化微带天线单元的设计仿真......... 错误!未定义书签。 §4.1.2天线单元轴比的优化................... 错误!未定义书签。 §4.2馈电网络的仿真与设计....................... 错误!未定义书签。 §4.2.1两路微带等功率分配器的设计与仿真..........错误!未定义书签。 §4.2.2连续旋转馈电网络............................错误!未定义书签。 §4.3圆极化阵列天线模型的设计与仿真 ............. 错误!未定义书签。 §4.3.1阵列天线的创建与仿真................错误!未定义书签。 §4.3.2阵列天线的优化设计................错误!未定义书签。 第五章结论 致谢........................................... 错误!未定义书签。 参考文献错误!未定义书签。

基站美化天线技术规范标准

美化天线技术规

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规、采购模式等容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°的方位角,15°俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

三线天线的安装

. '. 三线式宽带短波基站天线 高效、全频段、全方向、架设简单、抗强风 三线式天线的结构完全不同于宽带双极天线。它是一种性能优秀的新型短波基站天线,它采用独特的三线偶极结构、损耗小、辐射效率高、重量轻、全频带内保持低驻波比。三线式天线架设状态平稳彻底克服了普通宽带双极天线重心偏斜、随风摇摆、易损坏的毛病。不但保证通信效果的稳定、而且抗风能力强。 实践证明:原来配用宽带双极天线的台站,换用三线后信号等级显著提升。此外三线天线造价较低,适合在我国推广应用,大面积提高短波通信的质量。 三线式天线可以选择两种架设方式(如下图示),分别适应不同的用途: 倒‘V ’方式架设 (用于全方向通信) 倒V 架设是将天线中央部位悬挂在支撑杆顶端,两边斜向拉直,振子对地夹角约55°。这种架设方式产生全方位辐射,而且兼顾水平极 化波和垂直极化波,对外围各方向的水平天线、鞭状天线、环状天线的通信效果都很好,适合做中心站天线,配用125W 电台通信半径可达1500 公里。 天线长度为30米时,中央架高15米,两侧架高2米,间距18米。 平拉方式架设 (用于定向通信) 这种架设方式在天线的宽边方向的辐射强于窄边方向(例如:东西向架设时,南北向为宽边),因此适合点对点,点对扇面定向通信。配用125W 电台最大通信距离可达2000~3000公里。 两侧支架高度以1/4波长为佳(例如:F=10MHz ,支架最佳高度约7.5米),通常以常用频率的均值设计支架高度。若受场 地限制,也可以利用建筑物作为支架。 技术参数: 频率范围: 2到30 MHz 输入功率: 125瓦等幅报,250瓦峰值 驻波比: 2.5:1 阻抗: 50 欧姆 最大耐风阻力: 207 公里/每小时 展开长度: 28米 重量: 6公斤 包装尺寸: 1.4米 x 0.15米 x 0.1米

5g微带阵列天线仿真设计

要求:利用介质常数为2.2,厚度为1mm ,损耗角为0.0009的介质,设计一个工作在5G 的4X4的天线阵列。 评分标准: 良:带宽〈7% 优:带宽〉7%且效率大于60% 1微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基板,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度W ,即为: 1 21()2 r c w f ε-+= 式中,c 是光速,辐射贴片的长度一般取为/2e λ;这里e λ是介质内的导波 波长,即为: e λ= 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: 2L L = -? 式中,e ε是有效介电常数,L ?是等效辐射缝隙长度。它们可以分别用下式计算,即为: 1 211 (112)22r r e h w εεε-+-= ++ (0.3)(/0.264) 0.412(0.258)(/0.8) e e w h L h w h εε++?=-+ 2.单元的仿真 由所给要求以及上述公式计算得辐射贴片的长度L=19.15mm,W=23.72mm 。采用非辐射边馈电方式,模型如图1所示:

图1 单元模型 此种馈电方式,可以通过移动馈电的位置获得阻抗匹配,设馈电点距离上宽边的偏移量为dx,经仿真得到当dx=4mm时,阻抗匹配最好。另外,之前计算出的尺寸得到的谐振点略有偏移,经过仿真优化后贴片尺寸变为L=19mm,W=23.72mm。仿真结果图如图2,图3所示。 图2 S11参数

图3 增益图 从图中可以看出谐振点为5GHz,计算的相对带宽为2.2%,增益为5.78dB。 2. 2×2阵列设计 设计馈电网络并组阵,模型图如图4所示。

天线安装

天线的安装 天线在安装时,为获得最理想的覆盖效果,并减少干扰,应遵循以下原则:(1)天线周围的净空要求为50~100m,即天线底部应高出周围环境5m (第一菲涅尔区半径)。 (2)如果天线安装在墙面,天线发射方向尽量与墙面垂直,如有夹角,要求不小于75度。 (3)空间分集天线的间隔距离应该考虑两个方面的影响:一是接收天线分集距离的要求,二是天线隔离度的要求。空间分集天线的间隔距离必须同时满足这两项要求。当天线间隔距离较大导致安装困难时,可以适当缩小间距。例如在60米平台上安装CDMA空间分集天线时,同一扇区两天线之间水平分集间隔距离应不小于5.5米。由于安装条件受限,无法达到需要的分集距离,则可以适当缩小天线间隔距离至4米以上。 (4)基站天线安装应注意在其覆盖区内是否会产生较大的阴影。应尽量避免天线主瓣被高大建筑物、山体所阻挡。利用大楼顶面安装定向天线时,天线位置应尽量靠近楼边,避免大楼的边沿阻挡波束。当天线必须离开大楼边沿安装,应尽量使天线架设在离开楼面较高的位置。天线离开楼顶的高度应该保证第一菲涅尔余隙无阻挡,工程设计中应避免天线主瓣方向到大楼边沿的距离超过30米。 (5)馈线、馈线转换头及室内外跳线的质量也非常大地影响移动通信基站的覆盖质量。大部分覆盖效果差的基站是由于馈线及连接部分的质量差引起的,可通过VSWR仪表逐级逐段测量来判定质量差的部分,及时更换以保证整个基站天馈线部分的质量,保证基站的运行质量和覆盖质量。 五、结论 总之,天线在移动通信网络设计及优化中起到非常大的作用,系统地了解天线的性能指标和在各种环境条件下的使用方法,将有助于移动通信网络的设计,提高网络运营质量。因此,天线的基本知识和使用方法,是网络设计和网络运营维护工作者所必须掌握的。

GPS天线安装要求规范和相关要求

GPS天线安装规范和相关要求 、GPS天线安装规范 上图为一个典型的GPS天线安装的示意图,GPS天线通过馈线与室内基站设备连接, 当高度超过一定限度时,需要安装天线头避雷器;馈线长度过长时,需要增加信号放大器; GPS信号需要供2个或多个基站设备使用时,需要增加信号分配器(功分器)。 1、GPS天线在安装及选址要求 1、GPS天线应安装在较开阔的位置上:由于卫星出现在赤道的概率大于其他地点,对 于北半球,应尽量将GPS天线安装在安装地点的南边。南北方向是GPS卫星信号接收的理 想方向,选取GPS安装位置时,首先要确保南北方向至少其中一面在GPS天线45。范围内 没有阻挡; 2、GPS天线安装必须保持垂直,安装时远离如电梯、空调等电子设备或其电器,天线 位置应当至少远离大的金属物体2米,并且与基站天线垂直距离大于3米,与墙壁距离大于3米,如果扇区天线之间的位置相隔较大时,GPS天线安装在3个扇区天线的中间位置,如此可以避免反射波的影响; 3、不要将GPS天线安装在其他发射和接收设备附近,如:微波天线、高压电缆、射频

天线的正面、电视发射塔下等;避免其他发射天线的辐射方向对准GPS天线或把GPS天线 至于发射源的强辐射区内。 4、两个或多个GPS天线安装时要保持2m以上的间距,建议将多个GPS天线安装在不同地点,防止同时受到干扰。 5、GPS天线应在避雷针保护区域,避雷针保护区域为避雷针顶点下倾45。范围内,避雷针与GPS天线的水平距离在2?3米为宜。 6、在位置满足要求的情况下,GPS馈线长度要求尽量短,当馈线长度较长时,需要增 加RF放大器(具体根据主设备厂家建议)。 2、GPS天线安装规范 1、GPS天线馈线的选择和连接:在满足位置的情况下,GPS天线馈线应尽量短,以降低线缆对信号的衰减。 2.为避免线缆晃动导致接头松动,应该用胶带将线缆与支撑管的下端固定,并将线缆固 定于抱杆上,如下图所示。线缆与抱杆的固定应该留有一定余量(可以取10cm或更长), 以防止在冬季,线缆因温度降低而有限收缩。

圆极化微带阵列天线的设计

圆极化微带阵列天线的设计 时间:2011-02-23 18:40:02 来源:电子科技作者:张明民鄢泽洪天线系统作为无线通信系统中的一个关键的部分,其特性的好坏直接影响着整个通信系统的工作性能。无论是在军事国防还是民用通信领域,对于天线单元及阵列的阻抗带宽、方向图、极化和增益特性都提出了更高的要求。在实际应用中,往往要求天线具有高增益、高功率、低旁瓣、波束扫描或波束控制等特性,采用某种形式的阵列天线则较容易获得这些特性,因此,阵列技术在实际中获得了广泛的应用。 1 微带天线的设计 本文设计的微带阵列天线的主要指标是:工作频率在2.4~2.5 GHz;天线极化方式为圆极化;天线增益>10 dBi;驻波<1.5;方向图E面波瓣宽度和面波瓣宽度>25°;尺寸约为400 mm×400 mm。 1.1 微带天线单元 天线单元采用双馈电点的正方形贴片的微带结构实现圆极化特性。同时,通过介质层(相对介电常数2.65)的厚度,可以实现天线单元工作带宽的展宽。 利用HFSS软件,获得天线单元的最终结构尺寸,其仿真模型,如图1所示。介质层高度为4/mm,辐射贴片边长35.25 mm,可根据正方形经典天线的设计公式L=0.5 λg-2△l得到。 1.2 天线单元馈电网络设计 根据天线双馈电点的特性设计天线的匹配网络。圆极化方式采用双馈电点,两个馈电端口所辐射的TM01模和TM10模,在贴片辐射方向形成来年各个正交分量,相差π/2,选择适当的激励频率,可以使两个模式同时被激励,从而得到一个圆极化辐射场,所以馈电网络采用Wilk-inson功分器,移相器采用普通微带传输线。利用微带传输线移相的特性,使功分器终端得到两个等幅,相位相差π/2的电场。

基站安装规范及流程

SCDMA基站安装流程 一、机房的准备 二、基站安装前检查 三、工程队进场施工及基站相关物资的准备 四、基站的安装 一、机房的准备 SCDMA机房的准备是在基站安装前的一项重要工作,也是花费时间及各种资源最多的一个环节。它基本包括以下几个方面: 1、机房的选址 关于机房的选址,可选择现成的房间,也可在让专业公司在房顶搭建简易机房。基站不能与一些大型电机共站,如果选址确实很困难,智能与有些物业的电梯机房共址,此时必须把基站与电机隔离。 2、现场综合查勘 3、确定天馈配套尺寸 工程设计图可由设计单位和信威公司工程人员共同完成,完成以后交网通公司备案,施工单位和信威公司各一份,以便施工和督导。 4、选址公司签定正式的租房合同、供电协议 5、机房配套设施的施工 机房配套设施主要包括空调、直流配电柜、交流电源箱、传输设备、馈线窗的固定(馈线窗可由信威公司提供),室内外走线架的制作、接地排的制作和固定、天线桅杆的制作等。 6、管线施工及传输的调度 SCDMA基站系统每一套基站按一个标准E1配备。以一个站址为例:

随着项目的不断进展,机房数量也不断增多,为了便于管理,建议机房钥匙采用通锁,或者分区通锁。在需要维护时能够以最快的速度处理故障,提高效率。 在工程实施阶段,机房钥匙可由网通公司、大唐信威公司督导、施工单位各保管一套,等工程正式验收交付以后,所有钥匙交回网通公司统一管理。 二、基站安装前的检查 建议步骤由网通公司、监理公司、信威督导共同完成。有不合格的地方立即通知相关配套商整改,直到合格为止。 三、队进场施工及基站相关物资的准备 机房相关设施准备好以后,由网通公司通知工程公司进场施工。 有关物资的准备,工程队必须做好以下事情: 1、确定馈线和塔放电源线的长度 根据现场勘察确定馈线(包括基站馈线和塔放转接馈线)及塔放电源线的长度。 基站单元使用的第九根馈线及塔放单元使用的八根转接馈线,按照要求分别由一根1/2波纹电缆和两个N-J534B型射频连接器或由一根7D-FB电缆和两个N-J631型射频连接器组成。电缆型号的使用规定如下:塔放和天线阵间的电缆

GPS天线安装要求规范和相关要求

GPS天线安装规范和相关要求 一、一、GPS天线安装规范 上图为一个典型的GPS天线安装的示意图,GPS天线通过馈线与室内基站设备连接,当高度超过一定限度时,需要安装天线头避雷器;馈线长度过长时,需要增加信号放大器;GPS信号需要供2个或多个基站设备使用时,需要增加信号分配器(功分器)。 1、GPS天线在安装及选址要求 1、GPS天线应安装在较开阔的位置上:由于卫星出现在赤道的概率大于其他地点,对于北半球,应尽量将GPS天线安装在安装地点的南边。南北方向是GPS卫星信号接收的理想方向,选取GPS安装位置时,首先要确保南北方向至少其中一面在GPS天线45°范围内没有阻挡; 2、GPS天线安装必须保持垂直,安装时远离如电梯、空调等电子设备或其电器,天线位置应当至少远离大的金属物体2米,并且与基站天线垂直距离大于3米,与墙壁距离大于3米,如果扇区天线之间的位置相隔较大时,GPS天线安装在3个扇区天线的中间位置,如此可以避免反射波的影响; 3、不要将GPS天线安装在其他发射和接收设备附近,如:微波天线、高压电缆、射频

天线的正面、电视发射塔下等;避免其他发射天线的辐射方向对准GPS天线或把GPS天线至于发射源的强辐射区内。 4、两个或多个GPS天线安装时要保持2m以上的间距,建议将多个GPS天线安装在不同地点,防止同时受到干扰。 5、GPS天线应在避雷针保护区域,避雷针保护区域为避雷针顶点下倾45°范围内,避雷针与GPS天线的水平距离在2~3米为宜。 6、在位置满足要求的情况下,GPS馈线长度要求尽量短,当馈线长度较长时,需要增加RF放大器(具体根据主设备厂家建议)。 2、GPS天线安装规范 1、GPS天线馈线的选择和连接:在满足位置的情况下,GPS天线馈线应尽量短,以降低线缆对信号的衰减。 2.为避免线缆晃动导致接头松动,应该用胶带将线缆与支撑管的下端固定,并将线缆固定于抱杆上,如下图所示。线缆与抱杆的固定应该留有一定余量(可以取10cm或更长),以防止在冬季,线缆因温度降低而有限收缩。

相关文档
最新文档