GPU的作用、原理及与CPU、DSP的区别

GPU的作用、原理及与CPU、DSP的区别
GPU的作用、原理及与CPU、DSP的区别

GPU是显示卡的“心脏”,也就相当于CPU在电脑中的作用,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像和特效时主要依赖CPU 的处理能力,称为“软加速”。3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“硬件加速”功能。显示芯片通常是显示卡上最大的芯片(也是引脚最多的)。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。

主要作用

今天,GPU已经不再局限于3D图形处理了,GPU通用计算技术发展已经引起业界不少的关注,事实也证明在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能,如此强悍的“新星”难免会让CPU厂商老大英特尔为未来而紧张,NVIDIA和英特尔也经常为CPU 和GPU谁更重要而展开口水战。GPU通用计算方面的标准目前有OPEN CL、CUDA、ATI STREAM.其中,OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏、娱乐、科研、医疗等各种领域都有广阔的发展前景,AMD-ATI、NVIDIA现在的产品都支持OPEN CL.NVIDIA公司在1999年发布GeForce 256图形处理芯片时首先提出GPU的概念。从此NV显卡的芯就用这个新名字GPU来称呼。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。GPU所采用的核心技术有硬体T

工作原理

简单说GPU就是能够从硬件上支持T&L(Transform and Lighting,多边形转换与光源处理)的显示芯片,因为T&L是3D渲染中的一个重要部分,其作用是计算多边形的3D位置和处理动态光线效果,也可以称为“几何处理”。一个好的T&L单元,可以提供细致的3D物体和高级的光线特效;只不过大多数PC中,T&L的大部分运算是交由CPU处理的(这就也就是所谓的软件T&L),由于CPU的任务繁多,除了T&L之外,还要做内存管理、输入响应等非3D图形处理工作,因此在实际运算的时候性能会大打折扣,常常出现显卡等待CPU数据的情况,其运算速度远跟不上今天复杂三维游戏的要求。即使CPU的工作频率超过1GHz或更高,对它的帮助也不大,由于这是PC本身设计造成的问题,与CPU的速度无太大关系。

GPU与DSP区别

GPU在几个主要方面有别于DSP(Digital Signal Processing,简称DSP(数字信号处理)架构。其所有计算均使用浮点算法,而且目前还没有位或整数运算指令。此外,由于GPU专为图像处理设计,因此存储系统实际上是一个二维的分段存储空间,包括一个区段号(从中读取图像)和二维地址(图像中的X、Y坐标)。此外,没有任何间接写指令。输出写地址由光栅处理器确定,而且不能由程序改变。这对于自然分布在存储器之中的算法而言是极大的挑战。最后一点,不同碎片的处理过程间不允许通信。实际上,碎片处理器是一个SIMD数据并行执行单元,在所有碎片中独立执行代码。

尽管有上述约束,但是GPU还是可以有效地执行多种运算,从线性代数和信号处理到数值仿真。虽然概念简单,但新用户在使用GPU计算时还是会感到迷惑,因为GPU需要专有的图形知识。这种情况下,一些软件工具可以提供帮助。两种高级描影语言CG和HLSL能够让用户编写类似C的代码,

随后编译成碎片程序汇编语言。Brook是专为GPU计算设计,且不需要图形知识的高级语言。因此对第一次使用GPU进行开发的工作人员而言,它可以算是一个很好的起点。Brook是C语言的延伸,整合了可以直接映射到GPU的简单数据并行编程构造。经GPU存储和操作的数据被形象地比喻成“流”(stream),类似于标准C中的数组。核心(Kernel)是在流上操作的函数。在一系列输入流上调用一个核心函数意味着在流元素上实施了隐含的循环,即对每一个流元素调用核心体。Brook还提供了约简机制,例如对一个流中所有的元素进行和、最大值或乘积计算。Brook还完全隐藏了图形API的所有细节,并把GPU中类似二维存储器系统这样许多用户不熟悉的部分进行了虚拟化处理。用Brook编写的应用程序包括线性代数子程序、快速傅立叶转换、光线追踪和图像处理。利用ATI的X800XT 和Nvidia的GeForce 6800 Ultra型GPU,在相同高速缓存、SSE汇编优化Pentium 4执行条件下,许多此类应用的速度提升高达7倍之多。

对GPU计算感兴趣的用户努力将算法映射到图形基本元素。类似Brook这样的高级编程语言的问世使编程新手也能够很容易就掌握GPU的性能优势。访问GPU计算功能的便利性也使得GPU的演变将继续下去,不仅仅作为绘制引擎,而是会成为个人电脑的主要计算引擎。

要解释两者的区别,要先明白两者的相同之处:两者都有总线和外界联系,有自己的缓存体系,以及数字和逻辑运算单元。一句话,两者都为了完成计算任务而设计。

两者的区别在于存在于片内的缓存体系和数字逻辑运算单元的结构差异:CPU虽然有多核,但总数没有超过两位数,每个核都有足够大的缓存和足够多的数字和逻辑运算单元,并辅助有很多加速分支判断甚至更复杂的逻辑判断的硬件;GPU的核数远超CPU,被称为众核(NVIDIA Fermi有512个核)。每个核拥有的缓存大小相对小,数字逻辑运算单元也少而简单(GPU初始时在浮点计算上一直弱于CPU)。从结果上导致CPU擅长处理具有复杂计算步骤和复杂数据依赖的计算任务,如分布式计算,

数据压缩,人工智能,物理模拟,以及其他很多很多计算任务等。GPU由于历史原因,是为了视频游戏而产生的(至今其主要驱动力还是不断增长的视频游戏市场),在三维游戏中常常出现的一类操作是对海量数据进行相同的操作,如:对每一个顶点进行同样的坐标变换,对每一个顶点按照同样的光照模型计算颜色值。GPU的众核架构非常适合把同样的指令流并行发送到众核上,采用不同的输入数据执行。在2003-2004年左右,图形学之外的领域专家开始注意到GPU与众不同的计算能力,开始尝试把GPU用于通用计算(即GPGPU)。之后NVIDIA发布了CUDA,AMD和Apple等公司也发布了OpenCL,GPU开始在通用计算领域得到广泛应用,包括:数值分析,海量数据处理(排序,Map-Reduce等),金融分析等等。

简而言之,当程序员为CPU编写程序时,他们倾向于利用复杂的逻辑结构优化算法从而减少计算任务的运行时间,即Latency.当程序员为GPU编写程序时,则利用其处理海量数据的优势,通过提高总的数据吞吐量(Throughput)来掩盖Lantency.目前,CPU和GPU的区别正在逐渐缩小,因为GPU 也在处理不规则任务和线程间通信方面有了长足的进步。另外,功耗问题对于GPU比CPU更严重。

手机常见的cpu与gpu

1.单、双核,是A8还是A9构架 2.多少纳米的工艺,多少平方毫米的封装面积,涉及到功耗及发热 3.主频、二级缓存和内存通道控制器的位宽等CPU参数 4.GPU的三角形输出率和像素填充率等性能 四核对比 市场上最主流的,以后也会被大品牌使用的四核处理器有三星Exynos 4412,NVIDIA Tegra3,高通APQ8064,海思k3v2 三星的处理器: 盖世2的是Exynos 4210 盖世三的是Exynos 4212 我们知道,四核的Exynos 4412并不会跑在1.5GHz,而是1.4GHz,因此四核处理器在达到双核两倍性能的同时,功耗却只有双核的八成。换句话说,四核处理器在实现双核同样性能的时候,大约只需要区区40%的电力,这意味着续航和发热都可能会大大改善。虽然四核的绝对性能对我们而言实际上没有什么太大的意义,但是32nm HKMG带来的功耗降低是非常显著的,即便不为了性能,也有足够的理由去选择。 Exynos 4212你可以看做是为三星Exynos 4210推出的升级版,采用Cortex A9架构,工艺制程为32NM, GPU英文全称Graphic Processing Unit,中文翻译为“”。GPU是相对于CPU 的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器。GPU是显示卡的“大脑”,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,称为“软加速”。3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“”功能。通常是显示卡上最大的芯片(也是引脚最多的)。现在市场上的显卡大多采用和AMD-ATI两家公司的。 三星Exynos 4412与NVIDIA Tegra3的对比:首先,Tegra3采用的是40nm Fast G工艺制造,功耗相对较大,虽然有伴核,但是那个只能在待机时使用,对于日常使用而言帮助不大。其次,Tegra3的内存仅为单通道LPDDR2 1066,而Exynos 4412则支持双通道LPDDR2 1066,是Tegra3的两倍。最后,Tegra3为了支持伴核,二级缓存的速度只有正常的一半,这也会影响性能。 总体而言,Exynos 4412对于Tegra3的优势是全面且明显的,甚至连频率都略胜一筹(100MHz),因此在现阶段可查的产品中,毫无疑问是最强四核,最出名的代表产品就是三星自己家的S3,还有联想手机K860。 NVIDIA Tegra3:这个应该是最早出来的四核处理器了,基于40纳米工艺,功耗与Tegra 2持平。这里不做过多介绍,只能感叹一句Tegra3老了。代表产品多了去了,大品牌四核手机基本上用的就是这个处理器, 高通APQ8064:属于高通骁龙S4处理器最顶级的一个芯片,采用28nm工艺制造,集成最新的Adreno 320 GPU,整合四个Krait架构CPU核心,每核主频最高达1.5GHz/1.7GHz。它是全球首款采用28nm制程的四核移动处理器,同时也是高通首款四核心处理器 海思k3v2,这款是华为自主研发的一款处理器,基于A9架构,主频分为1.2GHz 和1.5GHz,采用ARM架构35NM制造工艺、64位内存总线,是Tegra 3内存总

14_DSP技术原理及应用教程_课后答案

1 .1 数字信号处理器与一般通用计算机和单片机的主要差别有哪些? 答:在通用的计算机上用软件实现该方法速度太慢, 适于算法仿真; 在通用计算机系统上加上专用的加速处理机实现该方法专用性较强,应用受限制,且不便于系统 的独立运行; 用通用的单片机实现这种方式多用于一些不太复杂的数字信号处理,如简单的PID控制算法; 用通用的可编程DSP芯片实现与单片机相比,DSP芯片具有更加适合于数字信号处理的软件及硬件资源,可用于复杂的数字信号处理算法; 用专用的DSP芯片实现在一些特殊场合, 要求信号处理速度极高, 用通用的DSP 芯片很难实现,而专用的DSP 芯片可以将相应的信号处理算法在芯片内部用硬件实现,不需要编程。 1 .4 什么是冯·诺埃曼结构计算机, 什么是哈佛结构计算机, 二者的特点是什么? 答:冯.诺曼结构:将指令、数据存储在同一个存储器中,统一编址,译稿指令计数器提供的地址来区分是指令还是数据。取指令和取数据都访问统一存储器,数据吞吐率低。 哈佛结构:程序和数据存储在不同的存储空间,程序存储空间和数据存储空间是两个相互独立的存储空间,每个存储空间独立编址,独立访问。 1 .8 DSP的工作电压越来越低,内核电压已低至1V,这样做有何意义?为什么DSP内核工作电压和I/O工作电压不一样? 答:集成电路速度越来越快,随之而来,功耗越来越大,这样散热就是很大的问题.在芯片走线尺寸不变的情况下,内部阻抗也不变,降低工作电压会降低功耗,这样能再较高频率下芯片发热较少。 内核不容易受到外部干扰,所以电压可以做的较低,但IO容易受外部信号干扰,保持较高电压容易是器件工作稳定,这是功耗和稳定性的折中。 1 .10 定点DSP和浮点DSP有什么区别?在具体应用中, 应如何选择? 答:在浮点DSP中,数据即可以表示成整数,也可以表示成浮点数。浮点数在运算中,表示数的范围由于其指数可自动调节,因此可避免数的规格化和溢出等问题。但浮点DSP 一般比定点DSP 复杂, 成本也较高。 在定点DSP中, 数据采用定点表示方法。它有两种基本表示方法:整数表示方法和小数表示方法。整数表示方法主要用于控制操作、地址计算和其他非信号处理的应用, 而小数表示方法则主要用于数字和各种信号处理算法的计算中 2 .4 当要使用硬中断INT3作为中断响应矢量时,请问可屏蔽中断寄存器IMR和中断标志寄存器IFR应如何设置? 答:IFR中INT3位=1,IMR中INT3位=1,使能中断。2 .5 若处理器方式寄存器PMST的值设为01A0H,而中断矢量为INT3,那么在中断响应时, 程序计数器指针PC的值为多少? 答:PMST中IPTR=(000000011)b,int3中断向量号为24H,做移量为后变为60H,则中断响应时程序计数器指针PC=01E0H. 2 .10 DSP如何与不同速度的片外存储器及其他外设进行数据交换? 答:软件可编程等待状态发生器可以将外部总线周期扩展到7个机器周期,以使’C54x能与低速外部设备接口。而需要多于7个等待周期的设备,可以用硬件READY线来接口。 2 .11 TMS320C54x可进行移位操作,它的移位范围是多少? 答:’C54x的移位操作最多可以左移31位,或右移16位。(-16~31) 2 .1 3 为什么说应尽量利用DSP的片内存储器? 答:与片外存储器相比,片内存储器不需要插入等待状态,因此成本低,功耗小。 2 .14 如何操作通用I/ O 引脚XF和BIO? 答:XF信号可以由软件控制。通过对STl中的XF位置1得到高电平,清除而得到低电平。对状态寄存器置位的指令SSBX和对状态寄存器复位的指令RSBX可以用来对XF置位和复位。同时XF引脚为高电平和低电平,亦即CPU向外部发出1和0信号。 程序可以根据BIO的输入状态有条件地跳转,可用于替代中断。条件执行指令(XC)是在流水线的译码阶段检测BIO的状态,其它条件指令(branch、call和return)是在流水线的读阶段检测BIO 的状态的。 4 .1 写出汇编语言指令的格式, 并说明应遵循怎样的规则? 答:助记符指令格式: [标号][:] 助记符[操作数列表] [;注释] 代数指令格式: [标号][:] 代数指令[;注释] 应遵循下列规则: ①语句的开头只能是标号、空格、星号或分号。 ②标号是可选项,如果使用,必须从第一列开始。 ③每个域之间必须由一个或多个空格来分开。制表符等同于空格的作用。

GPU与CPU的区别

GPU与CPU的区别 显卡的发展可以说是非常的快,人们对于视觉化上的要求也越来越高,随着用户对于图像处理上面的要求不断超出处理器的计算能力。另一方面CPU处理能力也不断强大,但在进入3D时代后,人们发现庞大的3D图像处理数据计算使得CPU越来越不堪重荷,并且远远超出其计算能力。图形计算需求日益增多,作为计算机的显示芯片也飞速发展。随后人们发现显示芯片的计算能力也无法满足快速增长的图形计算需求时,图形,图像计算等计算的功能被脱离出来单独成为一块芯片设计,这就是现在的图形计算处理器——GPU(Graphics Processing Unit),也就是显卡。 1999年8月,NVIDIA终于正式发表了具有跨世纪意义的产品NV10——GeForce 256。GeForce256是业界第一款256bit的GPU,也是全球第一个集成T&L(几何加速/转换)、动态光影、三角形设置/剪辑和四像素渲染等3D加速功能的图形引擎。通过T&L技术,显卡不再是简单像素填充机以及多边形生成器,它还将参与图形的几何计算从而将CPU从繁重的3D管道几何运算中解放出来。在这代产品中,NVIDIA推出了两个全新的名词——GPU以GeForce。所以从某种意义上说,GeForce 256开创了一个全新的3D图形时代,NVIDIA终于从追随者走向了领导者。再到后来GeForce 3开始引出可编程特性,能将图形硬件的流水线作为流处理器来解释,基于GPU的通用计算也开始出现。 到了Nvidia GeForce6800这一代GPU,功能相对以前更加丰富、灵活。顶点程序可以直接访问纹理,支持动态分支;象素着色器开始支持分支操作,包括循环和子函数调用,TMU 支持64位浮点纹理的过滤和混合,ROP(象素输出单元)支持MRT(多目标渲染)等。象素和顶点可编程性得到了大大的扩展,访问方式更为灵活,这些对于通用计算而言更是重要突破。 真正意义的变革,是G80的出现,真正的改变随着DX10到来发生质的改变,基于DX10统一渲染架构下,显卡已经抛弃了以前传统的渲染管线,取而代之的是统一流处理器,除了用作图像渲染外,流处理器自身有着强大的运算能力。我们知道CPU主要采用串行的计算方式,由于串行运算的局限性,CPU也正在向并行计算发展,比如目前主流的双核、四核CPU,如果我们把这个概念放到现在的GPU身上,核心的一个流处理相当于一个“核”,GPU的“核”数量已经不再停留在单位数,而是几十甚至是上百个。下面看看G80的架构图:

DSP原理及其应用技术_课程设计_报告

郑州航空工业管理学院 电子通信工程系 DSP原理及应用课程设计报告 设计题目:基于TMS320F2812 DSP微处理器的最小系统设计 学号:********** 专业:电子信息工程专业 设计日期:2012年6月14日 指导老师:赵成陈宇

设计任务 1、利用Protel软件绘制并添加TMS320F2812的原理图库; 2、利用Protel软件绘制TMS320F2812最小系统的电路原理图,包括时钟电路模块,电源模块、复位电路模块、JTAG接口模块; 3、安装最小系统电路,在CCS下建立工程,编译并将其下载到TMS320F2812最小系统中运行。 相关设备 PC机,CCS集成开发环境,最小系统电路板及元件,XDS510仿真调试器,外用表,示波器,稳压电源。 设计原理 TMS320F2812 DSP微处理器属于通用可编程微处理器,在应用时涉及硬件电路设计及软件设计,在理论课部分,主要是了解了F2812的体系架构及软件开发的相关知识,在具体使用时,需要绘制电路原理图及版图。 TMS320F2812 DSP微处理器运行的基本环境包括时钟电路、电源电路、复位电路及JTAG接口调试电路等,为了便于测试系统的运行情况,一般在其外围直接设计串口通信电路及相关的测试电路,这里即在外围配置了XF及串口通信电路。 可以使用Protel或其他电路版图设计软件绘图,其中需要用到学习过的F2812的封装、管脚分布、时钟电路、复位电路等知识。 可以参考教材附录部分的电路原理图。 通过F2812最小电路的设计,可以将理论与实践统一联系,更深入地理解F2812的开发方法。 应用基础 能使用Protel设计电路原理图; 了解F2812硬件的相关知识及电路设计; 能使用CCS建立并调试DSP工程。 设计报告 在课程设计的最后一次指导课上提交打印版。 目录 一、设计的目的和意义…………………………………………………………………3页 二、CCS软件概述………………………………………………………………………3页

CPU与GPU在游戏中的作用

可能有人对GPU不熟悉,GPU,图形处理器,是显示卡的“心脏”,也就相当于CPU 在3D游戏中,每一个场景的构筑都需要显卡极大的工作量,屏幕上每一个景物都是 由显卡根据图形透视原理,通过多个三角形的组合形成的,显卡既要保证近大远小的透视效果,还要根据第一视角的位置实现遮挡效果,这里自然对显卡的性能有着很大的需求。不过,CPU作为整个系统的中枢神经也有极为重要的地位。CPU在3D游戏中所起的作用就是对三维场景进行设计,显卡生成的每一个点都是由CPU规定。此外,CPU还要负责诸如游戏数据处理等工作,负担丝毫不亚于显卡。需要注意的是,如今的显卡GPU已经具备了相当的处理能力,可以有效减轻CPU的负担。然而,从另一个角度来看,CPU又可以模拟GPU 的操作,使两者之间形成互补。 毫无疑问,片面地强调CPU或者显卡的作用都是错误的,毕竟两者是不可分离的有机体。不过,CPU与显卡在具体的操作流程方面还是有所分工。一般而言,CPU可以保证3D 游戏的启动和载入的速度,而对画质、3D特效、游戏流畅度等不能产生多少影响。相反,GPU在各种环境下都对游戏的速度与画质与流畅三个方面做出最大的贡献。一般而言,在显卡上多加投资,这样会获得更好的效果。因为从理论上说,一旦游戏的分辨率以及颜色数提高,或者大量运用3D特效,显卡的负担将呈几何倍速提高,对像素填充率与显存带宽提出极高的要求。而DirectX硬件支持则完全依赖于显卡GPU本身的素质,如果你的显卡达不到这项要求,纵然CPU是I7 6核12线程也无济于事。但要切记的是,两者之间万万不可形成太大的差距,比如现在火热的GTX770,R9 280X,这个级别的显卡最起码也要搭配I5的CPU才能充分发挥其性能,不然CPU太弱,显卡的性能会受到限制。 不过纵观现在的处理器格局,CPU已经走到了性能过剩的地步,一款双核的CPU就 完全满足普通的应用,就算用4核,6核,速度也不会有多少提升,GPU却远没有达到性 能过剩的阶段,在很多的图形应用,特别是3D游戏的应用上,高性能的GPU非常重要,特别是,GPU开始向通用运算方向发展,其通用运算能力和浮点运算能力已经远远超越CPU,可以那么说,如今评价一台电脑性能如何,CPU已经不是单一的性能中心,而是CPU+GPU 双重性能中心,两者偏一不可。

新手必看:RAM、CPU、GPU三个手机硬指标,哪个最重要!

希望这篇文章能对智能手机新手,特别是想买安卓手机的机友们有所帮助。 买Android手机,除了CPU外,接下来最重要的可能就是ROM、RAM、GPU SD卡的大小了。玩Android手机的朋友,特别是要买Android手机的朋友,那就得赶紧来了解一下手机内存RAM ROM CPU GPU 、还有SD卡的重要性了,不然,在买手机的时候可能会吃亏。 因为一些手机厂家在宣传自己手机的时候,会声称自己的手机内存有4G或者多少G,但其实有些混淆概念,在手机行业里,发展到现在,其实已经把ROM、RAM、SD卡都混淆通称为内存了,这个是商家的误导,很多商家在宣传时将SD卡和ROM宣传成内存,混淆视听,让你以为这个手机的内存很大,其实这并非真正意义上的内存RAM。 CPU 在日常生活中都是被购物者所忽略的手机性能之一,其实一部性能卓越的智能手机最为重要的肯定是它的“芯”也就是CPU,如同电脑CPU一样,它是整台手机的控制中枢系统,也是逻辑部分的控制中心。微处理器通过运行存储器内的软件及调用存储器内的数据库,达f控的目的。 RAM,白话来讲,就是我们常说的真正意义上的内存,就相当于你电脑的内存,目前来说512M的RAM可以保证任何手机的流畅性,毕竟目前的电脑使用1G内存都可以保证基本的使用。 ROM,简单的说,就是相当于你windows电脑的C盘,这个也非常非常重要,试想一下,如果安装了操作系统后,你的C盘只有一点点空间,那会导致什么后果?就算你的RAM再大,你的电脑也会死机,也会慢的像蜗牛。而Android手机中,ROM的重要性也更是非常重要,如果你的Android手机ROM只有512M,那么你的手机操作系统就会占去100M或200M,那么你最后就剩下不到300M的ROM可以使用,这300M会被如何使用?首先你的联系人如果有1000人,那么就会占去40多M的空间,每次安装一个程序或者游戏,即便你安装到了SD卡中,但你的ROM空间依然还是会被占用一部分,其次系统自带的应用、浏览器、地图、电话、短信等等历史记录,全部都存在ROM中,如果你是手机玩家,这ROM空间就会往往完全不够使用,而且让你的手机变的很慢,目前来讲,1G以上的ROM才会刚刚够,当然,如果你只是普通手机用户,不安装什么应用程序,那么512M的ROM还是够用的。) GPU 图形处理器,基本左右是输出多边形生成率用于3d建模,像素填充率用于色彩渲染图面,纹理填充率用于贴图,主要处理与图形有关的任务,尤其是游戏,图形设计3d建模,包括渲染手机的桌面等。手机gpu一般都是与手机cpu一起封装在soc里,类似电脑cpu的核芯显卡,或apu概念。gpu单独封装在独立的电子板上才能称为显卡。手机gpu与视频无关,手机视频软解靠cpu和neon,硬解靠dsp。一般可以认为手机里的gpu主要是与游戏有关,gpu强,游戏性能也强。 SD,我们俗称就是手机的外部存储空间,这个我们可以理解成电脑的D盘、E盘,或者外接移动硬盘也行,这个地方本来是放我们的多媒体资料的,我们知道,电脑的D盘其实是可以安装程序的,但是这一点却和Android不同,即便你使用了APP2SD类的软件将各类应用程序安装到了SD卡中,其实程序的系统数据还是写在了ROM中,SD卡相当于只是存放多媒体类的资料,如游戏的数据文件。 废话半天,尽量写的非常白话,总结一下三者差距不大的时候,首选那个;

DSP原理与应用技术-考试知识点总结

第一章 1、DSP系统的组成:由控制处理器、DSPs、输入/输出接口、存储器、数据传输网络构成。P2图1-1-1 2、TMS320系列DSPs芯片的基本特点:哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期。 3、哈佛结构:是一种将程序指令储存和数据储存分开的储存器结构。特点:并行结构体系,是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。系统中设置了程序和数据两条总线,使数据吞吐率提高一倍。 4、TMS320系列在哈佛结构之上DSPs芯片的改进:(1)允许数据存放在程序存储器中,并被算数运算指令直接使用,增强芯片灵活性(2)指令储存在高速缓冲器中,执行指令时,不需要再从存储器中读取指令,节约了一个指令周期的时间。 5、冯诺依曼结构:将指令、数据、地址存储在同一存储器中,统一编址,依靠指令计数器提供的地址来区分是指令、数据还是地址,取指令和去数据都访问同一存储器,数据吞吐率低。 6、流水线操作:TMS320F2812采用8级流水线,处理器可以并行处理2-8条指令,每条指令处于流水线的不同阶段。 解释:在4级流水线操作中。取 指令、指令译码、读操作数、执 行操作可独立地处理,执行完全 重叠。在每个指令周期内,4条 不同的指令都处于激活状态,每 条指令处于不同的操作阶段。 7、定点DSPs芯片:定点格式工作的DSPs芯片。 浮点DSPs芯片:浮点格式工作的DSPs芯片。 (定点DSPs可以浮点运算,但是要用软件。浮点DSPs用硬件就可以)8、DSPs芯片的运算速度衡量标准:指令周期(执行一条指令所需时

DSP原理及应用-(修订版)--课后习题答案

第一章: 1、数字信号处理的实现方法一般有哪几种? 答:数字信号处理的实现是用硬件软件或软硬结合的方法来实现各种算法。(1) 在通用的计算机上用软件实现;(2) 在通用计算机系统中加上专用的加速处理机实现;(3) 用通用的单片机实现,这种方法可用于一些不太复杂的数字信号处理,如数字控制;(4)用通用的可编程 DSP 芯片实现。与单片机相比,DSP 芯片具有更加适合于数字信号处理的软件和硬件资源,可用于复杂的数字信号处理算法;(5) 用专用的 DSP 芯片实现。在一些特殊的场合,要求的信号处理速度极高,用通用 DSP 芯片很难实现( 6)用基于通用 dsp 核的asic 芯片实现。 2、简单的叙述一下 dsp 芯片的发展概况? 答:第一阶段, DSP 的雏形阶段( 1980 年前后)。代表产品: S2811。主要用途:军事或航空航天部门。第二阶段, DSP 的成熟阶段( 1990 年前后)。代表产品: TI 公司的 TMS320C20 主要用途:通信、计算机领域。第三阶段, DSP 的完善阶段( 2000 年以后)。代表产品:TI 公司的 TMS320C54 主要用途:各个行业领域。 3、可编程 dsp 芯片有哪些特点? 答: 1、采用哈佛结构( 1)冯。诺依曼结构,( 2)哈佛结构( 3)改进型哈佛结构2、采用多总线结构 3.采用流水线技术4、配有专用的硬件乘法-累加器5、具有特殊的 dsp 指令6、快速的指令周期7、硬件配置强8、支持多处理器结构9、省电管理和低功耗 4、什么是哈佛结构和冯。诺依曼结构?它们有什么区别? 答:哈佛结构:该结构采用双存储空间,程序存储器和数据存储器分开,有各自独立的程序总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大地提高了数据处理能力和指令的执行速度,非常适合于实时的数字信号处理。冯。诺依曼结构:该结构采用单存储空间,即程序指令和数据共 用一个存储空间,使用单一的地址和数据总线,取指令和取操作数都是通过一条总线分时进行。当进行高速运算时,不但不能同时进行取指令和取操作数,而且还会造成数据传输通道的瓶颈现象,其工作速度较慢。 区别:哈佛:该结构采用双存储空间,程序存储器和数据存储器分开,有各自独立的程序总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大地提高了数据处理能力和指令的执行速度,非常适合于实时的数字信号处理。冯:当进行高速运算时,不但不能同时进行取指令和取操作数,而且还会造成数据传输通道的瓶颈现象,其工作速度较慢。 5、什么是流水线技术? 答:每条指令可通过片内多功能单元完成取指、译码、取操作数和执行等多个步骤,实现多条指令的并行执行,从而在不提高系统时钟频率的条件下减少每条指令的执行时间。利用这种流水线结构,加上执行重复操作,就能保证在单指令周期内完成数字信号处理中用得最多的乘法 - 累加运算。(图)6、什么是定点 dsp 芯片和浮点 dsp 芯片?它们各有什么优缺点? 答:若数据以定点格式工作的称为定点 DSP 芯片。若数据以浮点格式工作的称为浮点 DSP芯片。

CPU+GPU的混合并行计算

CPU+GPU的混合并行计算 GPU+CPU的异构混合并行计算是基于目前备受业界推崇的CUDA(Compute Unified Device Architecture)并行计算架构,将CPU串行计算和GPU的并行计算融合,开启“CPU+GPU协同计算”或称之为“异构混合 计算”的全新并行计算时代。 基于GPU+CPU架构的HPC与普通CPU架构HPC参数对比 “异构混合计算”真正实现了系统整体计算能力的最大化利用:GPU和CPU协同工作,GPU处理大量的并行处理,CPU处理操作系统和指令的逻辑控制。两者的协同比以往单纯CPU运算高出几十倍甚至几百倍,上千倍,可以使得PC和工作站具有超级计算的能力。在最新的二代Tesla Fermi平台下,开发人员可以选择C语言、C++、OpenCL、DirectCompute或Fortran来表达GPU应用程序的并行机制,释放GPU的处理能力来解决最复杂的计算密集型难题,可以广泛应用于如下领域:

生物信息学和生命科学计算化学计算电磁学和电动力学 计算金融学计算流体力学成像和计算机视觉 MATLAB 加速医疗成像分子动力学 气象、大气、海洋建模和空间科学 中国科学院、清华大学、中国同济大学、上海交大和西安交通大学等7所高校已经将基于CUDA架构的并行计算课程融入其教学之中,其中中国科学院和清华大学已经走到全球CUDA应用的前列。2009年9月22日,同济大学海洋学院地球物理系成功部署了其在中国的第一套GPU高性能计算集群,用于地球物理学和反射地震学方面的革命性研究。该研究项目将探索研究复杂介质中地震波传播理论与数值模拟、复杂介质三维地震偏移成像、多分量地震学的数据处理和解释。Tesla GPU集群革命性的万亿次浮点运算、

DSP原理及应用教学大纲

《DSP原理及应用》实验教学大纲 学习DSP的目的是应用其进行研发及工程实践,故实验是《DSP原理及应用》课程学习中的重要环节。通过实验,可以对DSP器件的功能进行实际操作,并在实际操作中熟悉器件的使用特性。实验是DSP应用的基本内容,为学生今后从事相关工作打下基础。 本实验有以下任务:(1)掌握如何使用DSP仿真平台;(2)掌握DSP内部结构和工作原理;(3)熟悉DSP 的指令系统;(4)熟悉用DSP实现各种基本算法。通过实验使学生加深对DSP基本理论、硬件系统、指令系统的理解,学会用仿真器进行开发,使书本上枯燥的内容变得生动,增加学生学习本课程的兴趣。此外学生的实验技能、动手能力、分析问题、解决问题的能力都将得到培养,为进一步进行工程实践奠定良好的基础。 三、实验方式 1、实际操作—要求根据目的要求完成各实验项目,对实验结果进行分析整理并写出实验报告。 2、上机设计仿真—学生先根据实验要求设计出实验电路和实验步骤,后上机进行设计仿真,最后记录仿真结果并分析写出实验报告。 3、基本要求: (1)掌握DSP仿真开发系统的结构。掌握仿真器的连接和安装,熟悉开发软件Code Composer Studio 的界面和基本操作。 (2)掌握TMS320C54x芯片的硬件结构,了解CPU、寄存器和存储器中各数据的含义。 (3)了解TMS320C54x芯片外部设备的工作原理,熟悉数据的处理过程和中断。 (4)了解TMS320C54x芯片的指令系统,熟悉各种指令和基本算法。 (5)能够独立完成简单小程序的编写和调试。 通过实验,使学生基本具有DSP的开发能力。 四、实验项目设置、学时分配及基本要求

CPU、GPU及操作系统取舍

厂商亮点承诺调查 为了搞清楚各厂商亮点的标准,小编收集了一些厂商对亮点的一些规定,帮助大家全面了解现在笔记本厂商到底对亮点负多大责任。 ●联想 规范是 亮点+暗点《=6。 ●方正 方正是严格按照国家规定执行

●HP 坏点在3个以内,且每平方英寸2个坏点以内属于正常,超过这个标准并在15日内可以 更换机器。过了15日,按照保修条款进行维修! ●DELL 戴尔对亮点的规定为8个之内都属于合格,与其它厂商不同的是,由于戴尔采用直销模 式,因此如果屏幕亮点超过规定,戴尔将会上门为您更换,而不需要自行送到维修站,这一点对消费 者来说十分方便。 ●华硕保证无亮点 ●新蓝保证无亮点 ●TCL 不超过5个亮点 ●神舟不超过像素点的10万分之一为合格 ●长城 4个亮点,6个暗点两者之和不超过6个 国家标准为亮点+暗点《=12 为合格产品,显然厂商的标准都要高过国家的标准。看完主要厂 商的标准,再来看看笔记本经销商对于亮点问题都是如何看待的。 WIN7 32位系统与64位系统取舍 如今安装Windows 7已经不是什么新鲜事儿了,如果你还没有装Windows 7,那未免也太Out了。说起Windows 7的好处,那真是一堆一堆的,所以别犹豫,赶紧装一个吧。 哎,等等,装之前咱得想明白了要装哪个版本的Windows 7,家庭版、专业版、旗舰版,那是萝卜白菜各有所爱,咱也不费力给大家一一讲解了,今天咱们就来针对另一种版本分类来说说,没错,就是跟计算机硬件有直接关系的32位和64位版本。 如果您是讲求效率的看客,那么请走快速通道,一句话帮您下决心,不过如果您想对32位和64位有更深一步的了解,那不妨走完整通道,看完整篇文章。 【快速通道】:如果您平时并不热衷于玩游戏,而工作中又涉及到大量的在虚拟环境下开发的情况,并且需要计算机的物理内存大于3GB,那么不妨安装64位系统试试;反之,如果您是游戏发烧友,平时并不需要那么大的内存(3G内存完全可以满足基本应用),则尝试一下32位系统。

DSP技术与应用习题库及答案王忠勇讲解

一、填空题 第一章 1.数字信号处理特点大量的实时计算(FIR IIR FFT),数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见)。 2.信号处理的作用信号改善;信号检测、估计等 3.信号处理的方法信号波形分析/变换、滤波、现代谱估计/分析、自适应滤波等。 4.信息系统包括采集、传输、处理、等。5.数字信号处理常用算法有FIR 滤波、IIR 滤波、离散傅里叶变换、卷积、离散余弦变换等 6.处理器速度的提高得益于器件水平、处理器结构、并行技术等。7.DSP结构特点包括采用哈佛结构体系、采用流水线技术、硬件乘法器、多处理单元、特殊的DSP指令。 8.DSP芯片按用途分为通用型DSP 、专用型DSP 。9.DSP芯片按数据格式分为浮点型、定点型。 第二章 1.C28x芯片具有C27X、C28X、C2XLP操作模式。2.C28x芯片模式选择由ST1中的AMODE和OBJMODE位组合来选定模式。 3.CPU内核由CPU、仿真逻辑、接口组成。 4.CPU主要特性是保护流水线、独立寄存器空间算术逻辑单元(ALU)、地址寄存器算术单元(ARAU)、循环移位器乘法器。 5.CPU信号包括存储器接口信号、时钟和控制信号、复位和中断信号、仿真信号。 6.TMS320F2812组成特点是32位、定点、改进哈佛结构、循环的寻址方式。7.存储器接口有3组地址总线。 8.存储器接口有3组数据总线。 9.存储器接口地址总线有PAB、DRAB、DWAB、 10.CPU中断控制寄存器有IFR 、IER 、DBGIER。 11.ACC累加器是32位的,可表示为ACC、AH、AL。12.被乘数寄存器是32 位的,可表示为XT、T、TL 。13.乘数结果寄存器是32位的,可表示为P 、PH、PL。14.数据页指针寄存器16 位的,有65536 页,每页有64个存储单元。数据存储空间容量是4M字。 15.堆栈指针复位后SP指向地址是0x000400h 。 第三章 1.DSP芯片内部包含存储器类型有片内双访问存储器(DARAM)、片内单访问程序/数据RAM(SARAM)、掩膜型片内ROM存储器、闪速存储器(Flash)一次性可编程存储器(OTP)。 2.C28x具有32 位的数据地址和22位的程序地址,总地址空间可达4G字(每个字16位)的数据空间和4M字的程序空间。 3.在程序地址中保留了64个地址作为CPU的32个中断向量。

CPU与GPU的作用和位置分析

CPU与GPU的作用和位置分析 CPU的作用:CPU作为一台计算机的核心,它的作用被证明是无法替代的,过去是这样,今天依然是这样,将来应该还是这样,只不过可能被增加和赋予了更多更复杂的功能。为什么CPU能够胜任计算机的核心,应付自如地控制一台复杂而精密的电脑系统?为什么CPU可以当之无愧地被称为电脑之“脑”而不是其他部件?这是因为CPU主要是面向执行操作系统、系统软件、调度和运行各式各样应用程序以及协调和控制整个计算机系统而设计的。CPU具有通用性的特点,也就是“全才”或者“通才”,什么都要会,当然这并不表示CPU每项任务都具有顶尖水平。 集成了百万计,千万计,甚至数亿计晶体管的CPU芯片,除了具有计算能力的电路和结构,还拥有控制和指挥其他硬件电路相配合的中央控制器,现代CPU还拥有更多具有“思维”能力的电路和结构,如逻辑判断,推测执行,预测执行等等。只有具有了这些特质,CPU 才可能胜任电脑之“脑”的工作。 那么CPU靠什么来“思维、指挥和控制”呢?答案是指令集。指令集是CPU能够处理的全部指令的集合,没有指令集的芯片不可能被

称为是CPU,指令集可是说是CPU的思维语言,是CPU的“智能属性”,也是它有别于其他芯片的根本属性。类似于人脑,任何人的思维过程都有语言的参与,中国人用中文思考,美国人用英文思考,如果习惯于讲方言,人们甚至用方言思考,人们在本能或者下意识状况下都是用自己最熟悉的语言思考。指令集就是电脑之脑CPU的语言,CPU就是用指令集来“思考”。 大家所熟悉的x86指令集就是我们今天大多数人使用的CPU的语言,x86指令集是由英特尔公司发明、开发并不断增强和完善的。所有英特尔架构的CPU和兼容CPU都采用x86指令集。任何程序不管采用什么高级程序设计语言编写的,都需要通过高级语言编译程序或者解释程序先翻译成x86指令才可以被CPU执行。 如C语言,C++语言,Pascal语言等等高级程序语言都是供编程人员使用的,人们可以把自己的“思维和指令”通过高级程序设计语言表达出来,通过编译程序或者解释程序转换成CPU可以明白的指令,CPU就可以遵照人们的“思维和指令”一丝不苟、不折不扣地执行。其实编译程序和解释程序也是由CPU来执行的。 有了指令系统,CPU就可以通过它来控制、指挥、协调和调度整个计算机系统的各个子系统,让它们相互配合、有条不紊的完成各种各样的任务。

GPU架构与技术详解

GPU架构与技术详解 来源: https://www.360docs.net/doc/f53579475.html,时间: 2010-06-22 作者: apollo GPU英文全称Graphic Processing Unit,中文翻译为“图形处理器”。GPU是相对于CPU的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器。我们从GPU的发展历程来看看显卡GPU的架构和技术的发展。 整合VCD/DVD/HD/BD解压卡 在了解了CPU的发展历程之后,我们再来看看GPU的发展过程,其实GPU 很多重大改进都与CPU的技术架构相类似。比如最开始我们介绍了古老的CPU协处理器,下面再介绍一个被遗忘的产品——解压卡,资历较老的玩家应该记得。 十多年前,电脑的CPU主频很低,显卡也多为2D显示用,当VCD兴起的时候,好多电脑(主频为100MHz以下)无法以软解压的方式看VCD影片,根本运行不起来! ISA接口的VCD解压卡 这时,VCD解压卡就出现了,此卡板载专用的解码处理器和缓存,实现对VCD的硬解码,不需要CPU进行解码运算,所以,即使在386的电脑上也可以看VCD了。

PCI接口的DVD解压卡 随后,显卡进入了3D时代,并纷纷加入支持VCD的MPEG解码,而且CPU的主频也上来了,无论CPU软解还是显卡辅助解码都可以流畅播放视频,所以VCD解压卡就退出了市场! 但DVD时代来临后,分辨率提高很多,而且编码升级至MPEG2,对于CPU和显卡的解码能力提出了新的要求,此时出现了一些DVD解压卡,供老机器升级之用,但由于CPU更新换代更加频繁,性能提升很大,DVD解压卡也是昙花一现,就消失无踪了。

DSP控制器原理及技术实验报告

实验二定时器 一.实验目的 1. 熟悉如何编写 28335 的中断服务程序; 2. 掌握长时间间隔的定时器的处理。 3. 掌握片外设的设置方法。 二.实验容 1. 系统初始化; 2. DSP 的初始设置; 3. 定时中断的编写; 三.实验要求 1. 通过本实验,熟悉中断的结构及用中断程序控制程序流程,掌握定时器的应用; 2. 分析给定程序代码功能,并在实验报告中给出程序流程图和必要的注释; 3. 改变定时时间,下载运行,观察结果,在报告中计算出运行时间。 四.实验背景知识 TMS320F28335 片上有 3 个 32-位 CPU 定时器,分别被称为 CPU 定时器 0、1 和2。每个定时器中均有一个 32-位减计数器,当计数器减到 0 时,产生一个中断。其中,CPU 定时器 0 的中断 TINT0 为 PIE 中断,CPU 定时器 1 的中断 TINT1 直接连到 CPU中断的 INT13,CPU 定时器 2 的中断 TINT2 直接连到 CPU 中断的 INT14。如下图所示。 CPU 定时器 2 保留为实时操作系统(如 DSP BIOS)使用,而 CPU 定时器 0、 1 则可被用户使用,SEED-DEC28335 未使用 CPU 定时器 0,用户可以根据应用的需要灵活使

用。 CPU 定时器的原理框图和定时中断如下图所示。 定时器在工作过程中,首先用 32 位计数寄存器(TIMH:TIM)装载周期寄存器(PRDH:PRD)部的值。计数寄存器根据 SYSCLKOUT 时钟递减计数。当计数寄存器等于 0 时,定时器中断输出产生一个中断脉冲。 定时器计数器(TIMH: TIM): TIM 寄存器保存当前 32 位定时器计数值的低 16 位,TIMH 寄存器保存高 16 位。每隔(TDDRH:TDDR+1)个时钟周期 TIMH:TIM 减 1,当 TIMH:TIM 递减到 0 时,TIMH:TIM 寄存器重新装载 PRDH:PRD 寄存器保存的周期值,并产生定时器中断TINT信号。 定时器周期寄存器(PRDH:PRD):PRD 寄存器保存 32 位周期值的低 16 位,PRDH 保存高 16 位。当 TIMH: TIM 递减到零时,在下次定时周期开始之前 TIMH: TIM 寄存器重新装载 PRDH:PRD 寄存器保存的周期值;当用户将定时器控制寄存器(TCR)的定时器重新装载位(TRB)置位时, TIMH: TIM 也会重新装载 PRDH: PRD 寄存器保存的周期值。 五.实验准备 1 实验硬件准备 1. 将 DSP 仿真器与计算机连接好; 2. 将 DSP 仿真器的 JTAG 插头与 SEED-DEC28335 单元的 J18 相连接; 3. 启动计算机,当计算机启动后,打开SEED-DTK28335的电源。观察 SEED-DTK_MBoard 单元的+5V,+3.3V,+15V,-15V 的电源指示灯灯及 SEED-DEC28335 的电源指示灯 D2 是否均亮;若有不亮,断开电源,检查电源。 2 实验软件准备

CPU与GPU的区别

CPU与GPU的区别 什么是CPU 中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU由运算器、控制器和寄存器及实现它们之间联系的数据、控制及状态的总线构成。差不多所有的CPU的运作原理可分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码,并执行指令。所谓的计算机的可编程性主要是指对CPU的编程。 CPU的功能 计算机求解问题是通过执行程序来实现的。程序是由指令构成的序列,执行程序就是按指令序列逐条执行指令。一旦把程序装入主存储器(简称主存)中,就可以由CPU自动完成从主存取指令和执行指令的任务。 CPU具有以下4个方面的基本功能: 1. 指令顺序控制 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机工作的正确性。 2. 操作控制 一条指令的功能往往是由计算机中的部件执行一序列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 3. 时间控制 时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地自动工作。 4. 数据加工 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算

DSP原理及应用邹彦主编课后答案

第一章 1、数字信号处理实现方法一般有几种?答:课本P2(2.数字信号处理实现) 2、简要地叙述DSP芯片的发展概况。答:课本P2( DSP芯片的发展概况) 3、可编程DSP芯片有哪些特点?答:课本P3( DSP芯片的特点) 4、什么是哈佛结构和冯诺依曼结构?他们有什么区别?答:课本P3-P4(1.采用哈佛结构) 5、什么是流水线技术?答:课本P5(3.采用流水线技术) 6、什么是定点DSP芯片和浮点DSP芯片?它们各有什么优缺点? 答:定点DSP芯片按照定点的数据格式进行工作,其数据长度通常为16位、24位、32位。 定点DSP的特点:体积小、成本低、功耗小、对存储器的要求不高;但数值表示范围较窄,必须使用定点定标的方法,并要防止结果的溢出。 浮点DSP芯片按照浮点的数据格式进行工作,其数据长度通常为32位、40位。 由于浮点数的数据表示动态范围宽,运算中不必顾及小数点的位置,因此开发较容易。但它的硬件结构相对复杂、功耗较大,且比定点DSP芯片的价格高。通常,浮点DSP芯片使用在对数据动态范围和精度要求较高的系统中。 7、DSP技术发展趋势主要体现在哪些方面?答:课本P9(发展技术趋势) 8、简述DSP系统的构成和工作过程。答:课本P10(系统的构成) 9、简述DSP系统的设计步骤。答:课本P12(系统的设计过程) 10、DSP系统有哪些特点?答:课本P11(系统的特点) 11、在进行DSP系统设计时,应如何选择合理的DSP芯片?答:课本P13(芯片的选择) 12、TMS320VC5416-160的指令周期是多少毫秒?它的运算速度是多少MIPS? 解:f=160MHz,所以T=1/160M==;运算速度=160MIPS 第二章 1、TMS320C54x芯片的基本结构都包括哪些部分?答:课本P17(各个部分功能如下) 2、TMS320C54x芯片的CPU主要由几部分组成?答:课本P18( 3、处理器工作方式状态寄存器PMST中的MP/MC、OVLY和DROM3个状态位对’C54x的存储空间结构有何影响?答:课本P34(PMST寄存器各状态位的功能表) 4、TMS320C54x芯片的内外设主要包括哪些电路?答:课本P40(’C54x的片内外设电路) 5、TMS320C54x芯片的流水线操作共有多少个操作阶段?每个操作阶段执行什么任务?完成一条指令都需要哪些操作周期?答:课本P45(1.流水线操作的概念) 6、TMS320C54x芯片的流水线冲突是怎样产生的?有哪些方法可以避免流水线冲突? 答:由于CPU的资源有限,当多于一个流水线上的指令同时访问同一资源时,可能产生时序冲突。解决的办法:①由CPU通过延时自动解决;②通过程序解决,如重新安排指令或插入空操作指令。 7、TMS320C54x芯片的串行口有哪几种类型?答:课本P42(TMS320C54x芯片的串行口) 8、TMS320VC5402 共有多少可屏蔽中断?它们分别是什么?NMI和RS属于哪一类中断源?答:课本P56(对VC5402来说,这13个中断的硬件名称为...... RS 和NMI属于外部硬件中断。) 9、试分析下列程序的流水线冲突,画出流水线操作图。如何解决流水线冲突?(解题时参考课本P52【例】) STLM A,AR0 STM #10,AR1 LD *AR1,B

相关文档
最新文档