任意角的三角函数导学案

任意角的三角函数导学案
任意角的三角函数导学案

课题:3.2.1 任意角的三角函数(第一课时)

一 教学目标

1. 掌握任意角的正弦、余弦、正切的定义;

2. 理解任意角的三角函数不同的定义方法;

3. 已知角α终边上一点,会求角α的各三角函数值.

二 教学重难点:

重点: 任意角的正弦、余弦、正切的定义。 难点: 任意角的三角函数不同的定义方法;已知角α终边上一点,会求角α的各三角函数值.

三 复习回顾:

复习1:用弧度制写出终边在下列位置的角的集合.

(1)坐标轴上; (2)第二、四象限.

复习2:锐角的三角函数如何定义?

在初中,我们如果要求一个锐角的

三角函数值,经常把这个角放到一个直角三角形 中求其比值,从而得到锐角三角函数的值。那么, 你能用直角坐标系中角的终边上的点的坐标更方便

的去求一个锐角的三角函数值吗?我们可以采用以下方法:

如图,设锐角α的顶点与原点O 重合,始边与x 轴的 非负半轴重合,那么它的终边在第一象限.在α的终边上任取

一点(,)P a b ,它与原点的距离220r a b =+>. 过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .可得:

sin MP b OP r α==;cos α= = ,tan MP

OM α=

= . 四、新课学习:

知识点1:三角函数的定义

认真阅读教材P 11-P 12,领会下面的内容:

由相似三角形的知识,对于确定的角α,这三个比值不会

随点P 在α的终边上的位置的改变而改变,因此我们

可以将点P 取在使线段OP 的长为r=1的特殊位置上,

这样就可以得到用直角坐标系内的点的坐标 表示的锐角三角函数的值为:

sin MP OP α==_____;cos OM OP α==_____;tan MP

OM

α==___

问题:上述锐角α的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何得到任意角的三角函数呢?

显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角三角函数求值的方法得到该角的三角函数值.

注:单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 上述的点P 就是α的终边与单位圆的交点,这样锐角三角函数就可以用单位圆上的点的坐标表示。那么我们可以用同样的方法得到任意角 的三角函数值。

如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α; (2)x 叫做α的余弦(cossine),记做cos α;

(3)y

x

叫做α的正切(tangent),记做tan α.

即:sin y α=,cos x α=,tan (0)y

x x

α=≠.

αM

P(a,b)o

x

y

M'P'(a',b')α

M P(a,b)o x y

练习:角π34与单位圆的交点坐标为 ,则sin π34= ,cos π3

4

= ,tan

π3

4

= . 注:1)当()2

k k Z π

απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,

所以x

y

=

αtan 无意义. 2)三角函数的定义域:

函数

定义域

x y sin =

R

x y cos = R x y tan =

}

,2π

π|{Z ∈+=/k k x x

确定三角函数的定义域时,要抓住分母不为0这一关键,当角的终边在坐标上时,点P 的坐

标中必有一个为0.

3)由于角的集合与实数集之间可以建立一一对应关系,因而三角函数可以看成是自变量为实数的函数,正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数,我们将它们统称为三角函数。 探究:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?

根据相似三角形的性质,在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2

2

2

2

(||||0)r r x y x y =+=+>,则:

sin y

r α=;cos α=r x ; tan α=x

y . 注意:①一个角的三角函数值只与这个角的终边的位置有关,而与点的选取无关。 ②为计算方便,我们把半径为1的圆(单位圆)与角的终边的交点选为点的理想位置。 典型例题:

例:求

4

角的正弦、余弦和正切值.

变式练习 1 求

56

π

角的正弦、余弦和正切值

小结:作角终边→求角终边与单位圆的交点→利用三角函数定义来求,或在角的终边上找一

个容易找到的点,利用sin y

r α=,cos α=r x , tan α=x y 求三角函数值.

2、求3

角的正弦、余弦和正切值

例:已知角α的终边经过点P(4,-3),求sin α、cos α、tan α的值;

练习:已知角α的终边经过点P(-4,-2),求sin α、cos α、tan α的值;

方法总结:首先判断角的终边是否在单位圆上,再确定做题的方法。 例:已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;

例:已知角α的终边在直线y=-3x 上,求sin α,cos α,tan α的值。

.cos ,sin ,10

10

cos )0)(3,(θθθθ求,且终边上一点练习:已知角=

≠x x P

的定义域。

例:求x

x

x y tan cos sin +=

的定义域。

练习:求函数x y sin cosx +-=

当堂检测

1. tan()4

π

-=( ).

A. 1

B. 1-

C. 22

D. 22

- 2. 7sin

6

π

=( ). A. 12 B. 1

2

- C. 32 D. 32-

3. 如果角α的顶点在原点,始边在x 轴的正半轴重合,终边在函数5(0)y x x =<的图象上,那么tan α的值为( ).

A. 5

B. -5

C. 15

D. 1

5

-

4. cos(30)-?= .

5. 已知点(3,4)P a a -(0)a ≠在角α的终边上,则tan α= .

课后作业:

(一)选择题

1、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-

55 B .- 5 C .552 D .2

5 2、α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=

4

2

x ,则sin α的值为 ( ) A .

410 B .46 C .42 D .-4

10

二.填空题

3、角α的终边上有一点P (m ,5),且)0(,13

cos ≠=m m

α,则sin α+cos α=______.

4、已知角θ的终边在直线y =

3

3

x 上,则sin θ= ;θtan = .

三 解答题

5、已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin α+cos α的值.

知识点二:任意角的三角函数值在各象限内的符号:

由于0r >,所以任意角的三角函数的符号取决于点P 所在的象限.

当角α的终边在第一象限时,点P 在第一象限,0,0x y >>,所以sin 0,cos 0,tan 0ααα>>>; 当角α的终边在第二象限时,点P 在第二象限,0,0x y <>,所以sin 0,cos 0,tan 0ααα><<; 当角α的终边在第三象限时,点P 在第三象限,0,0x y <<,所以sin 0,cos 0,tan 0ααα<<>; 当角α的终边在第四象限时,点P 在第四象限,0,0x y ><,所以sin 0,cos 0,tan 0ααα<><.

任意角的三角函数符号的记忆方法:

典型例题:

例:判定下列各角的各三角函数符号: (1)4327 (2

275π

. 4

7tan

)44

5cos )3π

π 6sin 6cos )6230cos 105sin )5??

分析 关键是判定角所在的象限. 练习:判断下列三角函数值的符号。

ππ

3tan )4)672tan()3)

4

sin()2250cos )1?--?

例:根据条件sin 0θ<且tan 0θ<,确定θ是第几象限的角. 练习:是第几象限角?

请你判断θθθ??

?><0

tan 0

sin 练习:书第15页练习

练习:请你求下列各角的三角函数值并背会:

πππππππππππ

ππππππ2,6

11,35,47,34,23,34,45,67,

,6

5,43,32,2,3,4,6,

全正

正切正 余弦正

正弦正

x

y

o

练习:求下列三角函数的值:

)6

11tan()24

9cos

)1π

π-

例:求下列各式的值:

(1)5cos1803sin902tan 06sin 270-+-;

(2)cos sin tan 3sin sin cos 364344ππππππ

-+--+.

巩固性练习

1.计算:5sin902cos03tan180cos180-++.

2.计算:213cos tan tan sin cos 24332

ππππ

-+-+π.

当堂检测:

1、判别下列各三角函数值的符号: 1)sin250° 2)cos (-4

π

) 3)tan(-666°36’) 4)tan

113π 5)sin 174

π

6)cos1020° 2、根据下列已知,判别θ所在象限:

1)sin θ>0且tan θ<0 、 tan θ×cos θ<0

3、求下列各角的三角函数的值(正弦、余弦、正切).

1)750° 2)174

π

3)-116π 4)-1020°

4、求函数cos tan cos tan x x

y x x

=+

的值域.

变式:求sin cos |tan |

sin cos tan x x x y x

x

x

=

+

+

的值域.

知识点三:诱导公式一

根据三角函数的定义知,角的三角函数值是由角的终边位置确定的,所以终边相同的角的同一三角函数的值相等,即:

ααsin )360sin(=?+ k

απαsin )2sin(=+k

ααcos )360cos(=?+ k 其中Z k ∈ απαcos )2cos(=+k 其中Z k ∈。 ααtan )360tan(=?+ k απαtan )2tan(=+k

注:作用:把求任意角的三角函数值转化为求0到2π(0°~360°)角的三角函数值。

典型例题:

例:判断下列各式的符号:

)4

23tan(4sin )5)

672tan()43tan )3)

4sin()2250cos )1πππ

-

??--?

例:求值:

)4

31tan()44

15tan )36

7sin

)24

9cos )1ππππ

-

例:计算

π

ππ2

11cos 3sin 25cos 0tan )2750cos 450sin 405tan )1q p n m ---?

+?-?

当堂检测:

=-?-=)(),4

9

tan()116cos()(1ππf x x x f 则、已知

2、.____________tan600o

的值是 D

3.D 3.C 3

3

.B 33.A --

3、.________,0cos sin 在则若θθθ> B

第二、四象限

第一、四象限

第一、三象限 第一、二象限.D .C .B .A

知识点四:三角函数线

设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交于P (,)x y ,过P 作x 轴的垂线,垂足为M ,根据三角函数的定义,我们有:

ααcos ;sin ====x OM y MP

探究:为了去掉上述等式中的绝对值号,我们可以给线段规定 一个适当的方向,使它们的取值与点的坐标一致,由于直角 坐标系内的点的坐标与坐标轴的方向有关,因此一个自然的 想法是以坐标轴的方向来规定线段的方向,以使它们的取值 与点的坐标联系起来。

当角α的终边不在坐标轴上时,以O 为始点,M 为终点,规定:

当线段OM 与x 轴同向时,OM 的方向为正,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负,且有负值x ,其中x 为点P 的横坐标,这样无论哪一种情况都有OM=x=cos α

同理,当角α的终边不在坐标轴上时,以M 为始点,P 为终点,规定:

当线段MP 与y 轴同向时,MP 的方向为正,且有正值y ;当线段MP 与y 轴反向时,MP 的方向为负,且有负值y ,其中y 为点P 的横坐标,这样无论哪一种情况都有MP=y=sin α

注:有向线段:带有方向的线段叫做有向线段。 探究:那么如何用有向线段来表示角α的正切呢? 我们可以过点(1,0)A 作单位圆的切线,这条切线

必然平行于y 轴,设它与角α的终边或其反向延长线 交与点T .则x

y

AT =

=αtan ,我们就分别称有向线段 ,,MP OM AT 为正弦线、余弦线、正切线,统称为三角函数线。

总结:三角函数线的作法

设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .由四个图看出:

当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有

sin 1y y y MP r α=

===, cos 1x x x OM r α====,tan y MP AT AT x OM OA

α==== 注:(1)三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余

o x y M T P A o x y

M T P A x

y o M T

P A

x y

o M T P A (Ⅳ) (Ⅱ) (Ⅰ)

x y

o P M (Ⅲ)

A

M

O P T

y

x

弦在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。

(2)三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。

(3)三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。

(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。 练习:书第17页第2题。

典型例题:

例:作出下列各角的正弦线、余弦线、正切线。

6

11)46

7)343)23)

πππ

-

例:比较大小:

π

ππ

ππ

π3

4tan 67tan )43

4cos 67cos )334

sin 67sin )2830sin 150sin )1和和和和??

例:利用单位圆写出符合下列条件的角x 的范围: 1) sin x =21; 2)tan x >33; 3)2

1

cos -

呢?

),除去的取值范围是(

的上满足练习:在]2,0[2

1

sin ]2,0[παπx ≥

思考:已知:αααπ

αtan sin ,2

0<<<<求证:

A

M O

P

y x

B

例:解不等式:sinx>cosx 呢?

当堂检测:

1、作出下列各角的正弦线、余弦线、正切线。 (1)3π; (2)56π; (3)23π-; (4)136

π

-.

π

ππ

ππ

π5

4

tan 32tan )(354

cos 32cos )(25

4sin 32sin )(12与与与、比较大小:

3、 利用单位圆写出符合下列条件的角x 的范围.

;21sin )1(-

1

cos )2(>x

)(

2

1

sin ]20[4的取值范围是的上满足,、在x x ≥π

??

??????????????????????πππππππ,,,65.D 326.C 656.B 6,0.A 5、求满足下列条件的角x 的范围:

(1)0tan sin

6、求证:2

cos sin 1π

αα<

+<。

知识点五:同角三角函数的基本关系

推导:以正弦线、余弦线和半径三者的长构成直角三角形,而且,由勾股定理有:222OP MP OM =+即1cos sin 22=+αα,根据三角函数的定义,当Z

k k ∈+≠,2

π

πα时,有

αα

α

tan cos sin =, 讨论几个问题:

A.上述两个关系式,在一些什么情况下成立?

B.“sin 2α+cos 2β=1”对吗?

C. 同角三角函数关系式可以解决哪些问题?

(求值:已知一个角的三角函数值,求这个角的其他三角函数的值; 化简;证明) D.从上面两个公式,你还能推导出同角三角函数的其它关系吗?

α

απ

αααααααααααααα

α

αααα

ααααααααααα22222222222cos sin 4

tan

cot tan sec cos csc sin 1141cot tan ;1sec cos ;1csc sin 3.

cot sin cos ;tan cos sin 2;

tan 11

cos ;cos sin 21)cos (sin .

csc 1cot ;sec 1tan ;1cos sin 1+==?=?=?==?=?=?==+=?±=±=+=+=+”的妙用:、“、倒数关系:、商数关系:、平方关系:种关系:

注:同角三角函数的几1

2cot 2tan ;13

cos 3

sin 32sin )(sin sin sin sin 212

2

22=?=+≠=?=ααα

α

αααααα)、角的变换:()、(义;

要使上述各种式子有意)、角注意:(

同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。

典型例题:

例:已知cos α=-3

5

,求sin α,tan α的值.

练习:已知sin α=

5

13

,求cos α,tan α的值.

小结:注意符号(象限确定);同角三基本式的运用(分析联系);知一求二. 练习:

① 已知tan α=m (m ≠0),求sin α,cos α的值. (分象限讨论)

② 化简cos θtan θ. (化简方法:切化弦)

③ 化简下列各式:21cos 1100-? 例:1)已知0<πα<,的值。

求ααααcos sin ,169

60

cos sin --=

2) 已知0<πα<,的值。

求ααααcos sin ,5

1

cos sin -=+

3)已知的值。求αααα3

3

cos sin ,cos sin +=+m

求已知)、求)、已知例:ααααααcot ,sin ,17

8

cos 2.tan ,cos ,5

4

sin 1-==

小结:① 给值求值:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值.

② 化简的要求(化简后的式子,三角函数的种类最少;分母不含根式;项数最少;能求出值的求出值)

例:化简:4cos 4sin 21-

θ

θθθθ

θθ

θθ22cos 3cos sin 3sin 2)2sin 4cos 3cos sin )

12tan --+-=,求值例:已知

.sin -cos sin cos sin cos sin cos ,cos 2sin 3的值求

练习:已知α

αα

ααααααα+++-=

例:用多种方法证明:1sin cos x x +=cos 1sin x

x

-

小结方法:由其它等式而转化(先证交叉乘积相等);或证和(差),或证商→比较法;直接证明左边等于右边或右边等于左边或可以左右归一。. 练习:求证:sin 2x tan 2x =tan 2x -sin 2x .

练习:① 已知sin α=2sin β,tan α=3tan β,求2cos α的值.

② 已知α4

sin +α4

cos =1,求sin α+cos α的值.

小结:注意象限定符号和联系关系式. 灵活运用公式,注意平方关系,切化弦;化繁为简.

当堂检测:

1. 已知β的一个三角函数值,求其它三角函数值:cos β=1

3

; tan β=-4

.tan cos ,5

3

sin 2的值求、已知ααα?-=

.tan 1

tan ,2cos -sin 3的值求、若θ

θθθ+

=

4、已知tan α=-33,求α的其它三角函数的值;求sin cos sin cos αααα

+-的值.

5、化简αα2

2sin 211

cos 2-- 6、αααα2

244cos sin cos sin -=-

7、1cos cos sin sin 2

2

2

4

=++αααα

8、 已知α是第二象限角,且tan(2π+α)=12

-, 求cos α和sin α的值.

9、 已知θsin =62

4

-,求θcos 和θtan 的值.

10、已知tan α=2,求下列各式的值:2cos 2sin 2cos 2sin αααα

-+; 223sin 4sin cos cos αααα-+.

α

αααααααα

ααααααsin sin cos sin 3cos 9sin 4cos 3sin 22cos 9sin 4cos 3sin 212tan cos sin 113

32222++----=))

,求已知的齐次式)、、(关于

α

αααααα

ααααααα22cos 4cos sin 2sin )2sin cos sin cos sin cos sin cos )

10cos 2sin 312+?--++

+-=-,求、已知

)象限。在第(

,则且、已知αααm

m m m 2

1tan 10,cos 13-=<<=

=+=+ααααcos sin 1cos sin 1444,、已知

.,cos sin 01268152k k kx x 求和的两个实根是、已知方程θθ=+++

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

高中数学必修四1.2.1任意角的三角函数导学案

1.2.1任意角的三角函数(A 层学案) 学习目标:1.能借助单位圆记住任意角的正弦、余弦、正切函数的定义; 2.记住诱导公式一并会应用。 学习重点:任意角三角函数的定义及诱导公式一的应用。 学习难点:任意角的三角函数的定义。 一、课前预习案 1.任意角三角函数 (1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的________,记作______,即sin α=y ; ②x 叫做α的________,记作______,即cos α=x ; ③ y x 叫做α的________,记作______,即tan α=y x (x ≠0). (2)在平面直角坐标系中,设α是一个任意角,它的终边上任意一点P (x ,y ),它到原点的距离r(r>0),r= ,那么任意角α的三角函数的定义为: sin α= cos α= tan α= 2.正弦、余弦、正切函数值在各象限的符号 记忆口诀: 。 3.诱导公式一 终边相同的角的同一三角函数的值________,即: sin(α+k ·2π)=________,cos(α+k ·2π)=________, tan(α+k ·2π)=________,其中k ∈Z . 4.利用任意角三角函数的定义推导特殊角的三角函数值. 角α 0 π6 π4 π3 π2 23π 34π 56π π 3 2 π 2π sin α cos α tan α

二、课内探究案 知识点一利用定义求角的三角函数值 例1:已知角α的终边经过点P(-4,3),求sin α、cos α、tan α的值.变式训练1: (1)已知角α的终边过点 0(3,4) P--,求角α的正弦、余弦和正切值. (2)已知角α的终边经过点P(-4a,3a)(a≠0),求sinα、cosα、tanα的值. 知识点二:三角函数值的符号问题 例2. (1)α是第四象限角,则下列数值中一定是正值的是( ) A.sin α B.cos α C.tan α D.cos α或tan α (2)若sin θ·tan θ>0,cos θ·tan θ<0,则sin θ·cos θ______0 (填“>”“<”或“=”). (3)函数的值域是_______. 变式训练2:判断下列各式的符号. (1)sin 370°+cos 370°.

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

2020年普通高考数学一轮复习第22讲任意角的三角函数及诱导公式精品学案

2020年普通高考数学科一轮复习精品学案 第22讲任意角的三角函数及诱导公式 一?课标要求: 1 .任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式(n /2 ±a , n±a的正弦、余弦、正切)。 二.命题走向 从近几年的新课程高考考卷来看,试题内容主要考察三角函数的图形与性质,但解决这类问题的基础是任意角的三角函数及诱导公式,在处理一些复杂的三角问题时,同角的三角函数的基本关系式是解决问题的关键。 预测2020年高考对本讲的考察是: 1.题型是1道选择题和解答题中小过程; 2 .热点内容是三角函数知识的综合应用和实际应用,这也是新课标教材的热点内容。 三.要点精讲 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射 线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫的顶点。 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它形成了一个零角。 2.终边相同的角、区间角与象限角 角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在 第几象限,我们就说这个角是第几象限角。要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。 终边相同的角是指与某个角a具有同终边的所有角,它们彼此相差2k n (k € Z),即 { 3 | 3 =2k n +a, k€ Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。 区间角是介于两个角之间的所有角,女口a€ { a| — WaW—}=[_,—]。 6666 3 .弧度制 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作 1 rad , 或1弧度,或1(单位 可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-n, -2n等等,一般地,正角 的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋 转方向来决定。 角的弧度数的绝对值是:丄,其中,|是圆心角所对的弧长,r是半径。 r 角度制与弧度制的换算主要抓住180 rad。 180

任意角的三角函数教案

1.2.1 任意角的三角函数 教学目标 1.知识与技能 (1)掌握任意角的三角函数的定义. (2)已知角α终边上一点,会求角α的各三角函数值. (3)记住三角函数的定义域. 2.过程与方法 (1)通过直角三角形中三角函数定义到单位圆中三角函数定义,最后到直角坐标系中一 般化的三角函数定义,培养学生发现数学规律的思维方法和能力. (2)树立映射观点,正确理解三角函数是以实数为自变量的函数. (3)通过对定义域介绍,提高学生分析、探究、解决问题的能力. 3.情感、态度与价值观 (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的 一种联系方式. (2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神. 重点、难点 教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号). 教学难点:利用角的终边上点的坐标刻画三角函数,三角函数的符号以及三角函数的几何意义. 授课类型:新授课 教学模式:启发、诱导发现教学. 新知探究 一、三角函数的定义: 提出问题 问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题②:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗? 学习了弧度制,知道了角的集合与实数集是一一对应的,在此基础上,我们来研究任意角的三角函数.

图1 如图1,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b. 根据初中学过的三角函数定义,我们有 sinα=OP MP =r b ,cosα=OP OM =r a ,tanα=OP MP =a b . 讨论结果: ①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数. ②sinα=OP MP =r b ,cosα=OP OM =r a ,tanα=OM MP =a b . 提出问题 问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么? 问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化? 最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变. 过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化. 此时sinα=OP MP =b,cosα=OP OM =a,tanα=OM MP =a b . 在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符号由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.这样,上述P 点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示. 同样地,我们可以利用单位圆定义任意角的三角函数. 图2 如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y 叫做α的正弦,记作sinα,即sinα=y; (2)x 叫做α的余弦,记作cosα,即cosα=x; (3)x y 叫做α的正切,记作tanα,即tanα=x y (x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数. 值得注意的是:(1)正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“tan”等是没有意义的. 二、例题讲解

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

任意角三角函数练习题

1-2-1任意角的三角函数 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6 π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .22 B .-22 C .±22 D .1 4.α是第二象限角,其终边上一点( P x ,且cos 4x α= ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且cos cos 22αα=- ,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.若α是第四象限角,则 2α 是( ) A.第二象限角 B.第三象限角 C.第一或第三象限角 D.第二或第四象限角 8.若α 为第二象限角,则下列各式恒小于0的是( ) A.sin cos αα+ B.tan sin αα+ C cos tan αα- D sin tan αα- 9.已知角α的终边落在直线y =3x 上,则sin α=________. 10.已知P (-3,y )为角α的终边上一点,且sin α=1313 ,那么y 的值等于________. 11.已知锐角α终边上一点P (1,3),则α的弧度数为________.

2018版高中数学三角函数1.2.1任意角的三角函数一导学案新人教A版

1.2.1 任意角的三角函数(一) 学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等. 知识点一 任意角的三角函数 使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r . 思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=y r ,cos α=x r ,tan α=y x . 思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关. 思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x . 梳理 (1)单位圆 在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

(完整版)三角函数定义练习题

三角函数的定义练习题 一、选择题 1.已知a 是第二象限角,5 sin ,cos 13 a a ==则( ) A .1213 B .513 - C .513 D .-1213 2.已知角的终边上一点(),且 ,则 的值是( ) A. B. C. D. 3.已知点P(sin ,cos )落在角θ的终边上,且θ∈[0,2π),则θ值为( ) A. B. C. D. 4.把表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( ) A. B. C. D. 5.若α是第四象限角,则π-α是( ) A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 6.cos ( )-sin( )的值是( ). A. B .- C .0 D. 7.4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 8.已知3α=-,则角α的终边所在的象限是() A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.设角θ的终边经过点(3,4)P -,那么sin 2cos θθ+=( ) A . 15 B .15- C .2 5 - D .25 10.若0sin <α,且0tan >α,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 11.若cos α=-,且角α的终边经过点P(x,2),则P 点的横坐标x 是( ) (A)2 (B)±2 (C)-2 (D)-2 12.若α是第四象限角,5 tan 12 α=-,则sin α= (A)15. (B)15-. (C)513. (D)513 -.

数学人教A版高中必修1任意角的三角函数导学案

2.2.2任意角的三角函数(1) 【学习目标】 1.掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义 2.会用三角函数线表示任意角三角函数的值 3.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号 【学习重点、难点】 任意角的正弦、余弦、正切的定义 【自主学习】 一、复习旧知,导入新课 在初中,我们已经学过锐角三角函数: 角的范围已经推广,那么对任意角是否也能定义其三角函数呢? 二、建构数学 1.在平面直角坐标系中,设点是角终边上任意一点,坐标为,它与原点的距离,一般地,我们规定: ⑴比值___________叫做的正弦,记作___________,即___________=___________; ⑵比值___________叫做的余弦,记作___________,即___________=___________; ⑶比值___________叫做的正切,记作___________,即___________=___________. 2.当=___________________时, 的终边在轴上,这时点的横坐标等于____________,所以_____________无意义.除此之外,对于确定的角,上面三个值都是______________.所以, 正弦、余弦、正切都是以_________为自变量,以__________为函数值的函数,我们将它们统称为___________________. 3.由于________________________与________________________之间可以建立一一对应关系,三角函数可以看成是自变量为_________________的函数. 4.其中,和的定义域分别是________________;

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

任意角的三角函数典型例题精析

任意角的三角函数·典型例题精析 例1下列说法中,正确的是 [] A.第一象限的角是锐角 B.锐角是第一象限的角 C.小于90°的角是锐角 D.0°到90°的角是第一象限的角 【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键. 【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B). (90°-α)分别是第几象限角? 【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的 【解】(1)由题设可知α是第二象限的角,即 90°+k·360°<α<180°+k·360°(k∈Z), 的角. (2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角. (3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z), 所以-180°-k·360°<-α<-90°-k·360°(k∈Z).

故-90°-k·360°<90°-α<-k·360°(k∈Z). 因此90°-α是第四象限的角. 解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内. 【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的. 例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间 [] 【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易. 【解法一】由正、余弦函数的性质, 【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当 应选(A). 可排除(C),(D),得(A). 【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习. 例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值; 【分析】利用三角函数的定义进行三角式的求值、化简和证明,是 三两个象限,因此必须分两种情况讨论.

高考数学《三角函数》专题 任意角的三角函数学案

高考数学《三角函数》专题 任意角的三角函数学案 一、角的概念的推广 1.与角α终边相同的角的集合为 . 2.与角α终边互为反向延长线的角的集合为 . 3.轴线角(终边在坐标轴上的角) 终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 . 4.象限角是指: . 5.区间角是指: . 6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系. 7.弧度与角度互化:180o= 弧度,1o= 弧度,1弧度= ≈ o. 8.弧长公式:l = ; 扇形面积公式:S = . 二、任意角的三角函数 9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ; 10.三角函数的符号与角所在象限的关系: 12解析式 y =sinx y =cosx y =tanx 定义 域 值 域 13.三角函数线:在图中作出角α的正弦线、余弦线、正切线. - + - + cos x , + + - - sin x , - + + - tan x , x y O x y O x y O αx y O

例1. 若α是第二象限的角,试分别确定2α,2α ,3α 的终边所在位置. 解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k∈Z ). (1)∵2k·360°+180°<2α<2k·360°+360°(k∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k·180°+45°<2α <k·180°+90°(k∈Z ), 当k=2n (n∈Z )时, n·360°+45°<2α <n·360°+90°; 当k=2n+1(n∈Z )时, n·360°+225°<2α <n·360°+270°. ∴2α 是第一或第三象限的角. (3)∵k·120°+30°<3α <k·120°+60°(k∈Z ), 当k=3n (n∈Z )时, n·360°+30°<3α <n·360°+60°; 当k=3n+1(n∈Z )时, n·360°+150°<3α <n·360°+180°; 当k=3n+2(n∈Z )时, n·360°+270°<3α <n·360°+300°. ∴3α 是第一或第二或第四象限的角. 变式训练1:已知α是第三象限角,问3α 是哪个象限的角? 解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k∈Z ), 60°+k·120°<3α <90°+k·120°. ①当k=3m(m∈Z )时,可得 典型例题

任意角、弧度制、任意角的三角函数题型归纳

第四章 三角函数、解三角形 第一节 任意角和弧度制及任意角的三角函数 ? 基础知识 1.角的概念的推广 (1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)分类? ???? 按旋转方向不同分为正角、负角、零角. 按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }. 终边相同的角不一定相等,但相等的角其终边一定相同. 2.弧度制的定义和公式 (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式: 有关角度与弧度的两个注意点 (1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用. (2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x (x ≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.

二、常用结论汇总——规律多一点 (1)一个口诀 三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广 设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=y r,cos α= x r,tan α= y x(x≠0). (3)象限角 (4)轴线角

人教版高中数学必修四学案 任意角的三角函数(1)

一、复习:锐角三角函数的定义: 如图:设P(x,y)是角α终边上不同于原点的任意一点,P M⊥x 轴,∣OP∣=r , 当α为锐角时sin α= ;cos α= ;tan α= . P αr y x y x O M 二、自主学习:自学14P -16P 完成下面的填空: 1。三角函数的定义:设P(x,y)是角α终边上不同于原点的任意一点,∣OP∣=r ,(r= 22y x +,r >0) 则:sin α= ;cos α= ;tan α= . sec α= ;csc α= ;cot α= . 思考:三角函数是函数吗? 2. 三角函数的定义域:完成下表 三角函数 定 义 域 sin α cos α tan α 3。三角函数符号: sin α= r y :若y >0,则sin α 0;此时α的终边在第 象限或第 象限 或在 上;若y <0,则sin α 0;此时α的终边在第 象限或第 象限 或在 上.若y=0,则sin α 0;此时α的终边在 轴上。 cos α= r x :若x >0,则cos α 0;此时α的终边在第 象限或第 象限 或在 上; 若x<0,则cos α 0;此时α的终边在第 象限或第 象限

或在 上.若x=0,则cos α 0;此时α的终边在 轴上。 tan α= x y ,若x 、y 号,则tan α>0,此时α的终边在第 象限或第 象限 若x 、y 号,则tan α<0. 此时α的终边在第 象限或第 象限 若y=0, 则tan α 0;此时α的终边在 轴上。 若x=0, 则tan α不存在,此时α的终边在 轴上。 记忆口诀:“一全正,二正弦,三正切,四余弦” 四、小结: 五、作业: 1.已知α的终边过点P (4,-3),则下面各式中正确的是( ) A.sin α= 5 3 B.cos α=- 5 4 C.tan α=- 4 3 D.cot α=- 4 3 2.若角α的终边上有一点P (k k 54 ,53-)(0?k ),则sin α·tan α的值是( ) A. 15 16 B.-1516 C.1615 D.-16 15 3.已知角α的终边经过点P (a ,b ),其中a <0,b <0,在α的六个三角函数中,符号为正的是( ) A.sin α与csc α B.cos α与sec α C.tan α与cot α D.sec α与csc α 4.若角α的终边与直线y=3x 重合,且sin α<0,又P (m ,n )是α终边上一点,且 10=OP ,则m -n =( ) A.2 B.-2 C.4 D.-4 5.已知点P (3,y )在角α的终边上,且满足y <0,cos α=5 3 ,则tan α的值为( ) A.4 3 - B. 3 4 C. 4 3 D.-3 4 6若sin θcos θ>0,则θ在第 象限。

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

相关文档
最新文档