锁模力的计算公式

锁模力的计算公式
锁模力的计算公式

锁模力的计算公式锁模力 F(TON) F=Am*Pv/1000

F:锁模力 TON Am:模腔投影面积 CM2

Pv:充填压力 KG/CM2

(一般塑胶材料充填压力在150-350KG/CM2)(流动性良好取较底值,流动不良取较高值)

充填压力/0.4-0.6=射出压力

例:模腔投影面积 270CM2 充填压力 220KG/CM2

锁模力=270*220/1000=59.4TON

外形分有:立式的,卧式的,(这两种最常见)按注塑量分有:超小型注塑机,小型注塑机,中型注塑机,大型注塑机,超大型注塑机。也就是注塑量从几毫克到几十千克不等。按合模力分有:几吨到几千吨不等怎样选择合适的注塑机 1、选对型: 由产品及塑料决定机种及系列。由于注塑机有非常多的种类,因此一开始要先正确判断此产品应由哪一种注塑机,或是哪一个系列来生产,例如是一般热塑性塑胶或电木原料或PET原料等,是单色、双色、多色、夹层或混色等。此外,某些产品需要高稳定(闭回路)、高精密、超高射速、高射压或快速生产(多回路)等条件,也必须选择合适的系列来生产。 2、放得下:由模具尺寸判定机台的“大柱内距”、“模厚”、“模具最小尺寸”及“模盘尺寸”是否适当,以确认模具是否放得下。模具的宽度及高度需小于或至少有一边小于大柱内距;模具的宽度及高度最好在模盘尺寸范围内;模具的厚度需介于注塑机的模厚之间;模具的宽度及高度需符合该注塑机建议的最小模具尺寸,太小也不行。 3、拿得出:由模具及成品判定“开模行程”及“托模行程”是否足以让成品取出。开模行程至少需大于成品在开关模方向的高度的两倍以上,且需含竖浇道(sprue)的长度;托模行程需足够将成品顶出。 4、锁得住:由产品及塑料决定“锁模力”吨数。当原料以高压注入模穴内时会产生一个撑模的力量,因此注塑机的锁模单元必须提供足够的“锁模力”使模具不至于被撑开。锁模力需求的计算如下:由成品外观尺寸求出成品在开关模方向的投影面积;撑模力量=成品在开关模方向的投影面积(cm2)×模穴数×模内压力(kg/cm2); 模内压力随原料而不同, 一般原料取350~400kg/cm2; 机器锁模力需大于撑模力量,且为了保险起见,机器锁模力通常需大于撑模力量的1.17倍以上。至此已初步决定夹模单元的规格,并大致确定机种吨数,接着必须再进行下列步骤,以确认哪一个射出单元的螺杆直径比较符合所需。 5、射得饱: 由成品重量及模穴数判定所需“射出量”并选择合适的“螺杆直径”。计算成品重量需考虑模穴数(一模几穴);为了稳定性起见,射出量需为成品重量的1.35倍以上,亦即成品重量需为射出量的75%以内。 6、射得好:由塑料判定“螺杆压缩比”及“射出压力”等条件。有些工程塑料需要较高的射出压力及合适的螺杆压缩比设计,才有较好的成型效果,因此为了使成品射得更好,在选择螺杆时亦需考虑射压的需求及压缩比的问题。一般而言,直径较小的螺杆可提供较高的射出压力。 7、射得快:及“射出速度”的确认。有些成品需要高射出率速射出才能稳定成型,如超薄类成品,在此情况下,可能需要确认机器的射出率及射速是否足够,是否需搭配蓄压器、闭回路控制等装置。一般而言,在相同条件下,可提供较

wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();});

高射压的螺杆通常射速较低,相反的,可提供较低射压的螺杆通常射速较高。因此,选择螺杆直径时,射出量、射出压力及射出率(射出速度),需交叉考量及取舍。此外,也可以采用多回路设计,以同步复合动作缩短成型时间。有一些特殊问题可能也必须再加以考虑:大小配的问题:在某些特殊状况下,客户的模具或产品可能模具体积小但所需射量大,或模具体积大但所需射量小,在这种况下,厂家所预先设定的标准规格可能无法符合客户需求,而必须进行所谓“大小配”,亦即“大壁小射”或“小壁大射”。所谓“大壁小射”指以原先标准的夹模单元搭配较小的射出螺杆,反之,“小壁大射”即是以原先标准的夹模单元搭配较大的射出螺杆。当然,在搭配上也可能夹模与射出相差好几级。快速机或高速机的观念:在实际运用中,越来越多的客户会要求购买所谓“高速机”或“快速机”。一般而言,其目的除了产品本身的需求外,其他大多是要缩短成型周期、提高单位时间的产量,进而降低生产成本,提高竞争力。通常,要达到上述目的,有几种做法:射出速度加快:将电机马达及泵浦加大,或加蓄压器(最好加闭回路控制);加料速度加快:将电机马达及泵浦加大,或加料油压马达改小,使螺杆转速加快;多回路系统:采用双回路或三回路设计,以同步进行复合动作,缩短成型时间;增加模具水路,提升模具的冷却效率。

注塑机(啤机)锁模力的计算及注射量的计算!

锁模力的计算及注射量的计算 1,锁模力的计算目前计算锁模力大致有两种方法:第一种方法是:锁模力=安全系数X总投影面积X模腔压力,安全系数可取1.1,模腔压力根据表1选取。

第二种方法是:锁模力=安全系数X总投影面积X模腔压力X粘度系数安全系数可取1.1,模腔压力根据制品的壁厚及最长流距在图一中选取,并乘以1.3的安全系数,粘度系数根据塑料种类在表2中选取。

第一中方法是粗略计算,第二中方法是精确计算,它把塑料流径距离,注塑件壁厚,塑料的流动性等都考虑进去了,所以比较准确,第一种方法因为在取值时,未考虑实际情况,为保险起见,都取最大值,所以算出来的值都偏大。

举例说明:假设一制品的总投影面积为320c㎡,所用塑料为PS,制品壁厚为1㎜,最长流距与壁厚的比值为56:1,计算锁模力如下:第一种方法:根据表1,我们取压力值为此30.9MN/㎡,所需锁模力=1.1X320X10-4X30.9=10878X10-4MN=108.78吨应选锁模力为110吨左右的。注塑机第二种方法:从图一中查出总模腔压力是180巴,根据表2取粘度系数为1 所需锁模力=1.1X320X10-4X1.3X180X10-1X1=8448X10-4MN=84.48吨应选锁模力为90吨左右的注塑机以上表明,计算方法不同,得出的锁模力也不同,视不同情况而采用,特别是对于形状简单,壁厚较大的产品,可能相差会大。这时根据第一种计算方法计算出的值会超出制品的实际所需值较多。

2,注射量的计算注射容积是理论性的,它等于螺杆的横截面积乘以注射行程。由于熔融料回流及止流阀后移,实际注射容积约是理论值的90%。先算出实际注射容积,然后根据实际注射容积来计算重量,不同的塑料的密度不同,而且同种塑料在熔融状态下的密度比在常温下的密度小得多

见下表:

塑胶简称熔融密度

一般硬胶 GPPS(PS) 0.89~0.9 聚苯硫醚 PPS 1.08~1.11 不碎胶 HIPS 0.90~0.97 尼龙66 PA-66 0.96~1.00 超不碎胶 ABS 0.90~.91 亚加力 PMMA 1.00~1.01 透明大力胶 AS (SAN) 0.91~0.92 防弹胶 PC 1.02~1.04 软胶 LDPE 0.73~0.74 赛钢 POM 1.19~1.21 硬性

PE HDPE 0.75~0.77 聚酯 PET 1.13~1.17 百折胶 PP 0.71~0.74 聚酯 PBT 1.10~1.11 软性PVC PPVC 1.05~1.39 酸性胶 CA .01~1.10 硬性PVC UPVC 1.13~1.22 聚苯醚 PPO-M 0.87~0.89 尼龙6 PA-6 0.96~1.0

考虑到多方因素及安全系数,实际注射量可按下式计算:实际注射量=(0.75~0.90)X塑料熔融密度X理论注射容积制品质量要求较高时系数取小值表一热塑性塑料的模腔压力塑料缩写 Tons.in-2 MN/m-2

ASA 2.5~4.0 38.6~61.8 PES 6.0~10.0 92.6~154.4 ABS 2.5~4.0 38.6~61.8 PES(easy flow) 4.0~ 6.0 61.8~92.6 PP-H/CO(long flows) 2.5~3.5 38.6~54.0 PET Amorphous 2.0~2.5 30.9~38.6 BDS(薄

壁) 3.0~4.0 46.3~61.8 PET Crystalline 4.0~6.0 61.8~92.6 CA 1.0~2.0 15.4~30.9 PMMA 2.0~4.0 30.9~61.8 CBA 1.0~2.0 15.4~30.9 POM-H 3.0~5.0 46.3~77.2 CAP 1.0~2.0 15.4~30.9 POM-CO 3.0~5.0 46.3~77.2 FEP 5.0 77.2 TPU/PUR 0.5~1.5 7.7~23.2 HIPS 1.0~2.0 15.4~30.9 TPU/PUR 1. 5~2.5 23.2~38.6 HIPS(薄壁) 2.5~3.5 38.6~54.0 PPS 2.0~3.0 30.9~46.3 PPVC 1.5~2.5 23.2~38.6 PP-H 1.5~2.5 23.2~38.6 P

A 6 4.0~5.0 61.8~77.2 PP-CO 1.5~2.5 23.2~38.6 PA 66 4.0~5.0 61.8~77.2 BDS 2.0~3.0 30.9~46.

3 PA 11 1.5~2.0 23.2~30.9 PS 1.0~2.0 15.4~30.9 PA 12 1.5~2.0 23.2~30.9 PS(thin walls) 3.0~4.0 46.3~61.8 PBT 3.0~4.5 46.3~69.5 PSU 6.0~10.0 92.6~154.

4 PC 3.0~5.0 46.3~77.2 PSU(easy flo w) 4.0~6.0 61.8~92.6 PEBA(硬) 2.0 30.9 PVDF 2.0 30.9 PEBA (软) 1.5~2.0 23.2~30.9 SAN 2.5~3.0 38.6~46.3 PEEL 2.0~3.0 30.9~46.3 SAN 3.0~4.0 46.3~6 1.8 PEEK(unreinforced) 2.0~4.0 30.9~61.8 PEEK(reinforced) 4.0~4.6 61.8~92.6 PPO-M (unreinforced) 2.0~3.0 30.9~46.3 PPO-M (reinforced) 4.0~5.0 61.8~77.2 HDPE 1.5~2.

5 23.2~38.

6 UPVC 2.0~3.0 30.9~46.3 HDPE(lon g flow) 2.5~3.5 38.6~54.0 LDPE 1.0~2.0 15.4~30.9

表二热塑性塑料的粘度系数热塑性塑料

1.0 PE, PP, PS 1.2~1.4 NYLONS(PA6 OR PA66) POM 1.3~1.5 Celluosics 1.3~1.5 ABS, ASA , SAN 1.5~1.7 PMMA 1.7~

2.0 PC, PES, PSU

压铸件工艺参数的设定

压铸件工艺参数的设定 2011-11-24 8:57:20 在压铸行业,工艺参数对产品质量的影响更多的是靠试验的方法,许多工程技术人员不能深入的进行分析,生产铸件的条件无法用数据来描述。 本文就压铸工艺参数理论计算和实践两方面进行讨论研究。压力铸造的主要工艺参数有行程(速度转换点)、速度、时间和压力等。而本文重点分析速度和行程两个主要参数。 1. 压铸的四阶段压射 计算压力铸造工艺参数,首先要定义压铸的四个压射阶段。 1.1.1 第一阶段:慢压射1为防止金属液溅出,冲头越过浇料口的过程,压射的第一阶段通常是缓慢的。 1.1.2 第二阶段:慢压射2金属液以较低的速度运动至内浇口的阶段,主要目的是排出压室内的空气,集中铝液于压室内。 1.1.3 第三阶段:快压射金属液由内浇口填充型腔直至充满为止,主要目的是成型并排出型腔中气体。 1.1.4 第四阶段:增压阶段型腔充满后建立最后的增压,使铸件在高压压力下凝固,从而使铸件致密。 1.2 计算模型 1.2.1 根据1.1定义(参照图1),可以得到金属液在各阶段合金液的重量关系式。 G2=G浇 G3+G4=G铸+G溢流 其中:G3+G4为金属液刚达到内浇口处时冲头端面至冲头停止之间的铝液重量,即为快压射起始点位置至冲头停止行程内金属液的容量。 G铸为铸件重量 G溢为溢流系统的重量 G2为慢压射2行程内压室能容纳的金属液重量 G浇为浇注系统的重量 1.2.2 流道中单位时间内不同位置截面中通过合金液的流量关系式(见图2) 金属液在流动过程中,单位时间内通过截面的流量Q相等,则Q=V1×S1=V2×S2= V3×S3 (注:V3×S3是利用等式,而非金属液流量) 其中V1:冲头速度 S1:冲头面积 V2:内浇口速度 S2:内浇口面积 V3:排气槽气体速度(推荐值75m/s)

注塑机锁模力计算的三种方法概述

注塑机锁模力计算的三 种方法概述 -CAL-FENGHAI.-(YICAI)-Company One1

锁模力计算的三种方法概述 锁模力又称合模力,是指注射机的合模装置对模具所施加的最大夹紧力,当熔体充满型腔时,注射压力在型腔内所产生的作用力总是力图使模具沿分型面胀开,为此,注射机的锁模力必须大于型腔内熔体压力与塑料制品及浇注及浇注系统在分型面上的投影面积之和的乘积。 公式:锁模力≥模力压力X 制品、流道、浇口在分型面上的投影面积之和。 需要注意的是:锁模力不足,制品产生飞边或不能成型,而如果锁模力过大,造成系统资源的浪费,并且会使液压系统元件在高压下长时间工作,可能过早老化,机械结构过快磨损。 第一部分:锁模力计算的经验计算 经验公式一:核心思路——通过锁模力常数来计算锁模力 计算公式:锁模力=锁模力常数×制品的投影面积 即 P=KpS 式中P—锁模力(T); Kp—锁模力常数(t/cm2);S —制品在模板上的投影面积(cm2) 锁模常数Kp表:(注射较精密制品时参考值) 经验公式二:核心思路——通过估计模腔压力来计算锁模力 即:350(kg/cm2)乘以产品的投影面积(cm2)除以1000 注:除以1000 是将KG 转为吨 第二部分:锁模力精准计算

可以通过准确的计算公式或通过Moldflow 模流分析,来精确确定成型所需的锁模力。 精确公式计算: 计算锁模力有两个重要因素:(1)投影面积(2)模腔压力 (1)投影面积(S)是沿着模具开合所观看得到的最大面积 (2)模腔压力(P)的确定 模腔压力由以下因素所影响: (1)浇口的数目和位置 (2)浇口的尺寸 (3)制品的壁厚 (4)使用塑料的粘度特性 (5)注射速度 热塑性塑料流动特性的分组及粘度等级(流动能力) 粘度等级常数(K) 模腔压力决定于壁厚、流程与壁厚的比例及粘度等级常数(K) 模腔基本压力(P0)决定于壁厚、流程与壁厚的比例(如图)。

压铸参数计算

压铸工艺参数的计算 从持压终了至开模这段时间,根据铸件厚薄、复杂结构选择。综合压铸过程的压铸工艺参数压力、速度、温度、时间选项择为:铸件壁厚、结构复杂,压力要大,留模时间要长;铸件壁薄、结构复杂,压射速度要快,模具温度要高; 留模时间=产品壁厚X产品壁厚 A、填充时间 填充时间=0.01x产品壁厚x产品壁厚 b、依据模具条件的高速速度 高速速度=(产品+溢流重量)/压室截面积X填充时间X铝液密度 C.依据机器能力的高速速度 模具临界速度=550X√(浇口截面积)2X压射缸截面积XACC压力X10/(压室截面积)3 (注:只考虑模具的浇口抵抗,充填抵抗时的实打速度) d.确认浇口速度 浇口速度=压室截面积/浇口截面积X高速速度 (一般为40-60m/s) 例题:产品壁厚:3mm,产品+溢流重量:510g,压室截面积:19.63cm2,浇口截面积:1.04cm2,铝液密度:2.6g/cm3,ACC压力:14MPa,压射缸截面积:(π/4)×112=95cm2。 a.填充时间=0.01×3×3=0.063s b.高速速度=(510/19.63×0.063×2.6)=1.59m/s c.模具临界速度=550X√(1.04)2×95×14×19/(19.63)3=7.58m/s d.浇口速度=(19.63/1.04)X1.59=30.01m/s (3)快慢速度转换行程 对于铝、镁合金来说,各个压射阶段的切换点尤为重要,比如低速在什么时候转入高速,高速什么时候转为增压等,直接影响到产品的表面和内部质量。 转换行程=空打行程-(产品+溢流重量/压室截面积X熔液密度)-余料厚度-1cm

列车制动力计算公式

1,紧急制动计算列车总制动力列车制动力计算 B h K h (kN) 式中K h ------ 全列车换算闸瓦压力的总和,kN; h --- 换算摩擦系数; 列车单位制动力的计算公式 b B 1000 1000 h K h ( N / kN ) ( P G) g ( P G) g 其中 (P K h G) g h ( N / kN ) ,则b 1000 h h 式中P G ------------ 列车的质量,t ; h --- 换算摩擦系数; h ------------------ 列车制动率; K h ------ 全列车换算闸瓦压力的总和,kN; 2,列车常用制动计算 b c 1 c b 由此可得b c c b 1000 h h c ( N / kN ) 式中 c ------------- 常用制动系数 b c ------- 列车单位制动力 表1 常用制动系数p1 为列车管空气压力 列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170 旅客 p1 600kPa 列车0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.00 货物 p1 600kPa 列车0.17 0.28 0.37 0.46 0.53 0.60 0.67 0.73 0.78 0.83 0.88 0.93 0.96

p1 600kPa 0.19 0.32 0.42 0.52 0.60 0.68 0.75 0.83 0.89 0.95 --- --- --- 3, 多种摩擦材料共存时列车制动力的计算 同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦 压力与该种闸瓦的换算摩擦系数乘积的总和。即 B h1 K h1 h2 K h2 h3 K h3 ( h K h )(kN) 式中,K h1 ,h1 代表机车的闸瓦制动,K h 2 ,h2 代表车辆的闸瓦 制动,K h3 , h3 代表车辆的盘形制动,等等。 列车单位制动力 1000 ( h b K h) 1000 ( h h )( N / kN ) 。 ( P G) g 4,列车制动的二次换算法 表2 不同摩擦材料换算闸瓦压力的二次换算系数 类别 基型高磷(中磷)闸瓦高摩合成闸片高摩合成闸瓦 高磷(中磷)闸瓦 1.0 0.56 0.63 高摩合成闸片 1.8 1.0 1.1 高摩合成闸瓦 1.6 0.9 1.0 低摩合成闸瓦0.8 0.45 0.5 粉末冶金闸瓦 1.3 0.7 0.8 种类 表3 机车的计算质量及每台换算闸瓦压力表 机型计算质量/t 闸瓦种别每台换算闸瓦压力 /kN SS1、SS3 、SS6 138 铸铁700<435>《355》 SS 3B 、SS 6B 138 高摩合成300(480)《240》

塑封模具常用计算公式及方法

集成电路塑封模具常用计算公式及方法 1 引言 随着电子信息产业的迅速发展,集成电路封装产业在国内也随之迅猛发展,但集成电路封装设备--塑封模具却成为制约封装产业发展的瓶颈,长期依靠进口。本文通过我公司长期制造塑封模具的经验,详细介绍了封装模具常用的计算公式及方法。 2 塑封模具的常用计算公式及方法 塑料模具的常用计算公式及方法主要涉及以下几个方面:原材料线涨系数的测量计算;成型型腔尺寸的计算;型腔镶件的线涨匹配;上料框架线涨尺寸的计算。 2.1 原材料线涨系数的测量计算 在这里原材料线涨系数的计算,主要针对引线框架的线涨计算,也可适用于其他材料的计算(如铝、钢等)。在此,只提供计算方法以便灵活应用。 线涨系数指原材料温度每升高1℃,单位长度内所增加的长度。 (1)式中: a为原材料的线涨系数/℃-1; Lt为原材料在t温度时的长度(一般指高温时的长度)/mm; L0为原材料在常温时的的长度/mm; t指高温(一般我们根据封装工艺的特点测试时取175℃/℃: to指常温(一般取20℃)/℃。

例:一种材料在20℃时长150mm,升温到175℃时长度为150.3mm,求线涨系数a为多少? 解:a=(150.3-150)/[150×(175-20)]=12.9 X 10-6℃-1。 2.2 成型型腔尺寸的计算 (2)式中: L为型腔尺寸/mm; L'为塑件尺寸/mm; S为树脂成型收缩率。 该公式为基本简化公式,具体计算时,根据塑封体外形偏差的大小,适当调整,在此不作累述。 S一般取0.2%~0.4%,在实际使用时根据用户提供的树脂型号选取。 例:塑件外形尺寸为18mm,计算型腔尺寸L,树脂收缩率S为0.35%。 解:L=18x(1+0.35%)=18.063mm 2.3 型腔镶件的线涨匹配 公式: (3)式中: L模为模具型腔经线涨匹配后的尺寸/mm; L产为引线框架的实测长度尺寸/mm;

列车制动力计算公式

列车制动力计算 1,紧急制动计算 ①列车总制动力 )(kN K B h h ∑=? 式中 ∑h K ------全列车换算闸瓦压力的总和,kN ; h ?---换算摩擦系数; ②列车单位制动力的计算公式 )/()(1000)(1000kN N g G P K g G P B b h h ?+=?+?=∑? 其中 )/()(kN N g G P K h h ?=?+∑,则h h b ???=1000 式中 G P +------------列车的质量,t ; h ?---换算摩擦系数; h ?------------------列车制动率; ∑h K ------全列车换算闸瓦压力的总和,kN ; 2,列车常用制动计算 1≤= b b c c β 由此可得 )/(1000kN N b b c h h c c β??β=?= 式中 c β-----常用制动系数 c b -------列车单位制动力 表1 常用制动系数 1p 为列车管空气压力 列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170 旅客列车 kPa p 6001= 0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.00

3,多种摩擦材料共存时列车制动力的计算 同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。即 ) )((kN 332211∑∑∑∑∑=???+++=h h h h h h h h K K K K B ????式中,1h K ,1h ?代表机车的闸瓦制动,2h K ,2h ?代表车辆的闸瓦制动,3h K ,3h ?代表车辆的盘形制动,等等。 列车单位制动力 )/()(1000)()(1000kN N g G P K b h h h h ∑∑∑?=?+= ???。 4,列车制动的二次换算法 表2 不同摩擦材料换算闸瓦压力的二次换算系数 类别 基型 高磷(中磷)闸瓦 高摩合成闸片 高摩合成闸瓦 高磷(中磷)闸瓦 1.0 0.56 0.63 高摩合成闸片 1.8 1.0 1.1 货物列车 kPa p 6001= 0.17 0.28 0.37 0.46 0.53 0.60 0.67 0.73 0.78 0.83 0.88 0.93 0.96 kPa p 6001= 0.19 0.32 0.42 0.52 0.60 0.68 0.75 0.83 0.89 0.95 --- --- ---

注塑模具锁模力计算

塑料零件锁模力计算方法 一、经验法:锁模力=制品投影面积×面积常数 缺点:过于粗略、随意性大、准确度差;必需建立在丰富的经验基础上,才懂判断如何选择比较合适的常数。 二、常数法:锁模力=投影面积×常数×1.2 合理; 缺点:对于同一原料不同零件结构时,此方法的应用仍然存在随意性。 三、工艺合模法: 投影面积S×模腔压力P≤工艺合模力P≤(0.8~0.9)额定合模力P 模腔压力与壁厚、流长比曲线图如下: 优点:该方法也增加了一个安全系数,按照制品类别区分,考虑了零件结构的复杂因素; 缺点:没有考虑不同塑料之间的差异,应用的准确性也不高。

四、考虑塑料黏度的锁模力计算方法: 锁模力=投影面积×模腔压力×黏度系数K÷安全系数K1 此方法既考虑了材料间的差异,又考虑了不同制品结构复杂程度的差异,同时考虑了模具设计这一因素。应该说是比较科学、准确的。 以上各种方法中,各常数的选择、设定,都是建立在大理实际案例所收集的数据基础之上。但实际应用中,当事人不一定具备如此广泛的理论与实践经验,因此计算中出现误差是在所难免的。 总之,实际应用时,必须考虑以下几点:材料、模具结构、模具浇口形式、零件结构、工艺条件(包括模温、料温等)。 以上只是一些确定锁模力的方法,在实际选择注塑机时,还应考虑如注射量、容模量等其它条件。 例一:零件描述:圆柱体,中间多片薄片;零件直径:10 cm;高度=80mm壁厚=0.8mm原料:普通PP;扇形浇口;一模四腔;总重量180克;尺寸如图1所示。 1)、投影面积计算: S=零件主体面积(3.14×52×4)+流道面积(21+24+6×2+9×2)×0.8=314+60=374 cm2 2)、流长比计算: L/B=(120+30)/8+80/0.8=18.75+100=118.57 3)、模腔压力的确定:根据制品壁厚和流长比,确定模腔压力P=320 kg/cm2 4)、材料黏度系数:K=1 5)、安全系数:K1=80% 锁模力计算: F=P×S×K/K1=320×374×1/80%=149600 kg/cm2=149.6吨 例二:薄壁制品 零件描述:塑料杯子。材料:普通PP;一模八腔;壁厚=0.48~0.52mm;总重量约80克;

模具计算

研究到工件圆角位置必须要进行两次拉深,材料有向侧向挤流因素,所以计算毛坯尺寸时建议将展开圆角半径R 加大10%--20%。 两次拉深的相互关系应符合以下几点。 ①两次拉深的脚步圆角半径中心不同。 ②第二次拉深可不带压边圈,所以工序间的壁间距和角间距不宜过大。通常取值为 壁间距 b=(4--5t)=4mm 角间距 x ≤0.4b=0.5--2.5mm=1.6mm ③第二次拉深高度增量一般约为:?H =b-0.43(r p1-r p2) 式中 r p1—第一次拉深后的底部圆角半径;r p2—第二次拉深后的底部圆角半径。 从上式看出,若b=0.43(r p1-r p2) ,则?H=0,即两次拉深高度没有变化。 Rp1=13.3mm Rp2=4mm (3)核算角部的拉深系数 对于低盒形件,由于圆角部分对直边部分的影响相对较小,圆角处的变形量大,故变形程度用圆角处的假想拉深系数表示为: R r = m 式中 r —角部的圆角半径; R —毛坯圆角部分的假想半径。由表取m1=0.31 12.015/3m R r m <=== 所以不能一次拉深成形。 2.2拉深力计算 低的矩形盒(一次工序拉深) 拉深力计算公式:F=(2A+2B-1.72r)t σb k 4 A 和 B —工件长和宽; r —工件角部半径; t —工件材料厚度; σb —工件抗拉强度; k 4—低矩形件的系数取0.7。 F=(2×400+2×200-1.72×15)×0.8×520×0.7=342kN 落料刃口尺寸:A=447mm 、B=256mm 、R=15mm 工件尺寸公差:0.097mm, 0.081mm, 0.030mm 凸凹模间隙:0.035mm ,0.040mm, 0.020mm

列车制动距离及计算

列车制动 一、什么是制动 二、制动力是如何产生的? 三、影响制动力的因素有那些? 四、列车制动问题解算 列车制动问题解算”主要是:在各种不同的线路条件下,列车制动能力(列车换算制动率)、列车运行速度和列车制动距离这三个因素之间的相互关系,而且都是按施行紧急制动的情况考虑的(列车制动力或列车换算制动率均按百分之百计算)。 列车制动问题解算通常有三种类型: (1)已知制动能力(列车换算制动率)和列车运行速度, 计算制动距离。 (2)已知列车制动能力(换算制动率)和必须保证的制动距离,解算平道或下坡道允许的紧急制动限速。 (3)已知列车的紧急制动限速和必须保证的制动距离,解算平道或下坡道至少必须的列车制动能力(换算制动率)。 其中,制动距离计算是关键。 第一节制动距离及其计算

在司机施行制动时,列车中各车辆的闸瓦并非立即、同时压上车轮的,闸瓦压上车轮之后,闸瓦压力也不是瞬间达到最大值的,制动缸压强有一个上升过程, 参看图5-1。图中t。和tN分别为从司机施行制动至第一辆车和最末一辆车的制动缸压强开始上升的时间(在t。的时间内,列车实际上还是惰行,所以称t。为纯空走时间,即真正的制动空走时间t。为制动缸充气时间(压力从零上升到预定值的时间)。所以,全列车的闸瓦压力和制动力也有一个增长的过程,如图5-2中实线所示。 为便于计算,通常假定全列车的闸瓦都是在某一瞬间同时压上车轮,而且闸瓦压力就是在这一瞬间从零突增至预定值, 如图5-2中虚线所示。图5-2空走距离的原始概念 Sb=Sk+S, (5-1) 这样,列车制动过程就明显地被分成两段: 前一段是从施行制动到这一瞬间的空走过程,它经历的时间称为空走时间(显然,这是个假定的空走时间),以t0表示,列车在空走时间t0内靠惯性惰行的距离称为空走距离,以S。表示; 后一段是从突增的瞬间至列车停止的有效制动过程,也叫实制动过程,其经历的时间称为有效制动时间或实制动时间,以‘表示,列车在t。时间内、在全部制动力和运行阻力的作用下急剧减速所运行的距离,称为有效制动距离或实制动距离,以S表示

注塑机锁模力计算公式

注塑机锁模力计算公式 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展 锁模力常有四种方法计算: 方法1:经验公式1 锁模力(T)=锁模力常数Kp*产品投影面积S(CM*CM) Kp经验值: PS/PE/PP - 0.32; ABS - 0.30~0.48; PA - 0.64~0.72; POM - 0.64~0.72; 加玻纤- 0.64~0.72; 其它工程塑料- 0.64~0.8; 例如:一制品投影面积为410CM^2,材料为PE,计算锁模力。 由上述公式计算所得:P=Kp*S=0.32*410=131.2(T),应选150T机床。 方法2:经验公式2 350bar*S(cm^2)/1000. 如上题,350*410/1000=143.5T,选择150T机床。 以上两种方法为粗调的计算方法,以下为比较精确的计算方法

方法3:计算锁模力有两个重要因素:1.投影面积 2.模腔压力 1、投影面积(S)是沿着模具开合所观看得到的最大面积。 2、模腔压力的决定(P) 模腔压力由以下因素所影响 (1)浇口的数目和位置 (2)浇口的尺寸 (3)制品的壁厚 (4)使用塑料的粘度特性 (5)射胶速度 3.1 热塑性塑料流动特性的分组 第一组 GPPS HIPS TPS PE-LD PE-LLD PE-MD PE-HD PP-H PP-CO PP-EPDM 第二组 PA6 PA66 PA11/12 PBT PETP 第三组 CA CAB CAP CP EVA PEEL PUR/TPU PPVC 第四组 ABS AAS/ASA SAN MBS PPS PPO-M BDS POM 第五组 PMMA PC/ABS PC/PBT 第六组 PC PES PSU PEI PEEK UPVC 3.2 粘度等级 以上各组的塑料都有一个粘度(流动能力)等级。每组塑料的相对粘度等级如下:组别倍增常数(K) 第一组×1.0

塑胶模具报价的计算公式

供参考: 塑胶模具报价的计算公式 模具价格计算 1.经验计算法 模具价格=材料费+设计费+加工费与利润+增值税+试模费+包装运输费 各项比例通常为: 材料费:材料及标准件占模具总费用的15%-30%; 加工费与利润:30%-50%; 设计费:模具总费用的10%-15%; 试模:大中型模具可控制在3%以内,小型精密模具控制在5%以内; 包装运输费:可按实际计算或按3%计; 增值税:17% 2.材料系数法 根据模具尺寸和材料价格可计算出模具材料费. 模具价格=(6~10)*材料费 锻模,塑料模=6*材料费 压铸模=10*材料费 模具报价估计 1、首先要看客户的要求,因为要求决定材料的选择以及热处理工艺。 2、选择好材料,出一个粗略的模具方案图,从中算出模具的重量(计算出模芯材料和模架材料的价格)和热处理需要的费用。(都是毛胚重量) 3、加工费用,根据模芯的复杂程度,加工费用一般和模芯材料价格是1.5~3:1,模架的加工费用一般是1:1。 4、风险费用是以上总价的10%。 5、税 6、设计费用是模具总价的10%。 模具的报价策略和结算方式 模具的报价与结算是模具估价后的延续和结果。从模具的估价到模具的报价,只是第一步,而模具的最终目的,是通过模具制造交付使用后的结算,形成最终模具的结算价。在这个过程里,人们总是希望,模具估价=模具价格=模具结算价。而在实际操作中,这四个价并不完全相等,有可能出现波动误差值。这就是以下所要讨论的问题。 当模具估价后,需要进行适当处理,整理成模具的报价,为签定模具加工合同做依据。通过反复洽谈商讨,最后形成双方均认可的模具价格,签订了合同。才能正式开始模具的加工。 一、模具估价与报价、报价与模具价格 模具估价后,并不能马上直接作为报价。一般说来,还要根据市场行情、客户心理、竞争对手、状态等因素进行综合分析,对估价进行适当的整理,在估价的基础上增加10-30%提出第一次报价。经过讨价还价,可根据实际情况调低报价。但是,当模具的商讨报价低于估价的10%时,需重新对模具进行改进细化估算,在保证保本有利的情况下,签订模具加工合同,最后确定模具价格。模具价格是经过双方认可且签订在合同上的价格。 这时形成的模具价格,有可能高于估价或低于估价。当商讨的模具价格低于模具的保本价进,需重新提出修改模具要求、条件、方案等,降低一些要求,以期可能降低模具成本,重新估算后,再签订模具价格合同。应当指出,模具是属于科技含量较高的专用产品,不应当用低价,甚至是亏本价去迎合客户。而是应该做到优质优价,把保证模具的质量、精度、寿命放在第一位,而不

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细查图样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造艺的要求。 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等,考常 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的类、 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定 1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择

根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。 根据零件基本尺寸、加工余量等级进行查询。查得铸件尺寸公差数值为10。 根据零件尺寸公差、公差等级进行查询。查得机械加工余量为5.5。 2、起模斜度的确定 根据所属的表面类型查得测量面高140,起模角度为0度25分(0.42°)。 3、铸造圆角的确定 根据铸造方法和材料,查得最小铸造圆角半径为3。 4、铸造收缩率的确定 根据铸件种类查得:阻碍收缩率为0.8~1.0,自由收缩率为0.9~1.1。 5、最小铸造孔的选择 根据孔的深度、铸件孔的壁厚查得最小铸孔的直径是80mm. 四、浇注系统设计 (一)、浇注位置的确定 根据内浇道的位置选择底注式, (二)、浇注系统类型选择 根据各浇注系统的特点及铸件的大小选用封闭式浇注系统。 (三)、浇注系统尺寸的确定 1、计算铸件质量:

制动力计算方法

《机动车运行安全技术条件》(GB7258-2004)有关制动方面的: 1.1 台试检验制动性能 1.1.1 行车制动性能检验 1.1.1.1 汽车、汽车列车在制动检验台上测出的制动力应符合表 6 的要求。对空载检验制 动力有质疑时,可用表 6 规定的满载检验制动力要求进行检验。 摩托车及轻便摩托车的前、后轴制动力应符合表 6 的要求,测试时只允许乘坐一名驾 驶员。 检验时制动踏板力或制动气压按7.13.1.3 的规定。 表 6 台试检验制动力要求 1.1.1.2 制动力平衡要求(两轮、边三轮摩托车和轻便摩托车除外) 在制动力增长全过程中同时测得的左右轮制动力差的最大值,与全过程中测得的该轴左 右轮最大制动力中大者之比,对前轴不应大于20% ,对后轴(及其它轴)在轴制动力不小 于该轴轴荷的60% 时不应大于24%;当后轴(及其它轴)制动力小于该轴轴荷的60% 时,在制动力增长全过程中同时测得的左右轮制动力差的最大值不应大于该轴轴荷的8% 。 依据国标要求,对前轴以外的制动力平衡计算分两种情况: 1、当该轴制动制动率 >= 60%时,过程差最大差值点的两个力分别 为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/f1 * 100 ; 如果f1 < f2不平衡率 = (f2 –f1)/f2 * 100 2、当该轴制动制动率 < 60%时,过程差最大差值点的两个力分别

为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/轴重 * 100 ;如果f1 < f2不平衡率 = (f2 –f1)/轴重 * 100 注意:以上为简约的计算,较为准确的计算要注意单位之间的换算:轴重是kg,制动力的单位是10N 例如: 轴重最大左最大右差值左差值右制动率不平衡率 2074 543 508 543 508 50.7 1.7 二轴不平衡率( 543-508)*10/(2074*9.8)*100= 1.722% 有关制动台仪表 制动台仪表的不平衡率算法说明书没有给出,不清楚其算法,对于前轴有可能是对的,对于后轴等仪表算法可定是错误的,制动台本身不能得到车辆的轴重,也就不能判断制动率是否 >=60,也就不能得出不平衡率。

锁模力计算

A.锁模力计算: 撑模力量=成品在开关模方向的投影面积(cm2)×模穴数×模内压力(kg/cm2); B.怎样选择合适的注塑机:1MPa=9.8kg/cm2 当原料以高压注入模穴内时会产生一个撑模的力量,因此注塑机的锁模单元必须提供足够的“锁模力”使模具不至于被撑开。锁模力需求的计算如下: 由成品外观尺寸求出成品在开关模方向的投影面积; 撑模力量=成品在开关模方向的投影面积(cm2)×模穴数×模内压力(kg/cm2); 模内压力随原料而不同, 一般原料取350~400kg/cm2; 机器锁模力需大于撑模力量,且为了保险起见,机器锁模力通常需大于撑模力量的1.17倍以上。 至此已初步决定夹模单元的规格,并大致确定机种吨数,接着必须再进行下列步骤,以确认哪一个射出单元的螺杆直径比较符合所需。 注塑机锁模力的计算 计算锁模力有两个重要因素:1.投影面积 2.模腔压力 1. 投影面积(S)是沿着模具开合所观看得到的最大面积。 2. 模腔压力的决定(P)模腔压力由以下因素所影响(1)浇口的数目和位置(2)浇口的尺寸(3)制品的壁厚(4)使用塑料的粘度特性(5)射胶速度2.1热塑性塑料流动特性的分组第一组GPPS HIPS TPS PE-LD PE-LLD PE-MD PE-HD PP-H PP-CO PP-EPDM 第二组PA6 PA66 PA11/12 PBT PETP 第三组CA CAB CAP CP EVA PEEL PUR/TPU PPVC 第四组ABS AAS/ASA SAN MBS PPS PPO-M BDS POM 第五组PMMA PC/ABS PC/PBT 第六组PC PES PSU PEI PEEK UPVC 2.2粘度等级以上各组的塑料都有一个粘度(流动能力)等级。每组塑料的相对粘度等级如下:组别倍增常数(K)第一组×1.0 第二组×1.3~1.35 第三组×1.35~1.45 第四组×1.45~1.55 第五组×1.55~1.70 第六组×1.70~1.90 2.3模腔压力决定于壁厚、流程与壁厚的比例查表得P0?P=P0?K(倍增常数)2.4锁模力的确定(F)F=P?S= P0?K?S

模具加工费用计算及模具费用的计算

模具加工费用计算 机加工费用就是这样的:普床0、5/min 钻床0、25/min 数控1、00/min 卧式加工中心1、40/min 立式加工中心1、20/min 一般机械维修加工收费标准 一以工时记价办法。 Z25钻床,CA6140车床刨床插床锯床以每小时15元记费。立铣,卧铣,线切割,大车床,龙门铣以每小时20元记费。钳工一般维修以每小时15元记费。 记时单位从接手加工开始至加工完成验收合格结束 二以根据零件,数量,精度要求收费办法。 1钻孔加工 一般材料,深径比不大于2、5倍的直径25MM以下按钻头直径*0、05直径25-60的按钻头直径*0、12(最小孔不低于0、5元) 深径比大于2、5的一般材料收费基价*深径比*0、4收取 对孔径精度要求小于0.1MM或对中心距要求小于0.1MM的按基价*5收费 对攻丝收费标准按丝锥直径*0、2收费(以铸铁为标准,钢件另*1、2) 在批量加工时以标准基价*0、2-0、8收取(根据批量大小与加工难易程度) 2车床加工类 一般精度光轴加工长径比不大与10的按加工件毛坯尺寸*0、2收费(最底5元) 长径比大于10的按一般光轴基价*长径比数*0、15 精度要求在0.05MM以内的或要求带锥度的以一般光轴基价*2收取 一般阶梯轴(风机轴,泵轴,减速器轴,砂轮轴,电机轴,主轴等) 以一般精度光轴加工基价*2收取 阶梯轴如有带锥度,内外罗纹,的按一般精度光轴加工基价*3收取 一般用途丝杠按一般精度光轴加工基价*4收取 一般兰盘类零件收费标准按材料直径*0、07收取,直径大于430MM的按材料直径*0、12收取。 一般圆螺母零件按直径*0、25收费(包括材料)一般梯形,三角螺母零件按直径*0、3(不包材料) 一般轴套类零件(直径小于100径长比小于2)按材料外径*0、2收取,径长比超过2的按径长比*基价*0、6 一般修补轴承台类零件磨损量小于2MM的直径小于40MM宽度小于25MM的每个5元,需要上中心架,或长度大于1.7米的基价*2收取。直径大于40MM的按直径*0、2收取。 3铣床加工类 一般键槽加工(长宽比小于10的)按键槽宽度*0、5收取(最低5元)。长宽比超过10的按长宽比*基价*0、1收取。如有严格位置度要求的按基价*2收取。硬度大于HRC40的材料加工按基价*2收取。 一般花键加工(长径比小于5的)按花键轴外径*0、8收取(最低15元) 一般齿轮类加工按模数*齿数*0、5元收取。蜗轮按基数*1、2收取。斜齿轮,伞齿轮,变位齿轮按基价*2收取。 一般平面加工类按每平方分米1、5元收取(最低5元) 一般镗孔加工按孔直径*0、25收取 4带锯加工类 一般圆钢,厚壁管,方钢截断,按每平方分米5元计算(最低5元) 一般钢板切断,分条,开角按每平方分米10元(最低10元) 5线切割加工 一般零件按切断面积(平方毫米)*0、008元收费。需要穿丝的零件每穿丝孔加价5元

锁模力的计算公式

锁模力的计算公式锁模力 F(TON) F=Am*Pv/1000 F:锁模力 TON Am:模腔投影面积 CM2 Pv:充填压力 KG/CM2 (一般塑胶材料充填压力在150-350KG/CM2)(流动性良好取较底值,流动不良取较高值) 充填压力/0.4-0.6=射出压力 例:模腔投影面积 270CM2 充填压力 220KG/CM2 锁模力=270*220/1000=59.4TON 外形分有:立式的,卧式的,(这两种最常见)按注塑量分有:超小型注塑机,小型注塑机,中型注塑机,大型注塑机,超大型注塑机。也就是注塑量从几毫克到几十千克不等。按合模力分有:几吨到几千吨不等怎样选择合适的注塑机 1、选对型: 由产品及塑料决定机种及系列。由于注塑机有非常多的种类,因此一开始要先正确判断此产品应由哪一种注塑机,或是哪一个系列来生产,例如是一般热塑性塑胶或电木原料或PET原料等,是单色、双色、多色、夹层或混色等。此外,某些产品需要高稳定(闭回路)、高精密、超高射速、高射压或快速生产(多回路)等条件,也必须选择合适的系列来生产。 2、放得下:由模具尺寸判定机台的“大柱内距”、“模厚”、“模具最小尺寸”及“模盘尺寸”是否适当,以确认模具是否放得下。模具的宽度及高度需小于或至少有一边小于大柱内距;模具的宽度及高度最好在模盘尺寸范围内;模具的厚度需介于注塑机的模厚之间;模具的宽度及高度需符合该注塑机建议的最小模具尺寸,太小也不行。 3、拿得出:由模具及成品判定“开模行程”及“托模行程”是否足以让成品取出。开模行程至少需大于成品在开关模方向的高度的两倍以上,且需含竖浇道(sprue)的长度;托模行程需足够将成品顶出。 4、锁得住:由产品及塑料决定“锁模力”吨数。当原料以高压注入模穴内时会产生一个撑模的力量,因此注塑机的锁模单元必须提供足够的“锁模力”使模具不至于被撑开。锁模力需求的计算如下:由成品外观尺寸求出成品在开关模方向的投影面积;撑模力量=成品在开关模方向的投影面积(cm2)×模穴数×模内压力(kg/cm2); 模内压力随原料而不同, 一般原料取350~400kg/cm2; 机器锁模力需大于撑模力量,且为了保险起见,机器锁模力通常需大于撑模力量的1.17倍以上。至此已初步决定夹模单元的规格,并大致确定机种吨数,接着必须再进行下列步骤,以确认哪一个射出单元的螺杆直径比较符合所需。 5、射得饱: 由成品重量及模穴数判定所需“射出量”并选择合适的“螺杆直径”。计算成品重量需考虑模穴数(一模几穴);为了稳定性起见,射出量需为成品重量的1.35倍以上,亦即成品重量需为射出量的75%以内。 6、射得好:由塑料判定“螺杆压缩比”及“射出压力”等条件。有些工程塑料需要较高的射出压力及合适的螺杆压缩比设计,才有较好的成型效果,因此为了使成品射得更好,在选择螺杆时亦需考虑射压的需求及压缩比的问题。一般而言,直径较小的螺杆可提供较高的射出压力。 7、射得快:及“射出速度”的确认。有些成品需要高射出率速射出才能稳定成型,如超薄类成品,在此情况下,可能需要确认机器的射出率及射速是否足够,是否需搭配蓄压器、闭回路控制等装置。一般而言,在相同条件下,可提供较 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();});

锁模力常有四种方法计算

锁模力常有四种方法计算: 方法1:经验公式1 锁模力(T)=锁模力常数Kp*产品投影面积S(CM*CM) Kp经验值: PS/PE/PP - 0.32; ABS - 0.30~0.48; PA - 0.64~0.72; POM - 0.64~0.72; 加玻纤- 0.64~0.72; 其它工程塑料- 0.64~0.8; 例如:一制品投影面积为410CM^2,材料为PE,计算锁模力。 由上述公式计算所得:P=Kp*S=0.32*410=131.2(T),应选150T机床。 方法2:经验公式2 350bar*S(cm^2)/1000. 如上题,350*410/1000=143.5T,选择150T机床。 以上两种方法为粗调的计算方法,以下为比较精确的计算方法

方法3:计算锁模力有两个重要因素:1.投影面积2.模腔压力 1、投影面积(S)是沿着模具开合所观看得到的最大面积。 2、模腔压力的决定(P) 模腔压力由以下因素所影响 (1)浇口的数目和位置 (2)浇口的尺寸 (3)制品的壁厚 (4)使用塑料的粘度特性 (5)射胶速度 3.1 热塑性塑料流动特性的分组 第一 组GPPS HIPS TPS PE-LD PE-LLD PE-MD PE-HD PP-H PP-CO PP-EPDM 第二组PA6 PA66 PA11/12 PBT PETP 第三组CA CAB CAP CP EVA PEEL PUR/TPU PPVC 第四组ABS AAS/ASA SAN MBS PPS PPO-M BDS POM 第五组PMMA PC/ABS PC/PBT 第六组PC PES PSU PEI PEEK UPVC 3.2 粘度等级 以上各组的塑料都有一个粘度(流动能力)等级。每组塑料的相对粘度等级如下:组别倍增常数(K) 第一组×1.0 第二组×1.3~1.35 第三组×1.35~1.45 第四组×1.45~1.55 第五组×1.55~1.70 第六组×1.70~1.90

1模具报价的计算公式

塑胶模具报价的计算公式 快速模具价格计算法 模具价格计算 1.经验计算法 模具价格=材料费+设计费+加工费与利润+增值税+试模费+包装运输费各项比例通常为: 材料费:材料及标准件占模具总费用的15%-30%; 加工费与利润:30%-50%; 设计费:模具总费用的10%-15%; 试模:大中型模具可控制在3%以内,小型精密模具控制在5%以内; 包装运输费:可按实际计算或按3%计; 增值税:17% 2.材料系数法 根据模具尺寸和材料价格可计算出模具材料费. 模具价格=(6~10)*材料费 锻模,塑料模=6*材料费 压铸模=10*材料费

模具报价估计 1、首先要看客户的要求,因为要求决定材料的选择以及热处理工艺。 2、选择好材料,出一个粗略的模具方案图,从中算出模具的重量(计算出模芯材料和模架材料的价格)和热处理需要的费用。(都是毛胚重量) 3、加工费用,根据模芯的复杂程度,加工费用一般和模芯材料价格是1.5~3:1,模架的加工费用一般是1:1。 4、风险费用是以上总价的10%。 5、税 6、设计费用是模具总价的10%。 模具的报价策略和结算方式 模具的报价与结算是模具估价后的延续和结果。从模具的估价到模具的报价,只是第一步,而模具的最终目的,是通过模具制造交付使用后的结算,形成最终模具的结算价。在这个过程里,人们总是希望,模具估价=模具价格=模具结算价。而在实际操作中,这四个价并不完全相等,有可能出现波动误差值。这就是以下所要讨论的问题。 当模具估价后,需要进行适当处理,整理成模具的报价,为签定模具加工合同做依据。通过反复洽谈商讨,最后形成双方均认可的模具价格,签订了合同。才能正式开始模具的加工。 一、模具估价与报价、报价与模具价格

模具设计计算公式

模具设计计算公式 冲裁力是冲裁过程中凸模对板料施加的压力,它是随凸模进人材料的深度(凸模行程)而变化的,如图2.2.3所示。通常说的冲裁力是指冲裁力的最大值,它是选用压力机和设计模具的重要依据之一。 用普通平刃口模具冲裁时,其冲裁力F一般按下式计算: 式中F——冲裁力; L——冲裁周边长度; t——材料厚度; ——材料抗剪强度; K——系数。 系数K是考虑到实际生产中,模具间隙值的波动和不均匀、刃口的磨损、板料力学性能和厚度波动等因素的影响而给出的修正系数。一般取K=1.3。 为计算简便,也可按下式估算冲裁力: (2.6.2) 式中——材料的抗拉强度。 在冲裁结束时,由于材料的弹性回复(包括径向弹性回复和弹性翘曲的回复)及摩擦的存在,将使冲落部分的材料梗塞在凹模内,而冲裁剩下的材料则紧箍在凸模上。为使冲裁工作继续进行,必须将箍在凸模上的料卸下,将卡在凹模内的料推出。从凸模上卸下箍着的料所需要的力称卸料力;将梗塞在凹模内的料顺冲裁方向推出所需要的力称推件力;逆冲裁方向将料从凹模内顶出所需要的力称顶件力,如图2.6.1所示。 卸料力、推件力和顶件力是由压力机和模具卸料装置或顶件装置传递 的。所以在选择设备的公称压力或设计冲模时,应分别予以考虑。影响这些力 的因素较多,主要有材料的力学性能、材料的厚度、模具间隙、凹模洞口的结 构、搭边大小、润滑情况、制件的形状和尺寸等。所以要准确地计算这些力是 困难的,生产中常用下列经验公式计算: 卸料力(2.6.3) 图2.6.1

推件力(2.6.4) 顶件力(2.6.5) 式中F——冲裁力;图2.6.1 卸料力推件力和顶件力 ——卸料力、推件力、顶件力系数,见表2.6.1; n——同时卡在凹模内的冲裁件(或废料)数。 式中h——凹模洞口的直刃壁高度; t——板料厚度。 注:卸料力系数Kx,在冲多孔、大搭边和轮廓复杂制件时取上限值。 压力机的公称压力必须大于或等于各种冲压工艺力的总和Fz。Fz的计算应根据不同的模具结构分别对待,即 采用弹性卸料装置和下出料方式的冲裁模时 (2.6.6) 采用弹性卸料装置和上出料方式的冲裁模时 (2.6.7) 采用刚性卸料装置和下出料方式的冲裁模时 (2.6.8)

相关文档
最新文档