人教A版数学选修2-1同步作业:第2章 圆锥曲线与方程 作业22

人教A版数学选修2-1同步作业:第2章 圆锥曲线与方程 作业22
人教A版数学选修2-1同步作业:第2章 圆锥曲线与方程 作业22

课时作业(二十二)

1.已知椭圆

x 2+

y 22

=a 2

(a>0)与以A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是( )

A .0

2

B .082

2

C .a<322或a>822

D.322

2

答案 B

解析 椭圆恰好经过A 与椭圆恰好经过B 是临界,将A ,B 两点代入解,a =322或a =82

2,

由数形结合知,B 正确.

2.已知A ,B ,C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1

2 D.32

答案 B

解析 A(1,1),C(4,2),直线AC 方程为x -3y +2=0. 设点B 到直线AC 的距离为d.

∴S △ABC =12|AC|·d =1

2×10·|m -3m +2|10=12|m -3m +2|.

∵1

2时,

S △ABC 取最大值,∴m =9

4

,∴B 正确.

3.抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值是( ) A.43 B.75 C.85 D .3

答案 A

解析 设与抛物线y =-x 2相切且与直线4x +3y -8=0平行的直线方程为4x +3y +d =0.

由?????y =-x 2,4x +3y +d =0,

得3x 2-4x -d =0,Δ=16+12d =0,d =-43.

所以距离最小值为|-43+8|5=4

3

.故A 正确.

4.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和的最小值是( ) A .5 B .8 C.17-1 D.5+2

答案 C

解析 抛物线y 2=4x 的焦点为F(1,0),圆x 2+(y -4)2=1的圆心为C(0,4),设点P 到抛物线准线的距离为d ,根据抛物线的定义有d =|PF|,∴|PQ|+d =|PQ|+|PF|≥(|PC|-1)+|PF|≥|CF|-1=17-1.

5.已知过抛物线y 2=x 的焦点F 的直线m 的倾斜角θ≥π

4,m 交抛物线于A ,B 两点,且A

点在x 轴上方,则|FA|的取值范围是________. 答案 (14,1+2

2

]

解析 易知抛物线上的点到其焦点的距离的最小值是p 2=14.当直线m 的倾斜角等于π

4时,|FA|

取得最大值,此时直线方程是y =x -14,代入抛物线方程,得x 2-32x +1

16=0,根据题意得

点A 的横坐标是

3

2

+(32)2-142=34+2

2

,根据抛物线定义该点到焦点的距离等于其到准

线的距离,故这个距离是34+22+14=1+22.所以|FA|的取值范围是(14,1+2

2

].

6.已知直线l :y =2x -4交抛物线y 2=4x 于A ,B 两点,在抛物线AOB 这段曲线上有一点P ,则△APB 的面积的最大值为________. 答案

27

4

解析 由弦长公式知|AB|=35,只需点P 到直线AB 距离最大就可保证△APB 的面积最大. 设与l 平行的直线y =2x +b 与抛物线相切,解得b =12.

∴d =9510,∴(S △APB )max =12×35×9510=274

.

7.在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切. (1)求圆O 的方程;

(2)圆O 与x 轴相交于A ,B 两点,圆内的动点P 使|PA|,|PO|,|PB|成等比数列,求PA →·PB →的取值范围.

解析 (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =4

1+3

=2. 得到圆O 的方程为x 2+y 2=4. (2)不妨设A(x 1,0),B(x 2,0),x 1

设P(x ,y),由|PA|,|PO|,|PB|成等比数列,得

(x +2)2+y 2·(x -2)2+y 2=x 2+y 2,即x 2-y 2=2. PA →·PB →=(-2-x ,-y)·(2-x ,-y)=x 2-4+y 2=2(y 2-1).

由于点P 在圆O 内,故?????x 2+y 2<4,x 2-y 2=2,

由此得y 2<1.

所以PA →·PB →的取值范围为[-2,0). 8.(2014·北京,文)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;

(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.

解析 (1)由题意,椭圆C 的标准方程为x 24+y 2

2=1,

所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.

故椭圆C 的离心率e =c a =2

2

.

(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0.

因为OA ⊥OB ,所以OA →·OB →

=0,即tx 0+2y 0=0,解得t =-2y 0x 0.又x 02+2y 02=4,所以|AB|2

=(x 0-t)2+(y 0-2)2=(x 0+

2y 0x 0)2+(y 0-2)2=x 02+y 02+4y 02

x 02+4=x 02

+4-x 022+2(4-x 02)x 02

+4=x 022+8

x 0

2+4(0

因为x 022+8

x 02≥4(0

所以|AB|2≥8.

故线段AB 长度的最小值为2 2.

9.(2019·衡水中学调研卷)椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为6

3,短轴一个端点到右焦点

的距离为 3. (1)求椭圆C 的方程;

(2)设存在斜率的直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l 的距离为3

2

,求△AOB 面积的最大值.

解析 (1)设椭圆的半焦距为c ,依题意?????c a =63,a =3,

∴b =1,∴所求椭圆方程为x 23

+y 2

=1.

(2)设A(x 1,y 1),B(x 2,y 2),直线AB 的方程为y =kx +m. 由已知

|m|1+k 2=32

,得m

2=34(k 2+1). 把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0. ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)

3k 2+1.

∴|AB|2=(1+k 2)(x 2-x 1)2 =(1+k 2)[

36k 2m 2

(3k 2+1)2-12(m 2-1)3k 2+1

]

=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)

(3k 2+1)2

=3+12k 2

9k 4+6k 2+1

=3+

129k 2+1k

2+6

(k ≠0)≤3+12

2×3+6=4. 当且仅当9k 2=1k 2,即k =±3

3时等号成立.

当k =0时,|AB|=3,综上所述|AB|max =2. ∴当|AB|最大时,△AOB 面积取最大值 S =12×|AB|max ×32=3

2

.

1.双曲线x 2a 2-y 2

b 2=1(a>0,b>0)的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则

双曲线离心率的取值范围为( ) A .(1,3) B .(1,3] C .(3,+∞) D .[3,+∞)

答案 B

解析 由双曲线的定义,知||PF 1|-|PF 2||=2a. 又|PF 1|+|PF 2|≥|F 1F 2|=2c ,|PF 1|=2|PF 2|, 故|PF 2|=2a ,3|PF 2|≥2c.

即6a ≥2c ,e ≤3,又e>1,故1

2.(2015·四川)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r>0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) A .(1,3) B .(1,4) C .(2,3) D .(2,4)

答案 D

解析 显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A(x 1,y 1),B(x 2,y 2),

x 1≠x 2,M(x 0,y 0),则?????y 12=4x 1,y 22=4x 2

,两式相减得(y 1+y 2)(y 1-y 2)

=4(x 1-x 2).

由于x 1≠x 2,所以y 1+y 22·y 1-y 2

x 1-x 2

=2?ky 0=2.①

圆心为C(5,0),由CM ⊥AB ,得k·y 0-0

x 0-5

=-1?ky 0=5-x 0.②

由①②解得x 0=3,即点M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12?-230)上,所以(x 0-5)2+y 02=r 2(r>0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4

3.已知椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为223,且椭圆上一点与椭圆的两个焦点构成的

三角形周长为6+4 2. (1)求椭圆M 的方程;

(2)设直线l 与椭圆M 交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.

解析 (1)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+42,所以2a +2c =6+42,又椭圆的离心率为223,即c a =223,所以c =22

3 a.

所以a =3,c =22,故b 2=a 2-c 2=1. 椭圆M 的方程为x 29

+y 2

=1.

(2)方法一:不妨设直线BC 的方程为y =n(x -3),(n>0),则直线AC 的方程为y =-1

n (x -

3).

由?????y =n (x -3),x 29+y 2=1,

得(19

+n 2)x 2-6n 2x +9n 2-1=0.

设A(x 1,y 1),B(x 2,y 2),因为3x 2=81n 2-99n 2+1,所以x 2=27n 2-3

9n 2+1.

同理可得x 1=27-3n 2

9+n 2

.

所以|BC|=1+n 2·69n 2+1,|AC|=1+n 2n ·6n 29+n 2

,S △ABC =1

2|BC||AC|=2(n +1n )(n +1n )2+

649.

设t =n +1n ≥2,则S =2t t 2+649=2t +

649t ≤38,当且仅当t =8

3

时取等号.

所以△ABC 面积的最大值为3

8

.

方法二:不妨设直线AB 的方程为x =ky +m(m ≠3). 由????

?x =ky +m ,x 29+y 2=1,

消去x ,得(k 2+9)y 2+2kmy +m 2-9=0. 设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=-2km

k 2+9,y 1y 2=m 2-9k 2+9.①

因为以AB 为直径的圆过点C(3,0),所以CA →·CB →

=0.

由CA →=(x 1-3,y 1),CB →

=(x 2-3,y 2),得(x 1-3)(x 2-3)+y 1y 2=0.

将x 1=ky 1+m ,x 2=ky 2+m 代入上式,得(k 2+1)y 1y 2+k(m -3)(y 1+y 2)+(m -3)2=0. 将①代入上式,解得m =12

5

或m =3(舍). 所以m =125(此时直线AB 经过定点D(125,0),与椭圆有两个交点),所以S △ABC =1

2

|DC||y 1-y 2|

=12×35(y 1+y 2)2-4y 1y 2=9525(k 2+9)-144

25(k 2+9)2

.

设t =1k 2+9

,0

95-14425

·t 2+t. 所以当t =25288∈(0,19]时,S △ABC 取得最大值3

8.

由Ruize收集整理。感谢您的支持!

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

人教版数学高二选修2-1测试题组 第二章 圆锥曲线B组

(数学选修2-1)第二章 圆锥曲线 [综合训练B 组] 一、选择题 1.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 2.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .12792 2=-y x C . 1481622=-y x 或127 92 2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF , 则双曲线的离心率e 等于( ) A .12- B .2 C .12+ D .22+ 4.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程是( ) A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 = 6.设AB 为过抛物线)0(22 >=p px y 的焦点的弦,则AB 的最小值为( ) A . 2 p B .p C .p 2 D .无法确定 二、填空题

1.椭圆 22189x y k +=+的离心率为1 2 ,则k 的值为______________。 2.双曲线2 2 88kx ky -=的一个焦点为(0,3),则k 的值为______________。 3.若直线2=-y x 与抛物线x y 42 =交于A 、B 两点,则线段AB 的中点坐标是______。 4.对于抛物线2 4y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。 5.若双曲线142 2=-m y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三、解答题 1.已知定点(A -,F 是椭圆 22 11612 x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。 2.k 代表实数,讨论方程2 2 280kx y +-=所表示的曲线 3.双曲线与椭圆 136 272 2=+y x 有相同焦点,且经过点4),求其方程。 4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。 (数学选修2-1) 第二章 圆锥曲线 [综合训练B 组]

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

北师大高二数学选修圆锥曲线方程测试题及答案

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ??? 3、双曲线 22 1mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=± x 2 1 ,则该双曲线的离心率e 为( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2 7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

(完整)高二文科数学选修圆锥曲线练习题附标准答案

圆锥曲线单元练习(文) 派潭中学 廖翠兰 时间:100分钟 满分100分 一、选择题:(每题4分,共40分) 1.0≠c 是方程 c y ax =+2 2 表示椭圆或双曲线地( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件 2.如果抛物线y 2=ax 地准线是直线x =-1,那么它地焦点坐标为 ( ) A .(1, 0) B .(2, 0) C .(3, 0) D .(-1, 0) 3.直线y = x +1被椭圆x 2+2y 2=4所截得地弦地中点坐标是( ) A .( 31, -3 2 ) B .(- 32, 3 1) C.( 21,-31) D .(-31,2 1 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( ) A .6m B .26m C .4.5m D .9m 5. 已知椭圆15922=+y x 上地一点P 到左焦点地距离是3 4 ,那么点P 到椭圆地右准线地距离是( ) A .2 B .6 C .7 D . 143 6.曲线 2 25 x + 2 9 y =1与曲线 2 25k x -+ 2 9k y -=1(k <9 )地( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等 7.已知椭圆 2 5 x + 2 m y =1地离心率 e= 5 ,则m 地值为( ) A .3 B. 25 3 或 3 D.3 8.已知椭圆C 地中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆地右顶点,B 为 椭圆短轴地端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆地离心率等于( ) A . 12 B .2 C .1 3 D .5 9 2)0>>n m 地曲线在同一坐标系 10.椭圆 2 25 x + 2 9 y =1上一点M 到左焦点 1 F 地距离为2,N 是M 1 F 地中点,,则2ON

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

(新)高中数学选修1-1圆锥曲线方程单元测试题含答案

选修2-1《圆锥曲线与方程》单元测试题 一、选择题 1.已知方程11 22 2=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <2 2、已知21,F F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,AB 是过1F 的弦,则 2ABF ?的周长是 ( ) A.a 2 B.a 4 C.a 8 D.b a 22+ 3、一动圆与圆221x y +=外切,同时与圆226910x y x +--=内切,则动圆 的圆心在( ) .A 一个椭圆上 .B 一条抛物线上 .C 双曲线的一支上 .D 一个圆上 4、抛物线y 2=4px (p >0)上一点M 到焦点的距离为a ,则M 到y 轴距离为 ( ) A.a -p B.a+p C.a -2 p D.a+2p 5.双曲线22a x -22 b y =1的两条渐近线互相垂直,那么它的离心率为( ) A. 2 B.3 C. 2 D. 2 3 6、.我们把离心率e =的椭圆叫做“优美椭圆”。设椭圆22221x y a b +=为优 美椭圆,F 、A 分别是它的右焦点和左顶点,B 是它短轴的一个端点,则ABF ∠等于( ) A. 60 B.75 C.90 D. 120 二、填空题 7.设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是

8.直线1y x =-与椭圆22 142 x y + =相交于,A B 两点,则AB = . 9. 已知F P ),1,4(-为抛物线x y 82=的焦点,M 为此抛物线上的点,且使 MF MP +的值最小,则M 点的坐标为 10.过原点的直线l ,如果它与双曲线14 32 2=-x y 相交,则直线l 的斜率k 的取值范围是 . 三.解答题 11.已知抛物线的顶点在原点,它的准线过双曲线122 22=-b y a x 的右焦点,而且 与x 轴垂直.又抛物线与此双曲线交于点)6,23 (-,求抛物线和双曲线的方 程. 12.双曲线122 22=-b y a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥5 4 c.求双曲线的 离心率e 的取值范围.

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

北师大版高二数学选修圆锥曲线方程测试题及答案

北师大版高二数学选修圆锥曲线方程测试题及 答案 SANY GROUP system office room 【SANYUA16H-

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ? ?? 3、双曲线 221mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=±x 21 ,则该双曲线的离心率e 为 ( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2

7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线 B. 抛物线 C.双曲线 D. 圆 9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( ) (A )(4 3π,π) (B )(4 π,4 3π ) (C )(2 π,π) (D )(2 π,4 3π ) 10、 F 1、F 2是双曲线116 9 2 2 =- y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32, 则∠F 1PF 2是( ) (A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能 11、与椭圆125 16 2 2 =+ y x 共焦点,且过点(-2,10)的双曲线方程为( ) (A ) 14522=-x y (B )14522=-y x (C )13522=-x y (D )13 52 2=-y x 12.若点 到点 的距离比它到直线 的距离小1,则 点的轨迹方程 是( ) A . ?????? B . C . ??????? D . 二、填空题:本大题共4小题,每小题4分,共16分. 13、已知双曲线的渐近线方程为y=±34x ,则此双曲线的离心率为________. B D A 1 B 1 C 1 1 P

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

高中数学选修1_1圆锥曲线与方程资料知识点讲义全

第二章圆锥曲线与方程一、曲线与方程的定义: (), 设曲线,方程=0,满足以下两个条件: C F x y ()() ①曲线上一点的坐标满足=0; ? C x y F x y ,, ()() 则曲线称是方程=0的曲线,方程=0是曲线的方程 C F x y F x y C ,,.二、求曲线方程的两种类型: 椭圆 一、椭圆及其标准方程 1、画法

3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 .a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24.AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y y k k ??=+ -=+?+-??或当存在且不为时, ()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

相关文档
最新文档