正比例函数概念及习题

正比例函数概念及习题
正比例函数概念及习题

正比例函数概念及习题

重点内容:

1、函数的概念及函数定义域的意义。

2、正比例函数的定义.

3、领会正比例函数的定义,会从实际问题中提炼出正比例函数的解析式.

前置学习:

1、在一个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么,我们称是的函数。其中,是自变量,是的函数。

2、汽车以60/千米时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,请

再写出s关于t的函数关系:.

3、1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环:4?个月零1周后,人们在2.56万米外的澳大利亚发现了它(一个月按30天计算) .

(1)这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?

(3)这只燕鸥飞行1个半月的行程大约是多少千米?

4、下列问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?(1)圆的周长L随半径r的大小变化而变化

(2)铁的密度为7.8g/m3,铁块的质量m(g)随它的体积V(cm3)的大小变化而变化

(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化

(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)?随冷冻时间t(单位:分)的变化而变化

这些函数的共同点:

概念总结:

归纳:一般地,形如的函数叫做正比例函数,?其中k叫

注意:(1)比例系数k≠0 (2)自变量x的次数为1.

基础巩固:

1、下列函数中,y 是x 的正比例函数的是( )

A .y=4x+1

B .y=2x 2

C ..

2、下列函数,哪些不是正比例函数:①y=2x ②y=3-2

1x ③y=2x 3、已知y=(k+1)x+k-1是正比例函数,求k 的值.

4、已知y=(m-3)x 3-∣m ∣,当m 为何值时,y 是x 的正比例函数?

拓展训练:

1、已知正比例函数y=kx 的图象经过点A(-2,4),B(a,2),则a= .

2、(1)已知函数y=(m-2)x m-1

, m_____时,y 是x 的正比例函数;

(2)若x 、y 是变量,且函数y=(k+1)x ︱k ︱是正比例函数,则k=_________.

3、某商店进了一批货,每件2元,出售时,每件加利润5角.如果售出x 件,应收货款y 元,则y 与x 的函数关系式为___ .

4、已知y 与x 成正比例,且x=2时y=-6,则y=9时x=________.

5、已知y-1与x 成正比例,当x=3时,y=5。求y 与x 的函数关系式。

集合与函数概念单元测试题-有答案

高一数学集合与函数测试题 一、选择题(每题5分,共60分) 1、下列各组对象:?2008年北京奥运会上所有的比赛项目;②《高中数学》必修1中的所有难题;③所有质数;⑷平面上到点(1,1)的距离等于5的点的全体;⑤在数轴上与原点O非常近的点。其中能构成集合的有() A . 2组B. 3组C. 4组 D . 5组 2、下列集合中与集合{x x 2k 1, k N }不相等的是( ) A. {x x 2k 3,k N} B. {x x 4k 1,k N } C. {x x 2k 1,k N} D. {x x 2k 3, k 3,k Z} 2 3、设f(x)学」,则半等于()X 1f(1) A . 1 B . 1 C . 3 D 3 5 5 4、已知集合 A {xx24 0},集合B {x ax 1},若B A ,则实数a的值是() A . 0 B . 1 C . 0 或—D.0或1 2 2 2 5、已知集合 A {( x, y) x y 2} , B {(x,y)x y 4},则AI B() A . {x 3,y 1} B .(3, 1) C . {3, 1} D.{(3, 1)} 6、下列各组函数 f (x)与g(x)的图象相同的 是 ( ) (A) f (x) x,g(x) (.x)2(B) 2 2 f(x) x ,g(x) (x 1) (C)f(x) 1,g(x) x0 x (D) f(x) |x|,g(x) (x 0) x (x 0) 7;l是定义在'■上的增函数则不等式畑"厮一劭的解集

是() (A)(0 ,+ OO)(B)(0,2)(C)(2 , + OO )(D) (2,兰) 7 8已知全集U R,集合A {x x 1或x 2},集合B {x 1 x 0},则AU C U B() A. {x x 1或x 0} B. {x x 1或 x 1} C. {x x 2或x 1} D. {x x 2或 x 0} 9、设A 、B为两 个 -非空集 合, 定义A B { (a,b) a A,b B} ,若A {1,2,3}, B {2,3 ,4},则 A B中的兀素个数为() A. 3 B.7 C.9 D.12 10、已知集合 A {yy x21},集合 B {xy22x 6},则Al B ( ) A ? {(x,y) x 1,y 2} B. {x1 x 3} C. {x| 1 x 3} D. 11、若奇函数f x在1,3上为增函数,且有最小值0,则它在3, 1上 () A.是减函数,有最小值0 B.是增函数,有最小值0 C.是减函数,有最大值0 D.是增函数,有最大值0 12、若1,a,b 0,a2,a b,则a2005 b2005的值为( ) a (A)0 (C) 1 (B)1 (D)1 或1

初中反比例函数经典例题

初中反比例函数习题集合(经典) (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x = ≠) 的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1; x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致是( ) (10)正比例函数2x y = 和反比例函数2 y x =的图象有 个交点. (11)正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ), 则a = . (12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. x y O x y O x y O x y O A B C D

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =?????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( )

反比例函数经典中考例题解析二

反比例函数经典中考例题解析二 一、选择题(每小题3分,共30分) 1、反比例函数y = x n 5 图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2、若反比例函数y = x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(- 2 1 ,2) C 、(-2,-1) D 、( 2 1 ,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y = x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y = x 1 于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 Q p x y o t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O A . B . C . D .

7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ= V m ,它的图象如图所示,则该 气体的质量m 为( ). A 、1.4kg B 、5kg C 、6.4kg D 、7kg 8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x 1的图象上,则y 1,y 2,y 3的大 小关系是( ). A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 1=y 2=y 3 D 、y 1<y 3<y 2 9、已知反比例函数y = x m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <2 1 D 、m > 2 1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2 二、填空题(每小题3分,共30分) 11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式 为 . 12、已知反比例函数 x k y = 的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3 -和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2 - 10的图象分布在第二、四象限内,则m 的值为 .

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

集合与函数概念测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四) (内容:集合与函数概念 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分: 一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分) 1. 下列命题正确的是 ( ) A .很小的实数可以构成集合 B .集合{} 1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合 C .自然数集N 中最小的数是1 D .空集是任何集合的子集 2. 已知{}32|≤≤-=x x M ,{}41|>-<=x x x N 或, 则N M 等于 ( ) A. {}43|>≤=x x x N 或 B. {}31|≤<-=x x M C. {}43|<≤=x x M D.{}12|-<≤-=x x M 3. 函数2() = f x ( ) A. 1 [,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3 -∞- 4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( ) A .2 ()1,()1x f x x g x x =-=- B .()21,()21f x x g x x =-=+ C .2(),()f x x g x == D .0()1,()f x g x x == 5. 方程组? ??-=-=+122 y x y x 的解集是 ( ) A .{}1,1==y x B .{}1 C.{})1,1(|),(y x D . {})1,1( 6.设{} 是锐角x x A |=,)1,0(=B ,从A 到B 的映射是“求正切”,与A 中元素0 60相对应的B 中元素是 ( ) A .3 B . 33 C .21 D .2 2

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

第一章 集合与函数概念测试题

集合与函数概念测试题 一、选择题(每小题5分,满分60分) 1.已知(){},3A x y x y =+=,(){},1B x y x y =-=,则A B = ( ). A .{}2,1 B .(){}2,1 C .{}2,1x y == D .()2,1 2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是 ( ). A .()M P S B .()M P S C .()()U M P C S D .()()U M P C S 3.下列各组函数表示同一函数的是( ). (A) 2 (),()f x g x = = (B) 0 ()1,()f x g x x == (C) 2 1()1,()1 x f x x g x x -=+=- (D )2 (),()f x g x = = 4.函数{}()1,1,1,2f x x x =+∈-的值域是( ). (A) 0,2,3 (B) 30≤≤y (C) }3,2,0{ (D )]3,0[ 5.已知函数2 2 1()12,[()](0)x g x x f g x x x -=-= ≠,则(0)f 等于( ) . (A) 3- (B) 32 - (C) 32 (D ) 3 6.函数2 ()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是( ). A .3a ≥- (B) 3a ≤- (C) 5a ≤ (D )3a ≥ 7.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0

反比例函数知识点及典型例题解析

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于 x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (5)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且4 1 =x 时,y =-2,求y 与x 的函数关系式.

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

反比例函数的典型例题集

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了 正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2)2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2)2(--=a x a y 是反比例函数,且y 随x 的增大而减小, 所以???>--=-.02,162a a 解得???>±=. 2,5a a

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

相关文档
最新文档