2019-2020年高一数学第一章解三角形教案 人教版 必修5

2019-2020年高一数学第一章解三角形教案 人教版 必修5
2019-2020年高一数学第一章解三角形教案 人教版 必修5

2019-2020年高一数学第一章解三角形教案人教版必修5

(一)课标要求

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。(二)编写意图与特色

1.数学思想方法的重要性

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

3.重视加强意识和数学实践能力

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力

较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用

于实际问题。

(三)教学内容及课时安排建议

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

(四)评价建议

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

课题: §1.1.1正弦定理

授课类型:新授课●教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过

观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数

学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的

普遍联系与辩证统一。

●教学重点

正弦定理的探索和证明及其基本应用。

●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程

Ⅰ.课题导入

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。 A

思考:C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B

Ⅱ.讲授新课

[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图

1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又, A

则 b c

从而在直角三角形ABC中, C a B

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,

C

同理可得, b a

从而 A c B

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作,

由向量的加法可得

()(

00

j AB A j CB

cos900cos90

-=+

∴,即

同理,过点C作,可得

从而

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使,,; (2)等价于,,

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如;

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析]

例1.在中,已知,,cm ,解三角形。 解:根据三角形内角和定理,

; 根据正弦定理,

00

sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;

根据正弦定理,

00

sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A

评述:对于解三角形中的复杂运算可使用计算器。 例2.在中,已知cm ,cm ,,解三角形(角度精确到,边长精确到1cm )。 解:根据正弦定理,

sin 28sin40sin 0.8999.20

==≈b A B a

因为<<,所以,或

⑴ 当时,

00000180()180(4064)76=-+≈-+=C A B ,

00

sin 20sin7630().sin sin40==≈a C c cm A

⑵ 当时,

00000180()180(40116)24=-+≈-+=C A B ,

00

sin 20sin2413().sin sin40==≈a C c cm A

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 Ⅲ.课堂练习

第5页练习第1(1)、2(1)题。

[补充练习]已知ABC 中,sin :sin :sin 1:2:3A B C =,求 (答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结)

(1)定理的表示形式:()0sin sin sin a b c

k k A B C

++=>++;

或,,

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角;

②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业

第10页[习题1.1]A组第1(1)、2(1)题。

●板书设计

●授后记

课题: §1.1.2余弦定理

授课类型:新授课●教学目标

知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

●教学重点

余弦定理的发现和证明过程及其基本应用;

●教学难点

勾股定理在余弦定理的发现和证明过程中的作用。

●教学过程

Ⅰ.课题导入

C

如图1.1-4,在ABC中,设BC=a,AC=b,AB=c,

已知a,b和C,求边c b a

A c B

(图1.1-4)

Ⅱ.讲授新课

[探索研究]

联系已经学过的知识和方法,可用什么途径来解决这个问题?

用正弦定理试求,发现因A、B均未知,所以较难求边c。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图1.1-5,设,,,那么,则

()()

2

22

2 2c c c a b a b

a a

b b a b

a b a b

=?=--=?+?-?=+-?

C B

从而 (图1.1-5) 同理可证

于是得到以下定理

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即

思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? (由学生推出)从余弦定理,又可得到以下推论:

[理解定理]

从而知余弦定理及其推论的基本作用为:

①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?

(由学生总结)若ABC 中,C=,则,这时

由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 [例题分析]

例1.在ABC 中,已知,,,求b 及A ⑴解:∵

=222+-?cos =2121)+- =

求可以利用余弦定理,也可以利用正弦定理:

⑵解法一:∵cos 2221

,22+-=

b c a A bc ∴

解法二:∵sin 又∵>

∴<,即<< ∴

评述:解法二应注意确定A 的取值范围。 例2.在ABC 中,已知,,,解三角形

(见课本第8页例4,可由学生通过阅读进行理解) 解:由余弦定理的推论得:

cos

; cos

0000180()180(56203253)

''=-+≈-+C A B Ⅲ.课堂练习

第8页练习第1(1)、2(1)题。

[补充练习]在ABC 中,若,求角A (答案:A=120) Ⅳ.课时小结

(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;

(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 Ⅴ.课后作业

①课后阅读:课本第9页[探究与发现]

②课时作业:第11页[习题1.1]A 组第3(1),4(1)题。 ●板书设计 ●授后记

课题: §1.1.3解三角形的进一步讨论

授课类型:新授课

●教学目标

知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

●教学重点

在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;

三角形各种类型的判定方法;三角形面积定理的应用。

●教学难点

正、余弦定理与三角形的有关性质的综合运用。

●教学过程

Ⅰ.课题导入

[创设情景]

思考:在ABC中,已知,,,解三角形。

(由学生阅读课本第9页解答过程)

从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。

Ⅱ.讲授新课

[探索研究]

例1.在ABC中,已知,讨论三角形解的情况

分析:先由可进一步求出B;

从而

1.当A为钝角或直角时,必须才能有且只有一解;否则无解。

2.当A为锐角时,

如果≥,那么只有一解;

如果,那么可以分下面三种情况来讨论:

(1)若,则有两解;

(2)若,则只有一解;

(3)若,则无解。

(以上解答过程详见课本第910页)

评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且

时,有两解;其它情况时则只有一解或无解。

[随堂练习1]

(1)在ABC中,已知,,,试判断此三角形的解的情况。

(2)在ABC中,若,,,则符合题意的b的值有_____个。

(3)在ABC中,,,,如果利用正弦定理解三角形有两解,求x的取值范围。

(答案:(1)有两解;(2)0;(3))

例2.在ABC中,已知,,,判断ABC的类型。

分析:由余弦定理可知

222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+???>+???<+??ABC 是锐角三角形

? (注意:是锐角A ?ABC 是锐角三角形?)

解:,即, ∴。

[随堂练习2]

(1)在ABC 中,已知sin :sin :sin 1:2:3A B C =,判断ABC 的类型。 (2)已知ABC 满足条件,判断ABC 的类型。 (答案:(1);(2)ABC 是等腰或直角三角形) 例3.在ABC 中,,,面积为,求的值

分析:可利用三角形面积定理111sin sin sin 222

S ab C ac B bc A ===以及正弦定理

解:由得, 则=3,即, 从而

Ⅲ.课堂练习

(1)在ABC 中,若,,且此三角形的面积,求角C

(2)在ABC 中,其三边分别为a 、b 、c ,且三角形的面积,求角C (答案:(1)或;(2)) Ⅳ.课时小结

(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法; (3)三角形面积定理的应用。

Ⅴ.课后作业

(1)在ABC 中,已知,,,试判断此三角形的解的情况。

(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。 (3)在ABC 中,,,,判断ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程的根, 求这个三角形的面积。 ●板书设计 ●授后记

课题: §2.2解三角形应用举例

第一课时

授课类型:新授课●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语

过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正

情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力

●教学重点

实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解

●教学难点

根据题意建立数学模型,画出示意图

●教学过程

Ⅰ.课题导入

1、[复习旧知]

复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?

2、[设置情境]

请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解

[例题讲解]

(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=。求A、B两点的距离(精确到0.1m)

启发提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?

启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。

解:根据正弦定理,得

=

AB =

=

=

=

≈ 65.7(m)

答:A、B两点间的距离为65.7米

变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?

老师指导学生画图,建立数学模型。

解略:a km

例2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以

需要确定C 、D 两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得BCA=,

ACD=,CDB=,BDA =,在ADC 和BDC 中,应用正弦定理得 AC = = BC = =

计算出AC 和BC 后,再在ABC 中,应用余弦定理计算出AB 两点间的距离

AB = αcos 222BC AC BC AC ?-+

分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C 、D 两点,测得BCA=60,ACD=30,CDB=45,BDA =60 略解:将题中各已知量代入例2推出的公式,得AB=20

评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。 学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。 Ⅲ.课堂练习

课本第14页练习第1、2题 Ⅳ.课时小结

解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅴ.课后作业

课本第22页第1、2、3题 ●板书设计 ●授后记

课题: §2.2解三角形应用举例

第二课时

授课类型:新授课

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学生更广阔的思考空间

情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

●教学重点

结合实际测量工具,解决生活中的测量高度问题

●教学难点

能观察较复杂的图形,从中找到解决问题的关键条件

●教学过程

Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

Ⅱ.讲授新课

[范例讲解]

例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A 的仰角,就可以计算出AE的长。

解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD = a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得

AC =

AB = AE + h

= AC+ h

= + h

例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)

师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在ABD中求CD,则关键需要求出哪条边呢?

生:需求出BD边。

师:那如何求BD边呢?

生:可首先求出AB边,再根据BAD=求得。

解:在ABC中, BCA=90+,ABC =90-,BAC=- ,BAD =.根据正弦定理,

=

所以 AB ==

解RtABD中,得 BD =ABsinBAD=

将测量数据代入上式,得

BD =

=

≈177 (m)

CD =BD -BC≈177-27.3=150(m)

答:山的高度约为150米.

师:有没有别的解法呢?

生:若在ACD中求CD,可先求出AC。

师:分析得很好,请大家接着思考如何求出AC?

生:同理,在ABC中,根据正弦定理求得。(解题过程略)

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

师:欲求出CD,大家思考在哪个三角形中研究比较适合呢?

生:在BCD中

师:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?

生:BC边

解:在ABC中, A=15,C= 25-15=10,根据正弦定理,

= ,

BC ==

≈ 7.4524(km)

CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度约为1047米

Ⅲ.课堂练习

课本第17页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业

1、课本第23页练习第6、7、8题

2、为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯

角为45,则塔AB的高度为多少m?

答案:20+(m)

●板书设计

●授后记

课题: §2.2解三角形应用举例

第三课时

授课类型:新授课●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题

过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力。除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透。课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神。

●教学重点

能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系

●教学难点

灵活运用正弦定理和余弦定理解关于角度的问题

●教学过程

Ⅰ.课题导入

[创设情境]

提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。

Ⅱ.讲授新课

[范例讲解]

例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向

航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)

学生看图思考并讲述解题思路

教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角CAB 。 解:在ABC 中,ABC=180- 75+ 32=137,根据余弦定理,

AC=ABC BC AB BC AB ∠??-+cos 222 =????-+137cos 0.545.6720.545.6722

≈113.15 根据正弦定理, =

sinCAB = =

≈0.3255, 所以 CAB =19.0, 75- CAB =56.0

答:此船应该沿北偏东56.1的方向航行,需要航行113.15n mile

例2、在某点B 处测得建筑物AE 的顶端A 的仰角为,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2,再继续前进10m 至D 点,测得顶端A 的仰角为4,求的大小和建筑物AE 的高。

师:请大家根据题意画出方位图。 生:上台板演方位图(上图)

教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评。 解法一:(用正弦定理求解)由已知可得在ACD 中, AC=BC=30, AD=DC=10,

ADC =180-4, = 。

因为 sin4=2sin2cos2

cos2=,得 2=30

=15,

在RtADE中,AE=ADsin60=15

答:所求角为15,建筑物高度为15m

解法二:(设方程来求解)设DE= x,AE=h

在 RtACE中,(10+ x) + h=30

在 RtADE中,x+h=(10)

两式相减,得x=5,h=15

在 RtACE中,tan2==

2=30,=15

答:所求角为15,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

BAC=, CAD=2,

AC = BC =30m , AD = CD =10m

在RtACE中,sin2= --------- ①

在RtADE中,sin4=, --------- ②

②①得 cos2=,2=30,=15,AE=ADsin60=15

答:所求角为15,建筑物高度为15m

例3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

师:你能根据题意画出方位图?教师启发学生做图建立数学模型

分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。

解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x, AB=14x,AC=9, ACB=+=

(14x) = 9+ (10x) -2910xcos

化简得32x-30x-27=0,即x=,或x=-(舍去)

所以BC = 10x =15,AB =14x =21,

又因为sinBAC ===

BAC =38,或BAC =141(钝角不合题意,舍去),

38+=83

答:巡逻艇应该沿北偏东83方向去追,经过1.4小时才追赶上该走私船.

评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解

Ⅲ.课堂练习

课本第18页练习

Ⅳ.课时小结

解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。

Ⅴ.课后作业

1、课本第23页练习第9、10、11题

2、我舰在敌岛A南偏西相距12海里的B处,发现敌舰正由岛沿北偏西的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)

●板书设计

●授后记

课题: §2.2解三角形应用举例

授课类型:新授课●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

●教学重点

推导三角形的面积公式并解决简单的相关题目

●教学难点

利用正弦定理、余弦定理来求证简单的证明题

●教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?

生:h=bsinC=csinB

h=csinA=asinC

h=asinB=bsinaA

师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

生:同理可得,S=bcsinA, S=acsinB

师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?

生:如能知道三角形的任意两边以及它们夹角的正弦即可求解

Ⅱ.讲授新课

[范例讲解]

例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)

(1)已知a=14.8cm,c=23.5cm,B=148.5;

(2)已知B=62.7,C=65.8,b=3.16cm;

(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

解:(1)应用S=acsinB,得

S=14.823.5sin148.5≈90.9(cm)

(2)根据正弦定理,

=

c =

S = bcsinA = b

A = 180-(

B + C)= 180-(62.7+ 65.8)=51.5

S = 3.16≈4.0(cm)

(3)根据余弦定理的推论,得

cosB =

=

≈0.7697

sinB = ≈≈0.6384

应用S=acsinB,得

S ≈41.438.70.6384≈511.4(cm)

例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?

师:你能把这一实际问题化归为一道数学题目吗?

生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。

由学生解答,老师巡视并对学生解答进行讲评小结。

解:设a=68m,b=88m,c=127m,根据余弦定理的推论,

cosB=

=≈0.7532 sinB=0.6578 应用S=acsinB

S ≈681270.6578≈2840.38(m)

答:这个区域的面积是2840.38m 。 例3、在ABC 中,求证:

(1);sin sin sin 2

22222C

B A c b a +=+ (2)++=2(bccosA+cacosB+abcos

C )

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明

证明:(1)根据正弦定理,可设 = = = k

显然 k0,所以

左边=C

k B

k A k c b a 2

22222222sin sin sin +=+ ==右边

(2)根据余弦定理的推论, 右边=2(bc+ca+ab)

=(b+c- a)+(c+a-b)+(a+b-c)

=a+b+c=左边

变式练习1:已知在ABC 中,B=30,b=6,c=6,求a 及ABC 的面积S

提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。 答案:a=6,S=9;a=12,S=18

变式练习2:判断满足下列条件的三角形形状, (1) acosA = bcosB (2) sinC =

提示:利用正弦定理或余弦定理,“化边为角”或“化角为边” (1) 师:大家尝试分别用两个定理进行证明。

生1:(余弦定理)得 a=b c=

根据边的关系易得是等腰三角形或直角三角形 生2:(正弦定理)得

数学必修五第一单元检测 解三角形

第一章解三角形 一、选择题 1.已知A,B两地的距离为10 km,B,C两地的距离为20 km,现测得∠ABC=120°,则A,C两地的距离为(). A.10 km B.10km C.10km D.10km 2.在△ABC中,若==,则△ABC是(). A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 3.三角形三边长为a,b,c,且满足关系式(a+b+c)(a+b-c) =3ab,则c边的对角等于(). A.15° B.45° C.60° D.120° 4.在△ABC中,三个内角∠A,∠B,∠C所对的边分别 为a,b,c,且a∶b∶c=1∶∶2,则sin A∶sin B∶sin C=().A.∶2∶1 B.2∶∶1 C.1∶2∶ D.1∶∶2 5.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则(). A.△A1B1C1和△A2B2C2都是锐角三角形 B.△A1B1C1和△A2B2C2都是钝角三角形 C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形 D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形 6.在△ABC中,a=2,b=2,∠B=45°,则∠A为(). A.30°或150°B.60°C.60°或 120°D.30°

7.在△ABC中,关于x的方程(1+x2)sin A+2x sin B+(1-x2)sin C =0有两个不等的实根,则A为(). A.锐角 B.直角 C.钝 角 D.不存在 8.在△ABC中,AB=3,BC=,AC=4,则边AC上的高为().A. B. C. D.3 9.在△ABC中,=c2,sin A·sin B=,则△ABC 一定是(). A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰三角形或直角三角形 10.根据下列条件解三角形:①∠B=30°,a=14,b=7;②∠B=60°,a=10,b=9.那么,下面判断正确的是(). A.①只有一解,②也只有一解. B.①有两解,②也有两解. C.①有两解,②只有一解. D.①只有一解,②有两解. 二、填空题 11.在△ABC中,a,b分别是∠A和∠B所对的边,若a=,b=1,∠B=30°,则∠A的值是. 12.在△ABC中,已知sin B sin C=cos2,则此三角形是__________三角形. 13.已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积.若a=4, b=5,S=5,求c的长度 . 14.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值 . 15.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且满足sin A∶sin B∶sin C=2∶5∶6.若△ABC 的面积为,则△ABC的周长为________________.

人教版高一必修五解三角形单元试题及答案

高一必修5 解三角形单元测试题 1.在△ABC 中,sinA=sinB ,则必有 ( ) A .A=B B .A ≠B C .A=B 或A=C -B D .A+B= 2 π 2.在△ABC 中,2cosBsinA=sinC ,则△ABC 是 ( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形 3.在ABC ?中,若 b B a A cos sin =,则B 的值为 ( ) A . 30 B . 45 C . 60 D . 90 4.在ABC ?中,bc c b a ++=2 2 2 ,则角A 等于 ( ) A .60° B .45° C .120° D .30° 5.在△ABC 中,b =, ,C=600,则A 等于 ( ) A .1500 B .750 C .1050 D .750或1050 6.在△ABC 中,A:B:C=1:2:3,则a:b:c 等于 ( ) A .1:2:3 B .3:2:1 C . 2: D . 7.△ABC 中,a=2,A=300,C=450,则S △ABC = ( ) A B . C 1 D .11)2 8.在ABC ?中,角A 、B 、C 的对边分别为a 、b 、c ,则acosB+bcosA 等于 ( ) A . 2 b a + B . b C . c D .a 9.设m 、m +1、m +2是钝角三角形的三边长,则实数m 的取值范围是 ( ) A .0<m <3 B .1<m <3 C .3<m <4 D .4<m <6 10.在△ABC 中,已知a=x , A=450,如果利用正弦定理解这个三角形有两个解, 则x 的取值范围为 ( ) A . B .22 D .x<2 11.已知△ABC 中,A=600, ,c=4,那么sinC= ; 12.已知△ABC 中,b=3, B=300,则a= ; 13.在△ABC 中,|AB |=3,||=2,AB 与的夹角为60°,则|AB -|=____ __; 15.在ABC ?中,5=a , 105=B , 15=C ,则此三角形的最大边的长为__________;

高中数学的必修五解三角形知识点归纳

解三角形 一.三角形中的基本关系: (1)sin()sin ,A B C += cos()cos ,A B C +=- tan()tan ,A B C +=- (2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++=== (3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理: 2sin sin sin a b c R C ===A B .R 为C ?AB 的外接圆的半径) 正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 两类正弦定理解三角形的问题:

①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解)) 三.余弦定理: 222 2cos a b c bc =+-A 222 2cos b a c ac =+-B 222 2cos c a b ab C =+-. 注意:经常与完全平方公式与均值不等式联系 推论: 222 cos 2b c a bc +-A = 222 cos 2a c b ac +-B = 2 2 2 cos 2a b c C ab +-= .

高一必修5解三角形练习题及答案

第一章 解三角形 一、选择题 1.在A B C ?中,a =03,30;c C == (4) 则可求得角045A =的是( ) A .(1)、(2)、(4) B .(1)、(3)、(4) C .(2)、(3) D .(2)、(4) 2.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .14=a ,16=b , 45=A D . 7=a ,5=b , 80=A 3.在ABC ?中,若, 45=C , 30=B ,则( ) A ; B C D 4.在△ABC ,则cos C 的值为( ) A. D. 5.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( ) A B .120≤

三、解答题 11. 已知在ABC ?中,cos A = ,,,a b c 分别是角,,A B C 所对的边. (Ⅰ)求tan 2A ; (Ⅱ)若sin()2 B π += ,c =求ABC ?的面积. 解: 12. 在△ABC 中,c b a ,,分别为角A 、B 、C 的对边,5 82 22bc b c a - =-,a =3, △ABC 的面积为6, D 为△ABC 内任一点,点D 到三边距离之和为d 。 ⑴求角A 的正弦值; ⑵求边b 、c ; ⑶求d 的取值范围 解:

(完整版)高中数学必修五解三角形测试题及答案

(数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

(完整版)必修五-解三角形-题型归纳

构成三角形个数问题 1在 ABC 中,已知a x,b 2,B 45°,如果三角形有两解,则x 的取值范围是( ) A. 2 x 2\f2 B. X 2 血 C . V2 x 2 D. 0x2 2 ?如果满足 ABC 60 , AC 12 , BC k 的厶ABC 恰有一个,那么k 的取值范围是 3.在 ABC 中,根据下列条件解三角形,其中有两个解的是( ) A* CJ = S J fr = 10^ A = 45" E ? 口 = 60 r £* = S1 B = 6(T * C. a — 7 > £> = 5 ? A - &0= D ? 口二 14# 6 - 20 , -4-45"心 求边长问题 A. 5 B 5?在△ ABC 中, a 1,B 450, S ABC 2,则 b = _________________ 三. 求夹角问题 6.在 ABC 中, ABC -, AB 2,BC 3,则 sin BAC () 4 10 10 3 10 5 A. 10 B 5 C 10 D 5 7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 4.在 ABC 中,角 A, B,C 所对边 a,b,c ,若 a 3,C 1200 , ABC 的面积S 15 3 4

1 2 2 2 acosB bcosA csinC, S -(b c a ),则/ B=() 4 A. 90° B . 60° C . 45° D . 30° 四.求面积问题 &已知△ ABC中,内角A,B, C所对的边长分别为a,b,c.若a 2bcosA, B -,c 1,则 3 △ ABC的面积等于( ) 书书书书 A B------ B ■ C i D i +11 8 6 4 2 A 9.锐角ABC中,角A、B、C的对边分别是a、b、c,已知cos2C j (i)求sinC的值; (n)当a 2, 2si nA si nC时,求b的长及| ABC的面积. 10?如图,在四边形ABCD 中,AB 3,BC 7J3,CD 14, BD 7, BAD 120 (1 )求AD边的长; (2)求ABC的面积.

人教版高二数学必修5解三角形测试卷培优提高题(含答案解析)

高中数学必修5第一章单元测试题 一 选择题:(共12小题,每题5分,共60分,四个选项中只有一个符合要求) 1.在ABC ?中,若b 2 + c 2 = a 2 + bc , 则A =( ) A .30? B .45? C .60? D .120? 2.在ABC ?中,若20sin A sin B cosC -=,则ABC ?必定是 ( ) A 、钝角三角形 B 、等腰三角形 C 、直角三角形 D 、锐角三角形 3.在△ABC 中,已知5cos 13A =,3 sin 5 B =,则cos C 的值为( ) A 、1665 B 、5665 C 、1665或5665 D 、16 65- 4.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 5.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为 A .5000米 B . 米 C .4000米 D . 6.已知ABC △ 中,a = b =60B = ,那么角A 等于 A .135 B .90 C .45 D .45 或135 7.在△ABC 中,60A ∠=?,2AB =,且△ABC 的面积ABC S ?=,则边BC 的长为( ) A B .3 C D .7 8.已知△ABC 中,2cos c b A =,则△ABC 一定是 A 、等边三角形 B 、等腰三角形 C 、直角三角形 D 、等腰直角三角形 9.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a + =,则c B a c o s 的值为( ) A.41 B. 45 C. 85 D.8 3 10.设△ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C 等于( ) (A) π3 错误!未找到引用源。(B) 2π3 错误!未找到引用源。 (C)错误!未

高中数学必修五 第一章 解三角形知识点归纳

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

数学必修5解三角形,正弦,余弦知识点和练习题

解三角形 1.正弦定理: 2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? . 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用ABC ?中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot A B C A B C A B C +++===.、 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( ) A .60° B .60°或120° C .30°或150° D .120° 2、符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30° C .a=1,b=2,∠A=100° C .b=c=1, ∠B=45°

完整word版,人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1. 锐角△ABC 中,已知a =√3,A =π 3,则b 2+c 2+3bc 的取值范围是( ) A. (5,15] B. (7,15] C. (7,11] D. (11,15] 2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC 的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60°,b =1,S △ABC =√3,则 a?2b+c sinA?2sinB+sinC 的值等于 ( ) A. 2√39 3 B. 263 √3 C. 8 3√3 D. 2√3 4. 在△ABC 中,有正弦定理:a sinA =b sinB =c sinC =定值,这个定值就是△ABC 的外接圆 的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点 M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( ) A. λ先变小再变大 B. 仅当M 为线段EF 的中点时,λ取得最大值 C. λ先变大再变小 D. λ是一个定值 5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大 时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边, b = c ,且满足sinB sinA =1?cosB cosA .若 点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( ) A. 8+5√34 B. 4+5√34 C. 3 D. 4+5√32 7. 在△ABC 中,a =1,b =x ,∠A =30°,则使△ABC 有两解的x 的范围是( ) A. (1,2√3 3 ) B. (1,+∞) C. (2√3 3 ,2) D. (1,2) 8. △ABC 的外接圆的圆心为O ,半径为1,若AB ????? +AC ????? =2AO ????? ,且|OA ????? |=|AC ????? |,则△ABC 的面积为( ) A. √3 B. √32 C. 2√3 D. 1 9. 在△ABC 中,若sinBsinC =cos 2A 2,则△ABC 是( )

必修5第一章《解三角形》全章教案

数学5 第一章 解三角形 课题: §1.1.1 正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得 sin sin c b C B = , b a

必修5解三角形数列综合测试题

必修5解三角形数列综合测试题 第Ⅰ卷(选择题共60分) 一、选择题:(每小题5分,共60分) 1.已知锐角ABC ?的面积为4,3BC CA ==,则角C 的大小为( ) A . 30 B . 45 C . 60 D . 75 2. 在等差数列{}n a 中,若4612a a +=,n S 是数列{}n a 的前n 项和,则9S =( ) A .48 B .54 C .60 D .108 3. 已知等比数列{}n a 的公比为正数,且2 3952a a a ?=,21a =,则1a =( ) A . 1 2 B .2 C D .2 4. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为( ) A . 158或5 B . 5 或1631 C .3116 D .15 8 5. 已知数列{}n a 的前n 项和2 9n S n n =-,第k 项满足58k a <<,则k =( ) A .9 B .8 C .7 D .6 6. 在各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则456a a a =( ) A . B .7 C . 6 D . 7. 在ABC ?中,60A =,且最大边长和最小边长是方程2 7110x x -+=的两个根,则第三边的长为( ) A .2 B .3 C .4 D .5 8. 在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a = ( )

A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 9. 在ABC ?中,A 、B 的对边分别是a 、b ,且 30=A ,a =4b =,那么满 足条件的ABC ?( ) A .有一个解 B .有两个解 C .无解 D .不能确定 10. 已知等差数列{}n a 的公差0d <,若462824,10a a a a =+=,则该数列的前n 项和n S 的最大值为( ) A .50 B .45 C .40 D .35 11. 各项均为正数的等比数列{}n a 的前n 项和为n S ,若10302,14S S ==,则40S =( ) A .80 B .30 C .26 D .16 12. 在?ABC 中,222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是( ) A .(0, 6 π ] B .[ 6π,π) C .(0,3π] D .[ 3 π ,π) 第Ⅱ卷(非选择题共90分) 二、填空题:(每小题5分,共20分) 13. 已知c b a ,,分别是ABC ?的三个内角C B A ,,所对的边,若 B C A b a 2,3,1=+==则=C sin . 14. 设n S 是等差数列{}n a 的前n 项和,若 5359a a =,则95 S S = . 15. 已知ABC ? 的一个内角为 120,并且三边长构成公差为4的等差数列,则ABC ?的面积为_______________. 16.下表给出一个“直角三角形数阵” 41 4 1,21

人教版高中数学必修五《第一章 解三角形》单元测试

必修五第一章测试题 班级: 组名: 姓名: 设计人:连秀明 审核人:魏帅举 领导审批: 一 选择题:(本大题共12小题,每小题5分,共60分。在每小题的四个选项中,只有一项是符合题目要求的 1.已知△ABC 中,30A =,105C =,8b =,则等于 ( ) A 4 B 2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( ) A 3 B 2 C 1 2 D 2 3.长为5、7、8的三角形的最大角与最小角之和为 ( ) A 90° B 120° C 135° D 150° 4.△ABC 中,cos cos cos a b c A B C == ,则△ABC 一定是 ( ) A 直角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 5.△ABC 中,60B =,2 b a c =,则△ABC 一定是 ( ) A 锐角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 7. △ABC 中,8b = ,c = ,ABC S =A ∠等于 ( ) A 30 B 60 C 30或150 D 60或 120 8.△ABC 中,若60A = ,a =sin sin sin a b c A B C +-+-等于 ( ) A 2 B 1 2 9. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( ) A 13 B 12 C 34 D 0 10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 由增加的长度决定 11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( )

必修5-解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

必修五解三角形练习题

一.选择题(共10小题) 1.在△ABC中,sinA=sinB是△ABC为等腰三角形的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 2.在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是() A.(2,+∞)B.(0,2)C.(2,2)D.(,2) 3.在锐角△ABC中,若C=2B,则的范围() A.B.C.(0,2)D. 4.在△ABC中,下列等式恒成立的是() A.csinA=asinB B.bcosA=acosB C.asinA=bsinB D.asinB=bsinA 5.已知在△ABC中,若αcosA+bcosB=ccosC,则这个三角形一定是()A.锐角三角形或钝角三角形B.以a或b为斜边的直角三角形C.以c为斜边的直角三角形D.等边三角形 6.在△ABC中,若cosAsinB+cos(B+C)sinC=0,则△ABC的形状是()A.等腰三角形B.直角三角形 C.等腰直角三角形D.等腰或直角三角形 7.在△ABC中,内角A,B,C所对的边分别为a,b,c,且=,则∠B为() A.B.C.D. 8.在△ABC中,已知sinA=2sinBcosC,则该三角形的形状是() A.等边三角形B.直角三角形 C.等腰三角形D.等腰直角三角形 9.△ABC的内角A、B、C的对边分别为a、b、c,,,b=1,则角B 等于() A.B.C.D.或

10.在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A.x>2 B.x<2 C.D. 二.填空题(共1小题) 11.(文)在△ABC中,∠A=60°,b=1,△ABC的面积为,则 的值为. 三.解答题(共7小题) 12.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB (1)求角C的大小; (2)求△ABC的面积的最大值. 13.在△ABC中,角A,B,C所对边分别为a,b,c,已知bccosA=3,△ABC的面积为2. (Ⅰ)求cosA的值; (Ⅱ)若a=2,求b+c的值. 14.在△ABC中,角A、B、C的对边分别是a、b、c,且=. (1)求角B的大小; (2)△ABC的外接圆半径是,求三角形周长的范围.

高中数学必修五第一章解三角形知识点归纳与测试卷.doc

第十二讲 解三角形 1 、三角形三角关系: A+B+C=180 °; C=180 °— (A+B) ; 3 、三角形中的基本关系: sin( A B) sin C , cos( A B) cosC , tan(A B) tanC , sin A B cos C ,cos A B sin C , tan A B cot C 2 2 2 2 2 2 4 、正弦定理:在 C 中, a 、 b 、 c 分别为角 、 、 C 的对边, R 为 C 的外接圆的半 径,则有 a b c 2R . sin sin C sin 5 、正弦定理的变形公式: ①化角为边: a 2Rsin , b 2Rsin , c 2R sin C ; ②化边为角: sin a , sin b c ; , sin C 2R 2R 2R ③ a : b: c sin :sin :sin C ;④ a b c a b c . sin sin sin C sin sin sin C 7 、余弦定理:在 C 中,有 a 2 2 c 2 2bc cos 等,变形: cos b 2 c 2 a 2 b 等, 2bc 8 、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角) 9 、三角形面积公式: 1 1 1 S C bc sin ab sin Cac sin . 2 2 2 10 、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形 式或角的形式设 a 、 b 、 c 是 C 的角 、 、 C 的对边,则: ①若 a 2 b 2 c 2 ,则 C 90o ;②若 a 2 b 2 c 2 ,则 C 90o ;③若 a 2 b 2 c 2 ,则 C 90o . 11 、三角形的四心: 垂心——三角形的三边上的高相交于一点

高二数学必修五解三角形教案

高二数学必修五第一章解三角形教案) (一)教学目标 1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 2 . 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判断解的个数。(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。教学用具:直尺、投影仪、计算器(四)教学设想 [创设情景] 如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。 A 思考: C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角 C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来? C B [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又 , A 则 b c 从而在直角三角形ABC中, C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则, C 同理可得, b a 从而 A c B (图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(证法二):过

必修5《解三角形》综合测试题及解析

必修5第一章《解三角形》综合测试题(A )及解析 第Ⅰ卷(选择题) 一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.某三角形的两个内角为o 45和o 60,若o 45角所对的边长是6,则o 60角所对的边长是 【 A 】 A . B ... 答案:A . 解析:设o 60角所对的边长是x ,由正弦定理得 o o 6sin 45sin 60x = ,解得x =.故选A . 2.在ABC ?中,已知a =10c =,o 30A =,则B 等于 【 D 】 A .o 105 B .o 60 C .o 15 D .o 105或o 15 答案:D . 解析:在ABC ?中,由 sin sin a c A C = ,得sin sin 2c A C a ==,则o 45C =或o 135C =.故 当o 45C =时,o 105B =;当o 135C =时,o 15B =.故选D . 3.在ABC ?中,三边长7AB =,5BC =,6AC =,则AB BC ?u u u r u u u r 的值等于 【 D 】 A .19 B .14- C .18- D .19- 答案:D . 解析:由余弦定理得49253619 cos 27535 B +-== ??,故AB BC ?=u u u r u u u r ||AB ?u u u r ||cos(BC πu u u r )B -= 19 75()1935 ??-=-.故选D . 4.在ABC ?中,sin a b C .a b ≥ D .a 、b 的大小关系不确定 答案:A . 解析:在ABC ?中,由正弦定理2sin sin a b R A B ==,得sin 2a A R =,sin 2b B R =,由sin A

必修五-解三角形-题型归纳

一. 构成三角形个数问题 1.在ABC ?中,已知,2,45a x b B === ,如果三角形有两解,则x 的取值范围是( ) A .. D.02x << 2.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是__________. 3.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) 二. 求边长问题 4.在ABC ?中,角,,A B C 所对边,,a b c ,若03,120a C ==,ABC ?的面积则c =( ) A .5 B .6 C .7 5.在△ABC 中,01,45,2ABC a B S ?===,则b =_______________. 三. 求夹角问题 6.在ABC ?中,,则=∠BAC sin ( ) A

7.在△ABC 中,角A ,B ,C 所对的边分别S c b a ,,,为表示△ABC 的面积,若 ,sin cos cos C c A b B a =+ B=( ) A .90° B .60° C .45° D .30° 四. 求面积问题 8.已知△ABC 中,内角A ,B ,C 所对的边长分别为c b a ,,.若2cos ,,13 a b A B c π ===,则 △ABC 的面积等于 ( ) 9.锐角ABC ?中,角C B A 、、的对边分别是c b a 、、,已知 (Ⅰ)求C sin 的值; (Ⅱ)当2=a ,C A sin sin 2=时,求b 的长及ABC ?的面积. 10.如图,在四边形ABCD 中, (1)求AD 边的长; (2)求ABC ?的面积.

相关文档
最新文档