欧拉定理

欧拉定理
欧拉定理

欧拉定理

欧拉定理

认识欧拉

欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余

篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1 777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,s in,cos,tg,Σ,f (x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用

什么方法研究的?今天让我们沿着欧拉的足

迹,怀着崇敬的心情和欣赏的态度探索这个公式......

初等数论中的欧拉定理

定理内容

在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n, a为正整数,且n,a互素,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)

证明

首先证明下面这个命题:

对于集合Zn={x1,x2,...,xφ(n)},其中xi(i= 1,2,…φ(n))是不大于n且与n互素的数,即n 的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),..., a*xφ(n)(mod n)}

则S = Zn

1) 由于a,n互质,xi也与n互质,则a* xi也一定于p互质,因此

任意xi,a*xi(mod n) 必然是Zn的一个元素

2) 对于Zn中两个元素xi和xj,如果xi ≠ xj

则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。

所以,很明显,S=Zn

既然这样,那么

(a*x1 × a*x2×...×a*xφ(n))(mod n)

= (a*x1(mod n) ×a*x2(mod n) ×...×a*xφ(n)(mod n))(mod n)

= (x1 ×x2 ×... ×xφ(n))(mod n)

考虑上面等式左边和右边

左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)

右边等于x1 ×x2 ×... ×xφ(n))(mod n)

而x1 ×x2 ×... ×xφ(n)(mod n)和n 互质

根据消去律,可以从等式两边约去,就得到:

a^φ(n) ≡ 1 (mod n)

推论:对于互质的数a、n,满足a^(φ(n) +1) ≡ a (mod n)

费马定理:

a是不能被质数p整除的正整数,则有a ^(p-1) ≡ 1 (mod p)

证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p)

平面几何里的欧拉定理

定理内容

设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2 Rr.

证明

O、I分别为⊿ABC的外心与内心.

连AI并延长交⊙O于点D,由AI平分& ETH;BAC,故D为弧BC的中点.

连DO并延长交⊙O于E,则DE为与B C垂直的⊙O的直径.

由圆幂定理知,R2-d2=(R+d)(R-d)=IA·I D.(作直线OI与⊙O交于两点,即可用证明)

但DB=DI(可连BI,证明ÐDBI=&E TH;DIB得),

故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可.

而这个比例式可由⊿AFI∽⊿EBD证得.故得R2-d2=2Rr,即证.

拓扑学里的欧拉公式

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X (P)=2-2h。

X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

V+F-E=2的证明

方法1:(利用几何画板)

逐步减少多面体的棱数,分析V+F-E

先以简单的四面体ABCD为例分析证法。

去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 (1)去掉一条棱,就减少一个面,V+F1 -E不变。依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。

以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和

设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα

一方面,在原图中利用各面求内角总和。

设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:

Σα= [(n1-2)·180度+(n2-2)·180度+…+ (nF-2) ·180度]

= (n1+n2+…+nF -2F) ·180度

=(2E-2F) ·180度= (E-F) ·360度(1)

另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,其内角和为(n -2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。

所以,多面体各面的内角总和:

Σα= (V-n)·360度+(n-2)·180度+(n-2)·1 80度

=(V-2)·360度(2)

由(1)(2)得:(E-F) ·360度=(V-2)·360度

所以V+F-E=2.

方法3 用拓朴学方法证明欧拉公式

尝试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。

欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E 和V分别表示面,棱(或边),角(或顶)的个数,那末

F-E+V=2。

证明如图(图是立方体,但证明是一般的,是“拓朴”的):

(1)把多面体(图中①)看成表面是薄橡皮的中空立体。

(2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这

个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。

(3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。

(4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。

(5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。

(6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′= 3,V′=3,因此F′-E′+V′=1-3+3=1。

(7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。

(8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。

即F′-E′+V′=1

成立,于是欧拉公式:

F-E+V=2

得证。

复变函数论里的欧拉公式

定理内容

e^ix=cosx+isinx

e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.

这两个也叫做欧拉公式。

“上帝创造的公式”

将e^ix=cosx+isinx中的x取作∏就得到:

e^i∏+1=0.

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i 和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

欧拉定理的运用方法

(1)分式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复数

由e^iθ=cosθ+isinθ,得到:

sinθ=(e^iθ-e^-iθ)/2i

cosθ=(e^iθ+e^-iθ)/2

(3)三角形

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=R^2-2Rr

(4)多面体

设v为顶点数,e为棱数,f是面数,则

v-e+f=2-2p

p为欧拉示性数,例如

p=0 的多面体叫第零类多面体

p=1 的多面体叫第一类多面体

(5) 多边形

设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:

V+Ar-B=1

(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)

(6). 欧拉定理

在同一个三角形中,它的外心Circumce nter、重心Gravity、九点圆圆心Nine-point -center、垂心Orthocenter共线。

其实欧拉公式是有很多的,上面仅是几个常用的。

使用欧拉定理计算足球五边形和六边形数

问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?

答:足球是多面体,满足欧拉公式F-E +V=2,其中F,E,V分别表示面,棱,顶点的个数

设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么

面数F=x+y

棱数E=(5x+6y)/2(每条棱由两块皮子共用)

顶点数V=(5x+6y)/3(每个顶点由三块皮子共用)

由欧拉公式,x+y-(5x+6y)/2+(5x+6y) /3=2,

解得x=12。所以,共有12块黑皮子

所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的

对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。

所以白皮子所有边的一半是与黑皮子缝合在一起的

那么白皮子就应该一共有60×2=120条边,120÷6=20

所以共有20块白皮子

(或者,每一个六边形的六条边都与其它的三个六边形的三条边和三个五边形的三条边连接;每一个五边形的五条边都与其它的五个六边形的五条边连接

所以,五边形的个数x=3y/5。

之前求得x=12,所以y=20)

经济学中的“欧拉定理”

在西方经济学里,产量和生产要素L、K 的关系表述为Q=Q(L,K),如果具体的函数形式是一次齐次的,那么就有:Q=L(ðQ /ðL)+K(ðQ/ðK),换句话说,产

品分配净尽取决于Q能否表示为一个一次齐

次函数形式。

因为ðQ/ðL=MPL=w/P被视为劳动对产量的贡献,ðQ/ðK=MPK=r/P被视为资本对产量的贡献,因此,此式被解释为“产品分配净尽定理”,也就是所有产品都被所有的要素恰好分配完而没有剩余。因为形式上符合数学欧拉定理,所以称为欧拉定理。

【同余理论中的"欧拉定理"】

设a,m∈N,(a,m)=1,则a^(f(m))≡1(mod m)

(注:f(m)指模m的简系个数)

欧拉定理的意义

(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律

(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关

的量发生了变化,而顶点数,面数,棱数等不变。

定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

(4)提出多面体分类方法:

在欧拉公式中, f (p)=V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p) =2。

除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

(5)利用欧拉定理可解决一些实际问题

如:为什么正多面体只有5种?足球与C60的关系?否有棱数为7的正多面体?等

费马小定理

费马小定理 费马小定理是数论中的一个定理:假如a是一个整数,p是一个质数,那么是p的倍数,可以表示为 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加常用。(符号的应用请参见同余。) 证明 若n不能整除a - b,x>0,(x,n)=1,则n也不能整除x(a-b)。取整数集A为所有小于p的集(A构成p的完全剩余系,即A 中不存在两个数同余p),B是A中所有的元素乘以a组成的集合。因为A中的任何两个元素之差都不能被p整除,所以B 中的任何两个元素之差也不能被p整除。因此 即

在这里W=1·2·3·...·(p-1),且(W, p) = 1,因此将整个公式除以W即得到: 广义 费马小定理是欧拉定理的一个特殊情况:如果n和a的最大公约数是1,那么 这里φ(n)是欧拉商数。欧拉商数的值是所有小于n的自然数中与n没有公约数的数的个数。假如n是一个素数,则φ(n) = n-1,即费马小定理。 在费马小定理的基础上,费马提出了一种测试素数的算法; 尽管它是错误。 神奇的费马小定理(1) ——从实验、观察、发现到猜想和证明谢国芳(Roy Xie)Email: roixie@https://www.360docs.net/doc/fa2728751.html, 章节目录 1. 费马的惊人断言——费马小定理的原始表述

2. 我们的探索之旅——从实验、观察、发现到猜想和证明 2.1 费马指数和最小费马指数 2.2 “普通版费马小定理”和“加强版费马小定理” 2.3 对最小费马指数更深入的探究 3. 费马小定理的证明 1.费马的惊人断言——费马小定理的原始表述 十七世纪的法国律师、历史上最伟大的业余数学家、近代数论的先驱费马(Pierre de Fermat,1601~1665)在 1640 年10 月 18 日给他的朋友、数迷小团体成员之一弗莱尼科·德·贝西(Frénicle de Bessy, c. 1605~1675)的信中,写下了这样一段话(原文是法语): ? Tout nombre premier mesure infailliblement une des puissances - 1 de quelque progression que ce soit, et l'exposant de la dite puissance est sous-multiple du nombre premier donné - 1 ? [拙译]“任何一个质数总能除尽任何几何级数中的某一项减1,且该项的指数是这个给定的质数减1的因子。”

欧拉定理

在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: 几何定理: 1)设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr. 2)三角形ABC的垂心H,九点圆圆心V,重心G,外心O共线,称为欧拉线 欧拉定理证明: 设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr.

证明O、I分别为⊿ABC的外心与内心. 连AI并延长交⊙O于点D,由AI平分ETH;BAC,故D为弧BC的中点. 连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径. 由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明) 但DB=DI(可连BI,证明ETH;DBI=ETH;DIB得), 故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可. 而这个比例式可由⊿AFI∽⊿EBD证得.故得R^2-d^2=2Rr,即证.

欧拉定理及其应用(注解版)~~YT

欧拉定理及其应用 欧拉函数phi(m)表示小于等于|m|的自然数中,和m互质的数的个数。 phi(m)=mΠ(1-1/p)//《算法导论》第531页 p|m 证明:若m为一素数p,则phi(m)=p-1。 若m为合数,存在p,使m=pd。 1、若p整除d,对任意a,(a, d) = 1,//注意a属于[1,d)那么(a + d, d) = 1, (a + d, p) = 1, 所以(a + d, m) = 1,所以(a + kd, m) = 1,k = 0, 1, 2, ... , p - 1, 所以phi(m) = p phi(d)。//则有任意和d互质的数加上kd继续互质,所以共有p*phi(d)个 2、若p不能整除d,那么(p, d) = 1,在小于|m|的自然数里,和d互质的有p phi(d)个, 其中phi(d)个是p的倍数,所以phi(m) = (p - 1) phi(d)。//显然,除d、2d、3d……pd能整除外,其余都不能整除 由数学归纳法得到结论。 欧拉定理:如果(a, m) = 1,那么a ^ phi(m) = 1 (mod m)。//可以参考《算法导论》 证明:设R(m) = {r[1], r[2], ... , r[phi(m)]}为和m互质的数的等价类的集合。 那么有(ar[i], m) = 1,ar[i] = ar[j]当且仅当i = j。 所以aR(m) = {ar[i]} = R(m),a ^ phi(m) Πr[i] = Πar[i] = Πr[i] (mod m),a ^ phi(m) = 1 (mod m)。 欧拉定理的一个重要意义就是计算a ^ b mod m的时候,若b是一个很大的数时,可以化成a ^ (b mod phi(m)) mod m来计算,明显地,b mod phi(m)是一个比较小的数。 当(a, m)≠1时,设对m分解质因数得到m = Πpi ^ ri,d = (a, m),m = m1 * m2, 其中m1 = Πpi ^ri,那么(m1, m2) = 1,(a, m2) = 1, pi|d 所以a ^ phi(m2) = 1 (mod m2)。 由欧拉函数的计算公式可以得知phi(m2)|phi(m),所以a ^ phi(m) = 1 (mod m2)。对任意i,pi|d,都有phi(m) >= log m >= ri,所以m1|d ^ phi(m),m1|a ^ phi(m)。由于(m1, m2) = 1,所以存在整数r,0 < r < m,r = 1 (mod m2),r = 0 (mod m1), 有a ^ phi(m) = r (mod m)。 显然,a ^ 2phi(m) = 1 (mod m2),a ^ 2phi(m) = 0 (mod m1),

费马小定理及应用

费马小定理及应用 知识定位 费马小定理是初中数学竞赛数论中经常出现的一种。要熟练掌握费马小定理是数论中的一个定理,数学表达形式和应用。本节我们通过一些实例的求解,旨在介绍数学竞赛中不定方程相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。 知识梳理 1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数. ①欧拉函数值的计算公式:若m =p 1α1p 2α2 …p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n ) 例如,30=2·3·5,则.8)5 11)(311)(21 1(30)30(=---=? ②若p 为素数,则1 ()1,()(1),k k p p p p p ??-=-=-若p 为合数,则()2,p p ?≤- ③不超过n 且与n 互质的所有正整数的和为 1 ()2 n n ?; ④若(,)1()()(),a b ab a b ???=?= 若()()a b a b ??? ⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()n d ?, 同时 ()()d n d n n d n d ??==∑∑; 2、欧拉定理:若(a , m )=1,则a φ(m ) ≡1(mod m ). 证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系, 又∵(a , m )=1, ∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ), 又∵(r 1·r 2·…·r φ(m ), m )=1, ∴a φ(m ) ≡1(mod m ). 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ). 补充:设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ),我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: (1)设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡ v (mod k), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然. 必要性:设,u l u νν>=-,由(mod )u a a m ν ≡及(,)1a m =知1(mod )l a m ≡.

4 欧拉定理

§4 欧拉定理·费马定理及其对循环小数的应用 欧拉定理及费马定理是数论中非常重要的两个定理,它们在数论中的应用非常广泛。本节应用简化剩余系的理论,推出欧拉定理,再由欧拉定理,推出费马定理。最后还要把欧拉定理应用于循环小数。 定理1(欧拉定理) 设()1,,1m a m >=,则 ()()1mod .m a m ?≡ 证 设()12,, ,m r r r ?是模m 的一个简化剩余系, 因(),1a m =,故()12,, ,m ar ar ar ?也是模m 的一个简化剩余系. 于是, ()() ()()()()()()()()()()1212 12 12 mod , mod , 1mod . m m m m m m ar ar ar r r r m a r r r r r r m a m ??????≡≡≡ 推论(费马定理)若p 是质数,则对任意整数a ,总有 ()mod .p a a p ≡ 证 因p 为质数,故(),1a p =或.p a 若(),1,a p =则由()1p p ?=-及欧拉定理得 ()()1 1mod ,mod .p p a p a a p -≡≡ 若p a ,则显然有()mod .p a a p ≡ 以上两个定理对数论的应用是非常多的。下面仅说明欧拉定理对无限循环小数的应用。 任何一个有理数都可以表示为 a b ,这里,a b 都为整数,且0a >。由带余除法,存在整数(),0q r r b ≤<使得b aq r =+,故 ,0 1.a bq r r r b b b b b +==+≤< 故以下只讨论开区间()0,1中的分数与小数互化。 若对无限小数12 0.,n a a a (i a 是0,1, ,9中的一个数码,1,2,,i =并且从任何一 位以后不全是0)来说,存在非负整数s 及正整数t 使得,对任意正整数1n s ≥+,都有 n n t a a +=,则该无限小数可以写为

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

.12.15初等数论费马小定理与欧拉定理(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 第七讲 费马小定理与欧拉定理 2017.12.18 基础例题 1. 设n 是自然数,则n n n n 4321|5+++/ 2.设{x 1,x 2,x 3,…,()m x ?}为模m 的一个简化剩余系,则()()()mod 1321≡?m x x x x ? 3. 设a ,b ,c ,m 为自然数,m >1,(b ,m )=1,且()m b a mod 1≡, ()m b c mod 1≡,记()c a d ,=,则()m b d mod 1≡ 4. 设p 是素数,p |b n -1,n 为自然数,则下列两个结论中至少有一个成立: (1)p |b d -1对于某个因数d

6. 将612-1分解质因数 7. 若a ,b 是任意整数,p 为素数.证明:()()p b a b a p p p mod +≡+ 8. 设p 为奇素数,a ,n 都是正整数,且p n |a p -1. (1)证明:p n -1|a -1; (2)当p =2时,上述结论成立吗? 10. 求(1237156+34)28被111除的余数. 11. 设p 是一个大于5的素数,求证:240|p 4-1 12. 设p 为素数.证明:存在无穷多个正整数n 使得()p n n mod 2≡

13.(1)证明下列事实但不许用费马小定理:若p 是质数,h 1,h 2,…,h n 是整数,则(h 1+h 2+…+h n )p ≡h 1p +h 2p +…+h n p (mod p ) (2)由(1)证明费马定理,然后再由费马定理证明欧拉定理. 每周真题小练 1. (ELMO 2017)设H 为三角形ABC 的垂心,M 为边BC 的中点.以AH 为直径的圆上,有相异的两点P ,Q (P 、Q 两点均不与A 重合),满足M 位于直线PQ 上.证明:三角形APQ 的垂心位于三角形ABC 的外接圆上. 2.(命题人讲座) 设n 是一个大于1的奇数,数a 1,a 2,a 3,…,()n a ?是1,2,3,…,n 中与n 互素的所有正整数.证明()()n n k k n a ??π2 1cos 1=∏=

高中奥林匹克数学竞赛-欧拉定理、费马小定理、孙子定理

欧拉定理、费马小定理、孙子定理 函数; 互质的个数,称为欧拉中与,,,是个有互质,这样的同余类共中每一个数均与互质,那么与如果个剩余类有,则模、设m m m m m M m i m i Z k km i M m m m i i 21)(,)(1 ,,2,1,0},|{01 );(m od 1,1),(12)(m a m a m m 则,、欧拉定理:设 k i m M M m b M M b M M b M M x m b x m b x m b x m m m m m M k i M m m m m m m k m m m p p p n n p p p n n p a a p m ax m x m a i i m a a m a a a m m a a a m m i i i k k k k k k i i i i i k k k k p i i m m k ,,2,1),(mod 1) (mod ) (mod )(mod )(mod ,),,,2,1(,,6)1 1()11)(11()(5); (mod 4,1),()3(); (),(mod )()2()()1(3''22' 211'12211112121212121212121 其中有唯一解则同余方程组 设个两两互质的正整数,是、、、孙子定理:设,则: 的标准分解为:、若为素数,则、费马小定理:若的缩系;也是通过模的缩系,则是通过模且、若的充要条件是的一组缩系是模、、互质的整数,则个与是、、、若个数; 的一组缩系含有、模、缩系的几种性质: )( 原命题成立;上式不成立,则有: 也是一组完全剩余系,另一方面又同理有:: 的一组完全剩余系,则是、、证:的一组完全剩余系。不是、、求证:,的一组完全剩余系,且分别是、、和、、、设例 ,2 0|2)(mod 2 )()() (mod 0)(mod )()(mod 2 )(mod 22)1(|211 1 1 11 2122112121n n n n n b a b a n n n b a n n b n n n n i a n a a a n b a b a b a n n b b b a a a n i i i i i n i i i n i i n i n i i n n n n n

《欧拉公式及其应用》

华北水利水电大学 题目《欧拉公式及其应用》 课程名称:高等数学(2) 专业班级:电子信息工程2012154 成员组成: 联系方式: 2013年5月31 日

摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=, 举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式,证明,应用 英文题目"Euler formula and its application" Abstract: The different methods of several in the complex domain that Euler's formula, illustrates several kinds of application of Euler's formula in mathematics, to solve the problem through the summary of many ways to look at problems of the mind, through the solution of several kinds of problems that the reader more understood the importance of Euler in learning many aspects of the theory and the mathematical formula in the. Key words: Euler formula Prove application

欧拉定理

欧拉定理 在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2,即V-E+F=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。 (1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律 (2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。 (3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。 定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。 (4)提出多面体分类方法: 在欧拉公式中,f (p)=V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。

除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。 (5)利用欧拉定理可解决一些实际问题 如:为什么正多面体只有5种?足球与C60的关系?否有棱数为7的正多面体?

欧拉公式的证明方法和应用

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造 x i x x f e ix sin cos )(+= ,0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f , 使得x i x e ix sin cos += 分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分

欧拉定理

欧拉定理 在数学和许多分支中可以看到以欧拉命名的许多常数,公式和定理。在数论中,Euler定理(也称为Fermat Euler定理或Euler 函数定理)是关于同余的性质。欧拉定理以瑞士数学家莱昂哈德·欧拉(Leonhard Euler)的名字命名,被认为是数学界最精彩的定理之一。欧拉定理实际上是费马小定理的推广。此外,在平面几何中有欧拉定理,在多面体上有欧拉定理(在凸多面体中,顶点数-边数+面数= 2,即V-E + F = 2)。在西方经济学中,欧拉定理也称为产出分配的净耗竭定理,这意味着在完全竞争的条件下,假设规模收益长期保持不变,则所有产品都足以分配给每个产品因子。还有欧拉公式。 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: 证明 将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数) 我们考虑这么一些数: m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n) 1)这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定mS更大一些),就有: mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a 与n的最大公因子是1,而xS-xR

也就是说这些数中的任意两个都不模n同余,φ(n)个数有φ(n)种余数。 2)这些数除n的余数都与n互质,因为如果余数与n有公因子r,那么a*xi=pn+qr=r(……),a*xi与n不互质,而这是不可能的。(因为a*xi=pn+qr=r(……),说明a*xi含有因子r,又因为前面假设n 含有因子r,所以a*xi和n含有公因子r,因此a*xi与n不互质)那么这些数除n的余数,都在x1,x2,x3……xφ(n)中,因为这是1~n中与n互质的所有数,而余数又小于n. 由1)和2)可知,数m1,m2,m3……mφ(n)(如果将其次序重新排列)必须相应地同余于x1,x2,x3……xφ(n). 故得出:m1*m2*m3……mφ(n)≡x1*x2*x3……xφ(n) (mod n) 或者说a^[φ(n)]*(x1*x2*x3......xφ(n))≡x1*x2*x3......xφ(n)(mod n) 或者为了方便:K{a^[φ(n)]-1}≡0 ( mod n ) 这里K=x1*x2*x3 (x) φ(n)。 可知K{a^[φ(n)]-1}被n整除。但K中的因子x1,x2……都与n互质,所以K与n互质。那么a^[φ(n)]-1必须能被n整除,即a^[φ(n)]-1≡0 (mod n),即a^[φ(n)]≡1 (mod n),得证。 费马小定理: a是不能被质数p整除的正整数,则有a^(p-1) ≡1 (mod p) 证明这个定理非常简单,由于p是质数,所以有φ(p) = p-1,代入欧拉定理即可证明。推论:对于任意正整数a,有a^p ≡a (mod p),因为a能被p整除时结论显然成立。

高一联赛班春季班第12讲初等数论——费马小定理与阶

数论中有很多重要的定理,其中我们最为熟悉的就是费尔马小定理与孙子定理了.根据联赛大纲,孙子定理只在冬令营中考到,因此本联赛班讲义不准备涉及到孙子定理.本讲将重点研究费马小定理. 从费尔马小定理出发,我们还将研究与它有很大联系的一个数论中新的工具:阶. 阶的概念在联赛大纲中并未明确提及,但是不论在联赛中还是冬令营乃至IMO 中,与阶相联系的问题都比比皆是. 完系与最小非负完系: 在m 个模m 的剩余类中各任取一个数作为代表,这样的m 个数称为模m 的一个完全剩余系,简称完系. 例如:0,1,...,1m -是模m 的一个完系,这称作模m 的最小非负完系. 缩系与欧拉函数: 如果i 与m 互素,则同余类i M 中所有数都与m 互素,这样的同余类称为模m 的缩同余类. 模m 的 缩同余类的个数记作()m ?,称为欧拉函数. 在()m ?个缩同余类中各取一数为代表,这样的()m ?个数称为模m 的一个缩剩余系,简称缩系. 显然,(1)1?=,而对1m >,()m ?为1,2,...,1m -中与m 互素的数的个数, 特别地,对素数p ,有()1p p ?=-. 欧拉函数可以如下计算: 第12讲 初等数论 费马小定理与阶 12.1费马小定理

设1212k k m p p p ααα=???为m 的标准分解形式,则 11 1()(1)...(1)k m m p p ?=-- 此定理的证明较复杂,且远远超出了联赛要求,故略去.有兴趣同学可自行参考相关书籍. 显然,当(,)1m n =时,有()()()mn m n ???=. 完系与缩系的几个重要性质: 当(,)1a m =,b 为任意整数时: ⑴若12,,...,m c c c 是模m 的完系,那么12,,...,m ac b ac b ac b +++也是模m 的完系. ⑵若12(),,...,m r r r ?是模m 的缩系,那么12(),,...,m ar ar ar ?也是模m 的缩系. 欧拉定理与费马小定理: 欧拉定理:设(,)1a m =,则()1(mod )m a m ?≡. 费马小定理:设p 是素数,p a ?,则11(mod )p a p -≡. 费马小定理的另一形式:设p 是素数,则对任意整数a ,有(mod )p a a p ≡. (|p a 时,上式两端同余0;p a ?时,上式等价于费马小定理的上一形式) 阶: 设1m >是一个固定的整数,(,)1a m =,可以证明,存在整数(1)k k m ≤<,使得1(mod )k a m ≡,我们将具有这一性质的最小正整数k 称为a 模m 的阶.它具有极其锐利的性质: ⑴设(,)1a m =,k 是a 模m 的阶,,u v 是任意整数,则(mod )(mod )u v a a m u v k ≡?≡, 特别地,1(mod )|u a m k u ≡?; ⑵设(,)1a m =,k 是a 模m 的阶,则数列23,,,...a a a 模m 呈周期出现,且最小正周期为k . 数列前k 项模m 互不同余; ⑶设(,)1a m =,k 是a 模m 的阶,则|()k m ?,特别地,a 模素数p 的阶整除1p -. 事实上,我们在以前的很多题中都运用到了阶的思想,只不过是没有明确提出. 但是,确定a 模m 的阶通常是极为困难的,逐一计算23,,,...a a a 模m 的余数可以求得阶,利用上述的性质(3),可以使这一过程稍微加快一些.

欧拉定理

欧拉定理,又称费马-欧拉定理或欧拉函数定理,是同余的一个性质,以瑞士数学家莱昂哈德·欧拉的名字命名。 这个定理被认为是数学界最精彩的定理之一。在西方经济学中也被 称为产出分配的穷竭定理。这意味着在完全竞争的条件下,假设长 期和中期的回报不变,所有的产品刚好足够分配给各种要素。 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: 证明 将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然, 共有φ(n)个数) 我们考虑这么一些数: m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n) 1)这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定mS更大一些),就有: mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a与n的最大公因子是1,而xS-xR 2)这些数除n的余数都与n互质,因为如果余数与n有公因子r,那么a*xi=pn+qr=r(……),a*xi与n不互质,而这是不可能的。那么这些数除n的余数,都在x1,x2,x3……xφ(n)中,因为这是1~n 中与n互质的所有数,而余数又小于n. 由1)和2)可知,数m1,m2,m3……mφ(n)(如果将其次序重新排列)必须相应地同余于x1,x2,x3……xφ(n).

故得出:m1*m2*m3……mφ(n)≡x1*x2*x3……xφ(n) (mod n) 或者说a^[φ(n)]*(x1*x2*x3……xφ(n))≡x1*x2*x3……xφ(n) 或者为了方便:K{a^[φ(n)]-1}≡0 ( mod n ) 这里 K=x1*x2*x3……xφ(n)。 可知K{a^[φ(n)]-1}被n整除。但K中的因子x1,x2……都与n 互质,所以K与n互质。那么a^[φ(n)]-1必须能被n整除,即a^[φ(n)]-1≡0 (mod n),即a^[φ(n)]≡1 (mod n),得证。 费马小定理: a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p) 证明这个定理非常简单,由于p是质数,所以有φ(p) = p-1,代入欧拉定理即可证明。推论:对于任意正整数a,有a^p ≡ a (mod p),因为a能被p整除时结论显然成立。

欧拉定理

莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月地问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F 之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。

数论定理编辑 内容 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: 证明 将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数) 我们考虑这么一些数: m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n) 1)这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定mS更大一些),就有: mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a与n的最大公因子是1,而xS-xR

2017.12.15初等数论费马小定理与欧拉定理

第七讲 费马小定理与欧拉定理 2017.12.18 基础例题 1. 设n 是自然数,则n n n n 4321|5+++/ 2.设{x 1,x 2,x 3,…,()m x ?}为模m 的一个简化剩余系,则()()()mod 1321≡?m x x x x ? 3. 设a ,b ,c ,m 为自然数,m >1,(b ,m )=1,且()m b a m od 1≡,()m b c mod 1≡, 记()c a d ,=,则()m b d mod 1≡ 4. 设p 是素数,p |b n -1,n 为自然数,则下列两个结论中至少有一个成立: (1)p |b d -1对于某个因数d

11. 设p 是一个大于5的素数,求证:240|p 4-1 12. 设p 为素数.证明:存在无穷多个正整数n 使得()p n n mod 2≡ 13.(1)证明下列事实但不许用费马小定理:若p 是质数,h 1,h 2,…,h n 是整数,则(h 1+h 2+…+h n )p ≡h 1p +h 2p +…+h n p (mod p ) (2)由(1)证明费马定理,然后再由费马定理证明欧拉定理. 每周真题小练 1. (ELMO 2017)设H 为三角形ABC 的垂心,M 为边BC 的中点.以AH 为直径的圆上,有相异的两点P ,Q (P 、Q 两点均不与A 重合),满足M 位于直线PQ 上.证明:三角形APQ 的垂心位于三角形ABC 的外接圆上. 2.(命题人讲座) 设n 是一个大于1的奇数,数a 1,a 2,a 3,…,()n a ?是1,2,3,…, n 中与n 互素的所有正整数.证明() () n n k k n a ??π2 1cos 1 = ∏ =

数论论文-关于欧拉定理问题及其应用

关于欧拉定理问题及其应用 摘要:从欧拉定理的证明为切入口,探讨欧拉定理证明所体现数学思想方法,在此基础上探究其应用。 关键词:欧拉定理,数学思想方法,应用。 在初等数论中,关于欧拉定理问题的理解、应用以及体现出的数学思想方法是理解数学中其他知识的基础,但目前各种教材对这类问题的提出和总结的不够,尤其对它所体现的数学思想方法。为了加深对欧拉定理的有关理解,本文从欧拉定理的证明为切入口,探讨欧拉定理证明所体现数学思想方法,在此基础上探究其应用。 一、欧拉定理和其推论的证明 (一)欧拉定理的证明及其体现的数学思想方法 1.定理(Euler):设n是大于1的整数,(a,n)=1,则a^φ(n) ≡ 1 (mod n) 证明:首先证明下面这个命题: 对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是φ(n)个n的素数,且两两互素,即n 的一个化简剩余系,(或称简系,或称缩系), 考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn 1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此任意xi,a*xi(mod n) 必然是Zn的一个元素 2) 对于Zn中两个元素xi和xj,如果xi ≠ xj 则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。 所以,很明显,S=Zn 既然这样, (a*x1 ×a*x2×...×a*xφ(n))(mod n) = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n) = (x1 × x2 × ... ×xφ(n))(mod n) 考虑上面等式左边和右边 左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n) 右边等于x1 × x2 × ... ×xφ(n))(mod n)

费马小定理

欧拉定理和费马小定理 欧拉定理和费马小定理的证明: 欧拉定理的证明: 若()12,,,m a a a ? 跑遍模m 的简化剩余系,(),1a m =,()12,,,m a a a a a a ???? 也跑遍模m 的简化剩余系,可得 ()()() () ()() () 1 1 1 mod mod m m i i i i m m i i a a a m a a m ????===≡?≡?∏∏∏ 所以()()1mod m a m ?≡。▌ 费马小定理的证明: 费马小定理可以看作欧拉定理的直接推论。当m p =为质数时,立得 ()11mod p a p -≡, 其中(),1a p =。进一步的,易知若(),1a p ≠,即|p a 时,()0mod p a p ≡,所以费马小定理可以表述为以下一般形式:对任意正整数a ()mod p a a p ≡。▌ 事实上,在数学发展过程中,是先有费马小定理,后有欧拉定理。下面用这个思路完成两个定理的证明。 费马小定理的证明: 先证明一个重要结论:()()1212mod p p p p n n x x x x x x p +++≡+++ ,其中为任意整数。 先证2n =的情形,当21i p ≤≤-时,()! !! i p p C Z i p i = ∈-,由于p 是质数,所 以()!,1i p =,()()!,1p i p -=,进而()()!!1!i p i p --,所以()|21i m p C i p ≤≤-, 于是 () ()1 121212121 mod p p p p i p i i p p p i x x x x C x x x x p --=+=++≡+∑, 对于2n >的情形, () ()()()() 121121121mod p p n n n n p p n n x x x x x x x x x x x x p ---++++=++++≡++++

相关文档
最新文档