74第十二章 概率、随机变量及其分布 12.2 几何概型

74第十二章 概率、随机变量及其分布 12.2 几何概型
74第十二章 概率、随机变量及其分布 12.2 几何概型

§12.2几何概型

最新考纲考情考向分析

1.了解随机数的意义,能运用模

拟的方法估计概率.

2.了解几何概型的意义.

以理解几何概型的概念、概率公式为主,会求一些简

单的几何概型的概率,常与平面几何、线性规划、不

等式的解集、定积分等知识交汇考查.在高考中多以

选择、填空题的形式考查,难度为中档.

1.几何概型的定义

事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的成正比,而与A的和无关,满足以上条件的试验称为几何概型.

2.几何概型的概率公式

P(A)=

μA

μΩ,其中表示区域Ω的几何度量,表示子区域A的几何度量.

3.随机模拟方法

(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.

(2)用计算器或计算机模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=

M

N作为所求概率的近似值.

概念方法微思考

1.古典概型与几何概型有什么区别?

2.几何概型中线段的端点、图形的边框是否包含在内影响概率值吗?

题组一 思考辨析

1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( )

(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )

(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (4)随机模拟方法是以事件发生的频率估计概率.( ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( ) (6)从区间[1,10]内任取一个数,取到1的概率是P =1

9.( )

题组二 教材改编

2.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.1

4

D .1 3.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )

4.设不等式组?

????

0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标

原点的距离大于2的概率是( ) A.π4 B.π-22 C.π

6 D.4-π4 题组三 易错自纠

5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为5

6,则m =________.

6.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为______.

题型一 与长度、角度有关的几何概型

例1 在等腰Rt △ABC 中,直角顶点为C .

(1)在斜边AB 上任取一点M ,求|AM |<|AC |的概率;

(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求|AM |<|AC |的概率.

跟踪训练1 (1)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.

(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧

?DE

,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.

题型二 与面积有关的几何概型

命题点1 与面积有关的几何概型的计算

例2 (1)(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )

A.14

B.π8

C.12

D.π4

(2)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率为________.

命题点2 随机模拟

例3 (1)如图所示,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据估计椭圆的面积为( )

A .7.68

B .8.68

C .16.32

D .17.32

(2)若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数: 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该运动员射击4次至少击中3次的概率为________.

跟踪训练2 (1)(2016·全国Ⅱ)从区间[0,1]内随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n

(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.

题型三 与体积有关的几何概型

例4 已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于2

3的概率为________.

跟踪训练3 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3π D.233π

1.(2018·抚顺模拟)已知函数f (x )=x 2-x -2,x ∈[-3,3],在定义域内任取一点x 0,使f (x 0)≤0

的概率是( ) A.13 B.23 C.12 D.16

2.在区间[-1,3]上随机取一个数x ,若x 满足|x |≤m 的概率为1

2,则实数m 为( )

A .0

B .1

C .2

D .3

3.若正方形ABCD 的边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于( ) A.132 B.78 C.38 D.18

4.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π

3,若在

圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )

A .2-33

π

B .4-63

π

C .-13-32π

D.23

5.如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )

A.1+2π

B.1+22π

C.1π

D.12π

6.我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图所示是赵爽的弦图.弦图是一个勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A.866 B.500 C.300 D.134

7.记函数f(x)=6+x-x2的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是________.

8.在等腰直角三角形ABC中,∠C=90°,在直角边BC上任取一点M,则∠CAM<30°的概率是________.

9.如图,在长方体ABCD—A1B1C1D1中,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为______.

10.正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y =x2上,如图所示.若将一个质点随机投入到正方形ABCD中,则质点落在图中阴影区域的概率是______.

11.已知向量a=(-2,1),b=(x,y).

(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;

(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.

12.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.

13.在长为1的线段上任取两点,则这两点之间的距离小于1

2

的概率为________;

14.向圆C :(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.

15.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥13”的概率,p 2为事件“|x -y |≤13”

的概率,p 3为事件“xy ≤1

3”的概率,则( )

A .p 1

B .p 2

C .p 3

D .p 3

16.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,求此点取自空白部分的概率.

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

10.二维连续型随机变量

10.二维连续型随机变量 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第三章第§1 中的二维连续型随机变量 【教材分析】:前一章我们已经研究了一维随机变量的一些有关概念、性质和计算,本节将这些内容推广到多维的情形,主要讲授二维的连续型随机变量,学习本节内容,要求学生掌握有关概念,并会对一些随机变量进行有关的计算。 【学情分析】: 1、知识经验分析 学生已经学习了一维随机变量的有关概念、性质和计算,掌握了随机变量的相关知识。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能 理解二维连续随机变量的联合密度函数的概念,会进行一些相关的计算,并熟练掌握几种常见的二维分布。 2、过程与方法 根据本节课的知识特点,教学中采用类比和启发式教学法,将一维连续型随机变量的概率密度函数转化二维连续随机变量的联合密度函数。 3、情感态度与价值观 将一维连续型随机变量的概率密度函数转化二维连续随机变量的联合密度函数的学习过程中,使得学生初步形成实事求是的科学态度和锲而不舍的求学精神 【教学重点、难点】: 重点:二维连续型随机变量的概念和性质,并对一些随机变量进行有关计算。 难点:对一些随机变量进行有关计算。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入(复习)

定义 如果对于随机变量X 的分布函数)(x F ,存在非负可积函数)(x f ,使得对于任意实数x 有 .)(}{)(? ∞ -= ≤=x dt t f x X P x F 则称X 为连续型随机变量, 称)(x f 为X 的概率密度函数,简称为概率密度或密度函数。 密度函数)(x f 具有下述性质: (1)非负性0)(≥x f (1)规范性 ? ∞+∞ -=1)(dx x f (3)对于任意实数()1212,x x x x ≤ 1{}P x X x <≤11221(())()()()x x P x F x F x p y dy ξω≤<=-=? 2 1 )(x x dx x f (4)0}{0==x X p (5)若)(x f 在点x 处连续,则有 '()()F x f x = (由()()x F x f y dy -∞ = ? 式可知,对()f x 的连续点) 【设计意图】:采用类比的方法将一维连续型随机变量的概率密度函数转化二维连续随机变量的联合密度函数的问题,使学生掌握转化,类比的思想。 二、二维连续型随机变量 定义1 如果存在二元非负函数(,)f x y ,使得二维随机变量(,)X Y 的分布函数(,)F x y 可表示为 (,)(,),x y F x y f u v dvdu -∞-∞ =? ? 则称(,)X Y 为二维连续随机变量,称(,)f x y 为(,)X Y 的联合密度函数。 注 在偏导数存在的点上,有2(,)(,)p x y F x y x y ?=??。 联合密度函数的基本性质 2(,)012(,)1 (,)3(,)4((,))(,)G f x y f x y dxdy x y F f x y x y P x y f x y dxdy G ∞∞ -∞-∞ ≥=?=??∈=? ? ??()()() ()

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.360docs.net/doc/fa3583314.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

二维随机变量及其分布题目

一、单项选择题 1.设随机变量21,X X 独立,且2 1 }1{}0{= ===i i X P X P (2,1=i ),那么下列结论正确的是 ( ) A .21X X = B .1}{21==X X P C .2 1 }{21= =X X P D .以上都不正确 2设X 与Y 相互独立,X 服从参数为12的0—1分布,Y 服从参数为1 3 的0—1分布,则方程 220t Xt Y ++=中t 有相同实根的概率为 (A ) 13 (B )12 (C )16 (D )2 3 [] 3.设二维随机变量(X ,Y )的概率密度为 ()22 ,02,14, (,)0, .k x y x y f x y ?+<<<

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

二维随机变量及其概率分布

1 第三章二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质 (1)F(x,y)分别关于x 和y 单调不减. (2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1

随机变量的概率分布

随机变量的概率分布 一、填空题 1.某射手射击所得环数X 的概率分布为 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 0.79 2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=1 3. 答案 1 3 3.(优质试题·常州期末)设X 是一个离散型随机变量,其概率分布为: 则q 的值为________解析 由概率分布的性质知??? ?? 2-3q ≥0, q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 32-33 6 4.设离散型随机变量X 的概率分布为

解析由概率分布的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案0.5 5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则“放回5个红球”事件可以表示为________. 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案ξ=6 6.(优质试题·南通调研)从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是________. 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布 问题,故所求概率为P=C23C14 C37= 12 35. 答案12 35 7.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 解析设X取x1,x2,x3时的概率分辊为a-b,a,a+d,则(a-d)+a+(a

自考概率论与数理统计多维随机变量及其概率分布

第三章多维随机变量及其概率分布 内容介绍 本章讨论多维随机变量的问题,重点讨论二维随机变量及其概率分布。 考点分析 内容讲解 §3.1多维随机变量的概念 1. 维随机变量的概念: 个随机变量,,…,构成的整体=(,,…,)称为一个维随机变量, 称为的第个分量(). 2.二维随机变量分布函数的概念: 设(,)为一个二维随机变量,记 ,,, 称二元函数为二维随机变量(,)的联合分布函数,或称为(,)的分布函数. 记函数= =, 则称函数和为二维随机变量(,)的两个分量和的边缘分布函数. 3. 二维随机变量分布函数的性质: (1)是变量(或)的不减函数;

(2)01,对任意给定的,;对任意给定的,; ,; (3)关于和关于均右连续,即. (4)对任意给定的,有 . 例题1. P62 【例3-1】判断二元函数是不是某二维随机变量的分布函数。【答疑编号12030101】

解:我们取, = 1-1-1+0=-1<0,不满足第4条性质,所以不是。 4.二维离散型随机变量 (1)定义:若二维随机变量(X,Y)只取有限多对或可列无穷多对(),(=1,2,…),则称(X,Y)为二维离散型随机变量. (2)分布律: ① 设二维随机变量(X,Y)的所有可能取值为(),(=1,2,…),(X,Y)的各个可能取值的概率为 ,(=1,2,…), 称,(=1,2,…)为(X,Y)的分布律. (X,Y)的分布律还可以写成如下列表形式

②(X,Y)分布律的性质 [1] ,(=1,2,…); [2] 例题2. P62 【例3-2】设(X,Y)的分布律为 求a的值。 【答疑编号12030102】 解:

03第三讲 二维随机变量的概率分布

第三讲 二维随机变量的概率分布 考纲要求 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、二维随机变量的概率分布 问题1 何谓二维随机变量的联合分布函数?何谓二维随机变量的边缘分布函数? 答 1.二维随机变量),(Y X 的联合分布函数{}(,),F x y P X x Y y =≤≤,即),(Y X 的取值落在无穷矩形域(,](,]x y -∞?-∞内的概率. 二维随机变量的联合分布函数具有如下性质: ⑴0(,)1F x y ≤≤; ⑵(,)(,)(,)0F F y F x -∞-∞=-∞=-∞=,(,)1F +∞+∞=; ⑶(,)F x y 关于x (关于y )单调不减; ⑷(,)F x y 关于x (关于y )右连续. 2.二维随机变量),(Y X 关于X 的边缘分布函数 {}{}(),(,)lim (,)X y F x P X x P X x Y F x F x y →+∞ =≤=≤<+∞=+∞=. 二维随机变量),(Y X 关于Y 的边缘分布函数 {}{}(),(,)lim (,)Y x F y P Y y P X Y y F y F x y →+∞ =≤=<+∞≤=+∞=. 问题2 何谓二维离散型随机变量联合分布、边缘分布和条件分布? 答 ⑴联合分布 设二维离散随机变量(,)X Y 的所有可能值为(,),,1,2,i j x y i j = ,则称 {},(,1,2,)i j ij P X x Y y p i j ==== 为二维离散随机变量(,)X Y 的联合分布律,其中 01ij p ≤≤,1 1 1ij i j p ∞ ∞ ===∑ ∑ . ⑵边缘分布

随机变量及其概率分布、超几何分布

随机变量及其概率分布、超几何分布 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.设X 则q的值为________ 2.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X,则X的所有可能取值个数为________. 3.已知随机变量ξ的分布列为P(ξ=k)=a 2k ,k=1,2,3,4.则P(2<ξ≤4) =________. 5.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,若P(X=k)=C4 7 C6 8 C10 15 ,则k=________. 6

7.某电子管正品率为34,次品率为1 4 ,现对该批电子管有放回地进行测试, 设第ξ次首次测到正品,则P (ξ=3)=______. 8.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=_______. 二、解答题(共42分) 9.(12分)袋中有同样的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求随机变量ξ的概率分布. 10.(14分)设离散型随机变量ξ的分布列P ? ? ???ξ=k 5=ak ,k =1,2,3,4,5. (1)求常数a 的值;(2)求P ? ? ???ξ≥35; (3)求P ? ????1 10 <ξ<710. 11.(16分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)用ξ表示抽检的6件产品中二等品的件数,求ξ的概率分布; (2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.

《2.1 随机变量及其概率分布》教案

《2.1 随机变量及其概率分布》教案 教学目标: 1?理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2?掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3. 理解三个分布的意义. 教学重点: 离散型随机变量的分布列的意义及基本性质. 教学难点: 分布列的求法和性质的应用. 教学过程; 一.复习引入: 1.随机变量 2.随机变量常见的类型 二?离散型随机变量及其分布: 1. 如果离散型随机变量X的所有可能取得值为x1,x2,…,x n;X取每一个值x i(i=1,2,…,n)的概率为p1,p2,…,p n,则称表 2. 离散型随机变量的分布列的两个性质: ⑴; ⑵. 例:某人射击4发子弹,击中目标则停止射击或直至射击完毕,该人每次击中目标的概率为0.8,求(1)该人射击子弹的分布列;(2)P{X<3},P{1

2.二项分布 定义若随机变量X的可能取值为0,1,…,n,而X的分布律为 其中0

相关文档
最新文档