沸腾焙烧炉设计相关计算

合集下载

沸腾炉常用参数范文

沸腾炉常用参数范文

沸腾炉常用参数范文沸腾炉是一种在实验室中常用的实验装置,主要用于加热和蒸馏液体样品。

以下是沸腾炉常用的参数:1.温度控制:沸腾炉的温度控制是其中最关键的参数之一、常见的温度控制方式有以下几种:-机械式控制:通过旋钮或按钮调节加热功率,从而控制温度。

-数字控制:沸腾炉配有数字温度控制器,可以设置目标温度并自动控制加热功率。

-程序控制:一些高级的沸腾炉配备有程序控制功能,可以设置多个温度阶段,每个阶段的加热时间和温度都可以单独设定。

2.加热功率:沸腾炉的加热功率通常用瓦特(W)或千瓦(kW)表示。

加热功率的大小直接影响到样品加热速度和温度控制的精确性。

一般来说,加热功率越大,样品加热速度越快。

3.容量:沸腾炉的容量指的是其加热盘的直径或面积。

容量的大小取决于所需加热的样品容量以及容器的尺寸。

通常,沸腾炉的容量在几毫升到几升之间。

4.加热盘材料:沸腾炉的加热盘通常采用不锈钢或铝材料制成。

不锈钢加热盘具有耐腐蚀、易清洁的特点,较为常见。

铝加热盘轻便,散热性好,适合于一些需要快速加热的实验。

5.稳定性:沸腾炉的稳定性是指在设定温度下的温度变化范围。

较好的沸腾炉具有较小的温度波动范围,可以保持样品稳定的温度。

6.安全措施:沸腾炉通常配备有多种安全措施,以确保实验过程的安全性。

-定时器:设定加热时间,避免长时间未关闭加热功率。

-过温保护:设置过温保护装置,当超过设定的最高温度时自动关闭加热功率。

-倾倒保护:一些沸腾炉配备有倾倒保护装置,当沸腾炉发生倾斜或倒地时自动停止加热。

7.应用范围:沸腾炉常用于常压或减压条件下的加热、蒸馏、浓缩、溶剂回收等实验。

具体的应用范围取决于沸腾炉的设计和功能。

总结起来,沸腾炉的常用参数包括温度控制方式、加热功率、容量、加热盘材料、稳定性、安全措施和应用范围等。

根据实验需要选择合适的沸腾炉参数会提高实验的效率和安全性。

浅谈沸腾炉的设计

浅谈沸腾炉的设计

浅谈沸腾炉的设计、使用要点工业原、燃材料、半成品、成品为了下道工序的更好制备、储存,大多要进行烘干,大规模的工业生产,必然采用烘干设备。

烘干系统使用效果的好坏,不仅体现在本体设计上的周密、统盘考虑,比如较低的热损失、料气的充分交换;还要考虑系统中的众多因素,使之达到最佳结合。

热风炉的选择、设计、使用就是很重要的环节。

一、热风炉的选择热风炉是烘干系统的热量来源。

热风炉热效率高低取决于热烟气的输入量和介质温度,实际应用中热风炉有多种形式。

手烧炉:由人工手动喂煤,可直接燃烧 50mm 以下的粒状煤,需不断的进煤、清渣,工人劳动强度大,大量冷风带入炉内,燃烧过程不稳定、炉内烟气温度低、不完全燃烧损失大,造成煤耗高、热效率低、供热量小。

喷煤炉:对火烟深度控制要求严格,火焰过深,则容易烧坏烘干机内部筒体及扬料板,甚至改变物料的物性;过短,则烟气进入烘干机的温度不足,烘干能力变差。

此外,对煤质及细度要求严格,燃烧不稳定,操作难度大。

燃油(气)炉:利用油、气作为燃料,优点是燃尽率高,易于操作。

缺点是对操作的要求,优其是对安全的要求极高,严禁泄漏,,以防爆炸。

沸腾炉:它介于层燃和悬浮状燃烧之间,燃烧时呈沸腾状态,具有强化燃烧、传热效果好、结构简单、可燃烧劣质燃料等优点。

但传统沸腾炉由于局部结构设计不合理,直角部分多,使用寿命短,炉内易结渣,涡流现象严重,煤耗较高,燃烧温度偏低。

节煤型高温沸腾炉:是我所在传统沸腾炉的基础上进行整体改型和优化设计的一种KF新炉型。

其采用小炉床整体框架结构,炉床容积较常规缩小,炉体结构更加稳固,大大提高了炉体的使用寿命和单位容积热强度;减少了尖锐直角,降低了结渣频率,能够在原有沸腾炉的基础上节煤 40 ~ 60% ,炉温大幅度提升并可自由控制,进一步放宽了对劣质煤的适应程度。

几种炉型的技术经济指标对比见表 1 ,单位容积热强度对比见表 2 。

表 1 不同燃烧方式的技术经济指标比较炉型煤低位热值 /c aγ/ kg燃烧温度℃灰渣含碳量%煤耗kg/t投资 /万元层燃式手烧炉5000 600 18 40 8 喷燃式煤粉炉6000 900 12 30 12 普通沸腾炉4500 700 8 28 16 节煤型沸腾炉3000 1100 4 18 16表 2 几种炉型炉膛容积热强度比较炉型q v ( kW/m 3 )煤粉炉175~233抛煤机炉233~291普通沸腾炉930~1170节煤型沸腾炉1350~1861燃油炉291~349高炉煤气燃气炉233~349节煤型高温沸腾炉因对燃煤的适应性强,能燃烧劣质煤,操作简单,节煤显著而为众多企业所选用。

沸腾炉初步设计方案

沸腾炉初步设计方案

沸腾炉初步设计方案沸腾炉是一种常用的热交换设备,通常用于加热或冷却各种流体。

它的工作原理是通过将一定量的流体加热到沸点,使其产生沸腾状态,从而实现传热的目的。

在这篇文章中,将从沸腾炉的工作原理、设计参数、结构设计和安全措施等方面进行详细的介绍,并提出一个初步的设计方案。

沸腾炉的工作原理是利用流体在加热的过程中产生的沸腾现象来传热。

沸腾现象是指当流体受热至其饱和温度以上时,由于压力降低,使流体中的液体部分迅速蒸发形成气泡,并在液体表面聚集形成气泡层。

气泡层具有很高的传热系数,可以快速将热量传递到流体中,从而实现传热的目的。

设计沸腾炉需要考虑的参数包括流体的性质、流量、温度差以及所需的传热量等。

流体的性质决定了其饱和温度和传热系数,不同的流体传热特性也不同,因此在设计过程中需要根据实际情况进行合理选择。

流量是指流体在单位时间内通过沸腾炉的体积或质量,通常需要根据传热需求和设备的承载能力来确定。

温度差是指流体进出口之间的温度差异,通常越大传热效果越好,但也需要根据实际情况进行合理考虑。

传热量则取决于流体的质量、温度差以及传热系数等。

在沸腾炉的结构设计上,主要包括加热区、沸腾区和冷却区。

加热区通常采用电加热器或燃气加热器等方式将流体加热至饱和温度以上,使其进入沸腾区。

沸腾区通常由一组管道和加热板组成,通过液体与加热板的接触来实现沸腾现象。

冷却区则通过冷却介质的流动将加热后的流体冷却至所需温度。

为了确保沸腾炉的安全运行,需要采取一系列的安全措施。

首先,在设计上要确保设备具有足够的强度和稳定性,以承受内部压力和温度的变化。

其次,在操作过程中需要严格控制流体的流量和温度,避免过载运行和温度过高等状况。

同时,设备的维护保养也十分重要,定期检查和清洗设备,确保其正常运行。

基于以上原理和要求,初步的沸腾炉设计方案如下:1.设备结构:沸腾炉采用立式设计,由加热区、沸腾区和冷却区组成,整体结构简单紧凑。

2.材料选择:设备主要采用不锈钢材料,具有良好的耐腐蚀性和高强度,确保设备的长期稳定运行。

沸腾炉初步设计方案

沸腾炉初步设计方案

沸腾炉初步设计方案一、沸腾炉的概述 .................................................................................................... - 1 - 1、沸腾炉的简介................................................................................................ - 1 - 2、工作原理........................................................................................................ - 1 - 3、结构和工作过程............................................................................................ - 1 - 4、特点............................................................................................................... - 2 - 5、沸腾炉的用途.............................................................................................. - 2 - 二、设计基本参数 .................................................................................................... - 3 - 三、沸腾炉的计算与效果 ........................................................................................ - 3 - 1、沸腾炉结构.................................................................................................... - 3 - 2、沸腾炉具有以下特点.................................................................................... - 4 - 3、炉床布风板有效面积F布(m2)的计算: ...................................................... - 4 - 4、风帽的计算.................................................................................................... - 5 - 5、炉膛扩散段截面积F扩 (m2)的计算: ......................................................... - 6 - 6、悬浮段截面积F悬(m2)的计算: ..................................................................... - 7 - 7、风量风压的计算............................................................................................ - 7 - 8、风机的选择.................................................................................................... - 7 - 四、操作与应用 ........................................................................................................ - 8 - 1、快速点火过程................................................................................................ - 8 - 2、稳定燃烧过程................................................................................................ - 8 - 3、结渣的处理.................................................................................................... - 8 - 4、闷火与起火.................................................................................................... - 9 - 五、具体尺寸的设计 ................................................................................................ - 9 - 1、垂直段的高度................................................................................................ - 9 - 2、悬浮段高度的确定........................................................................................ - 9 - 3、风室的结构.................................................................................................... - 9 - 4、进料装置...................................................................................................... - 10 -一、沸腾炉的概述1、沸腾炉的简介沸腾锅炉的工作原理是将破碎到一定粒度的煤末,用风吹起,在炉膛的一定高度上成沸腾状燃烧。煤在沸腾炉中的燃烧,既不是在炉排上进行的,也不是像煤粉炉那样悬浮在空间燃烧,而是在沸腾炉料床上进行的。沸腾炉的突出优点是,对煤种适应性广,可燃烧烟煤、无烟煤、褐煤和煤矸石。它的另一个好处在于使燃料燃烧充分,从而提高燃料的利用率。沸腾料层的平均温度一般在850一1050℃,料层很厚,相当于一个大蓄热池,其中燃料仅占5%左右,新加入的煤粒进入料层后就和温度高几十倍的灼热颗粒混合,因此能很快燃烧,故可应用煤矸石代替。生产实践表明,利用含灰分高达70%、发热量仅7.54MJ/kg的煤矸石,锅炉运行正常.40%一50%的热可直接从床层接收。2、工作原理固体燃料在炉内被向上流动的气流托起,在一定的高度范围内作上下翻滚运动,并以流态化(或称沸腾)状态进行燃烧的炉膛,又称流化床燃烧炉。沸腾燃烧方式也用于其他的炉窑中。沸腾燃烧方式的特点既不像在层燃炉中那样将固体燃料静止地放在炉排上燃烧;也不像在室燃炉中那样将液体、气体或磨成细粉状的固体燃料悬浮在炉膛空间中燃烧,而是把固体燃料破碎成一定粒度的粉末,使之在炉内以类似沸腾的状态燃烧。在中国,沸腾炉用煤的粒度一般为8毫米以下。3、结构和工作过程常用沸腾炉燃烧室的典型结构包括布风系统、沸腾床、进料和排渣系统3个部分。①布风系统。燃烧室底部为布风板,板上直接开孔或装许多带通风小孔的风帽。布风板的作用是承载料层并使空气上升速度沿炉内截面分布均匀。②沸腾床。布风板上放置一定量的床料(包括固体燃料和大量的灰渣或石灰石颗粒)。运行时,当料层中的空气达到一定上升速度时,沸腾床上的床料便从静止状态转入沸腾状态,这一风速称为临界沸腾风速。为了保持剧烈的沸腾燃烧工况,沸腾炉正常运行时的风速要比临界沸腾风速大,使料层膨胀到一定高度。床料沸腾高度约为静止料层的两倍,在此容积的燃料呈沸腾状态,故称为沸腾床,小颗粒则被气流带出炉外。布置在料层中的管子称为埋管,可以垂直、水平或倾斜放置。管内可通以水、蒸汽或空气以吸收燃料在床中燃烧所释放出来的热量,使床温保持在800~1000℃。③进料和排渣系统。一定粒度范围的燃煤从煤仓经给煤机送入料层内,燃尽的煤渣一般从溢流口排出。4、特点与一般锅炉的炉膛比较,常压沸腾炉的优点是:①不但能烧优质煤,也能烧一般炉排炉和室燃炉不能烧的各类劣质煤;②床内埋管的传热效果很好,约为普通锅炉管子的5~10倍;③由于沸腾床燃烧温度低,烟气中NOX的生成量少,如在进料中适量加入石灰石或白云石,即可将煤中硫分脱除,使排烟中SO2的含量下降。沸腾炉的缺点是:①沸腾床中细颗粒燃料容易被烟气带出,所以未燃尽损失大,燃烧效率比室燃炉低;②烟气中飞灰较多,锅炉受热面容易发生磨损;③鼓风所需的送风机风压高,故耗电量大;④沸腾床内给煤和布置埋管难以均匀。⑤烧高灰分劣质煤时,为了不使大量飞灰污染环境,必须配备高效率大容量的除灰装置。由于以上原因,发展大容量的沸腾炉锅炉尚有困难。5、沸腾炉的用途民用:集中供热及烘烤系统工业:水泥行业烘干;接触法制硫酸,作为FeS制SO2的发生装置等二、设计基本参数沸腾炉基本参数表三、沸腾炉的计算与效果1、沸腾炉结构沸腾炉结构由炉床、1.进料口2.排渣管3.均风箱4.布风板5.炉门6. 风帽图中,炉床部分包括均风箱、布风板、风帽、出渣口等;炉膛部分包括垂直段、扩散段、悬浮段及炉门。沸腾炉的设计,从结构上充分满足了流体力学和热力学原理。沸腾炉的燃料采用从炉门上方呈正负压分界处喂入的结构,可促使燃料和热渣均匀混合及充分燃烧。也有利于热烟气在扩散段释放并由风机抽入换热装置混合。沸腾炉的炉门设为一个,作看火、调火和检修使用,炉门需方便耐火砖活砌或出现结渣时打开清理,避免操作人员在高温下进入炉内清理结渣,即方便又安全。小炉床的设计保证了节煤这一基本要素,其炉床面积比一般沸腾炉减小1/3,单位时间加煤量减小30%,因此节煤效果明显、操作方便。2、 沸腾炉具有以下特点(1) 燃料在沸腾炉中呈沸腾状态,燃烧层正常燃烧的温度为850~1100℃。而风动气垫层温度较低,一般在200~300℃,但因料层很厚,沸腾床能长时间闷火,蓄热能量大;(2) 由于鼓入高压空气,使炉内空气过量系数高,形成强氧燃烧,燃烧和燃尽条件好;(3) 沸腾层内受热面积大,传热强烈,易于燃烧。因此炉膛内单位容积热强度高,达到6.3~8.4×105k J /m 3·h;(4) 用煤量少。垂直段仅以5%的煤燃烧,其余95%均为热渣,节煤效果好;(5) 炉床面积小,使燃料的沸腾高度及风压、风速增加,司炉工操作更容易,对异常情况特别是结渣的早期处理更及时;(6) 设计采用较厚的保温层,可减少炉体热散失,炉温变化较小,有利于延长炉体的使用寿命;3、 炉床布风板有效面积F 布 (m 2)的计算:F 布 = 垂沸计V a L B O 3600⨯⨯ ……………(1) 式中:B 计 –– 计算小时耗煤量,kg/h;L O ––理论燃烧空气消耗量,m 3 标 煤/kg;a 沸 ––沸腾区过量空气系数,取1.15;V 垂 ––垂直段底部冷态空气流速取0.8m/s 。B 计=QLP 炉 P 炉 — 沸腾炉的功率1500Mj--2000Mj,为了方便计算取平均值1740 Mj; QL — 燃煤的低位热值11514Kj/㎏。B 计=10001151410000001750⨯⨯=153 kg/h 理论空气需要量(L0)的计算当QL<12546kJ/kg(劣质煤), L0=QL/4140+0.455[m3(标)/kg] L0=QL/4140+0.455=11514÷4140+0.455=3.236[m3(标)/kg]F布 = 8.0360015 .1236.3153⨯⨯⨯=0.1977㎡计算的,布风板的有效直径圆整后为500㎜4、风帽的计算风帽的总通风面积Σf帽为单个风帽通风面积f帽的总和。单个风帽通风面积f帽的计算如式2:Σf帽 =帽沸计V aL B O 3600⨯⨯ (2)式中:V帽––通过风帽小孔的风速,m/s;风帽的小孔风速约30~45 m/s才能使沸腾段的10㎜的煤炭处于悬浮状态,取V帽40 m/s;f帽––每个风帽小孔的通风面积,m2。Σf帽 =帽沸计V aL B O 3600⨯⨯=40360015 .1236.3153⨯⨯⨯=0.003954㎡花板是由钢板或铸铁板制成的多孔平板,用它来固定风帽,并使之按一定方式排列,以求达到均匀布风。花板的尺寸应与炉膛相应部位的内截面相适应,厚度为20~35毫米(mm)左右。风帽插孔一般按等边三角形布置,孔距为风帽直径的1.3~1.7倍,帽沿间的最小间距不得小于20毫米(mm)。风帽有菌形(蘑菇形)、柱形、球形和伞形等形式。其中应用最广的是菌形风帽。柱形风帽是目前应用较多的一种新型的风帽。菌形风帽,风帽颈部钻有直径6~8毫米(mm)的小孔6~8个。小孔可以是水平的,也可以钻成向下倾斜15°的斜孔。这种风帽的阻力小,工作性能良好,但结构稍较复杂,清渣较为困难,在帽沿处经常出现卡渣现象。此外,风帽菌头部分冷却面不够,容易出现氧化烧穿等现象。这种风帽逐渐被柱形风帽所取代。柱形风帽,由于取消了帽沿,因而尺寸更小,构造也更简单,并且还克服了菌形风帽的一些缺点,因此工作性能更为良好。采用菌形风帽,风帽颈部钻有直径6~8毫米(mm)的小孔6~8个。小孔可以是水平的,也可以钻成向下倾斜15°的斜孔在计算时取每个风帽的小孔的直径为6 mm,小孔数为8个可得,风帽的个数为约为18个。风帽的开孔率的计算:开孔率%=Σf帽/F×100%=2.01%布风板风帽布置图5、炉膛扩散段截面积F扩 (m2)的计算:F扩=扩扩计V aV B g 3600⨯⨯ (3)式中:V g—燃烧生成的烟气量,m3标煤/kg;a扩––扩散段过剩空气系数,取1.3;V扩––扩散段冷态风速m/s,取0.45m/s。实际烟气量的计算Qy当QL<12546kJ/kg(劣质煤),V g =1.04 ×QL/4187+0.54+1.0161(α-1) L0[m3(标)/kg]α —过剩空气系数, α = α 0+Δ α(沸腾炉剩空气系数1.25);α 0炉膛过量空气系数;Δ α炉膛漏风系数;V g =1.04×11514/4187+0.54+1.0161(1.25-1)×3.236=4.222[m3(标)/kg]F 扩 = 扩扩计V a V B g 3600⨯⨯=45.036003.1222.4153⨯⨯⨯=0.518㎡ 6、 悬浮段截面积F 悬(m 2)的计算: F 悬 =悬悬计V a V B g 3600⨯⨯ …………(4) 式中:a 悬 –– 悬浮段过剩空气系数,取1.5;V 悬 –– 悬浮段冷态风速,取0.45m/s 。F 悬 = 悬悬计V a V B g 3600⨯⨯=45.036005.1222.4153⨯⨯⨯=0.59812㎡ 7、 风量风压的计算能达到沸腾燃烧状态所需的鼓风量Q (m 3/h)和风压P (Pa mmH 2O)的计算: Q = n .f 帽.V 帽 .K (5)==0.003954×40×1.3×3600==740 m 3/hP = 9.8 K (P 风 + P 渣 )×地P 760 …(6) 式中:n –– 炉床上实际风帽个数P 风 –– 鼓风系统阻力:风管阻力取196 Pa(20mmH 2O),风帽阻力取1766 Pa(180 mmH 2O);P 渣 ––沸腾炉床的渣层阻力:渣厚500mm 时取3924 Pa(400mmH 2O); P 地 ––当地大气压,昆明地区约610㎜Hg;K –– 储备系数,取1.3;P =9.8×1.3×(20+180+400)×610760=9524 Pa 8、 风机的选择在选择风机时,可根据计算求得的风量和风压,适当增加20%确定其规格型号。风机的功率P(kw)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)风机效率可取0.719至0.8;机械传动效率对于三角带传动取0.95,对于联轴器传动取0.98。P=740×(1+20%)×9524(1+20%)/(3600×0.8×0.98)=888×11428.8/2822.4=3595.8w四、操作与应用沸腾炉作为系统的热源,其操作技术要求较高,特别是在新炉调试及试运转过程中,若操作不熟悉或没有掌握正确的操作方法,例如用风、加煤不当,很容易出现低温结小渣,高温结大块和熄火、点火时间过长等现象。因此,既要求加强司炉工的操作技术尤其是在调试和试运转过程的培训,掌握操作方法,也需根据工艺及设备等生产实际情况因地制宜的确定操作参数,制定操作规程。着重应注意以下几个操作环节。1、快速点火过程节煤型沸腾炉由于炉床面积小,保温性能好,因此点火较一般沸腾炉容易。首先将沸腾炉内填放部分中粗粒黄砂或沸腾炉渣,加入少量碎煤拌和均匀,填于炉床,填料厚度约300~400mm,用高压风机吹起几次,用大小基本均匀的木材引火,并在其燃至木炭状时加入少量碎煤,同时迅速以大风量供风,继而改用小风适度吹养。如此反复2~3次,直到沸腾炉渣逐步呈红色后再加少量碎煤,用中等风量吹至其完全沸腾燃烧,打开引风机即进入正常燃烧状态。2、稳定燃烧过程正常燃烧过程中,可依据炉内火焰的颜色来决定是否调整加风或加煤量。炉内的炉渣高度应保持在550~650mm,风压应稳定在700~800mmH2O,炉火呈粉红色。若炉内热渣呈暗红色,说明温度偏低,需加入燃料,热渣呈白色时,则温度过高,需加大风量并加入冷渣降温。3、结渣的处理结渣类型分为低温结渣和高温结渣,其处理方法各不相同。低温结渣,在点火或闷火时易出现低温结小块现象,此时应首先急吹几次,将其冲散,然后人工清除较大块结渣,加少量煤养火后,继续燃烧;高温结渣时,如出现炉床面不沸腾或多处小孔喷火,表明已形成高温结大块,此时先停止加煤,然后加大风量吹冷结渣,打开炉门,将大块炉渣清除,填渣后利用炉温重新起火。4、闷火与起火闷火前首先关闭喂煤机,高压风机送风吹动炉内热渣翻腾,同时观察炉膛渣粒表层或煤粒的颜色。若呈白色状应继续吹风至冷,使其变为暗红色时停止高压风机、关闭调风阀,保持炉渣高度约500~600mm,最后关闭引风机。起火前先加少量煤,再开高压风机,用大风将炉渣完全沸腾后,立即换小风喷吹,若沸腾渣呈暗黑色,即加大喂煤量,同时用大、小风量交替喷吹。也可用交替开闭高压风机风阀的方法来控制起火状态,开则吹风,闭则养火,这样反复几次,至到炉膛内的炉渣呈红色,即转入正常燃烧阶段。五、具体尺寸的设计1、垂直段的高度垂直段高度一般取300 ~ 600 ㎜,煤矿的粒度大、密度大时取高值。在这里取500㎜。2、悬浮段高度的确定悬浮段高度的确定悬浮段高度一般根据满足细小颗粒的空间分离高度来确定,在此高度带出悬浮段的飞灰量趋于恒定。悬浮段高度与沸腾炉规格有关,大型沸腾炉一般在2.5~3.5m之间;小沸腾炉则取2.0~3.0m为宜。设计时取2m。3、风室的结构风室的结构对布风的均匀性有一定的影响。目前,风室结构已有很多种,但是结构简单,使用效果最好的却是等压风室。等压风室的结构特点是有一个倾斜的底面,能使风室内的静压沿深度保持不变,因而有利于提高风量分配的均匀性。为了稳定风室气流,在斜底以上须留出一个稳定段。稳定段的高度D不宜小于500毫米(mm)。同时风室的进口风速也须加以控制,使之不超过10m/s。风室中水平风速要低些,一般为1~1.5m/s。4、进料装置根据炉膛中进料口所处部位的不同,进料方式分为正压进料和负压进料两种。进料口设在正压区(溢流口以下)者,称为正压进料;进料口设在负压区(溢流口以上)者,称为负压进料。正压进料时,全部燃料经过高温沸腾炉,有利于细粒燃料燃尽,因而可以降低飞灰带走的损失。但进料口必须密封严密,且新燃料在进料口处容易堆积。正压进料一般采用机械进料装置,如采用螺旋给煤机等。由于进料口处于正压的高温区,所以螺旋给煤机的工作条件较差。为了简化进料机构,并提高其工作可靠性,目前采用溜煤管来代替螺旋给煤机。溜煤管以50°以上的倾角斜插入炉内正压区,管内燃料依靠煤柱压力直接注入炉内。为了防止从进料口喷火、冒烟,在炉墙内装设平衡管,使溜煤管与炉膛负压区连通。煤封良好时也可不装平衡管。与正压进料相反,由于燃料从沸腾层以上进入,因此,有部分细粒燃料未经沸腾层就被上升烟气流带走,增大了飞灰热损失。在负压区的进煤进料装置比较简单、可靠,而且系自由落下,故播散度大,不易造成料口堆料。在本炉中采用钟罩阀的结构与溜煤管结合的结构,具体见給煤装置图。。

锌精矿焙烧

锌精矿焙烧

设计任务书电锌厂焙烧车间工艺设计及计算一. 原始数据锌精矿的粒级及物理性质注:堆积密度水分二. 技术条件选择1. 沸腾层高度2. 空气过剩系数3. 沸腾层温度4. 炉顶温度5. 炉顶负压6. 直线速度7. 出炉烟气量三. 技术经济指标1. 焙烧矿产出率(包括烟尘和焙砂)2. 烟尘含锌量3. 焙砂含锌量4. 焙烧料含锌量5. 脱硫率6. 焙烧锌直收率7. 出炉烟气含尘量8. 出炉烟气SO量9. 烟尘含S S量10. 焙砂含S S量11. 烟尘含Sso42-量12.焙砂含Sso42-S四. 冶金计算(1)选取计算的有关主要指标(各种成分进入烟气的比例)(2)锌精矿的物相组成计算(3)烟气产出率及其化学成分和五项组成计算(4)焙砂产出率及其化学成分和五项组成计算(5)焙烧需要的空气量及产出烟尘量与组成计算(6)沸腾炉焙烧物料平衡计算(7)热平衡计算五.参考书目1. 铜铅锌设计参考资料铜铅锌冶炼设计参考资料编写组19782. 有色冶金工厂设计基础陈枫19893. 重金属冶金学赵天从编1987 第二版4. 锌冶金学冶金工业出版社5. 冶金原理冶金工业出版社6. 锌冶金彭荣秋中南大学出版社7. 湿法炼锌学梅光贵等中南大学出版社绪论锌精矿来源较广,成分复杂,为了使焙烧有一个相对稳定的工艺条件,必须对锌精矿进行配料以使精矿成分控制在焙烧操作允许的范围内,这关系到整个锌冶金过程中的稳定性。

本次设计的主要内容是锌精矿的沸腾焙烧,沸腾焙烧是现代焙烧昨业的新技术,也是强化焙烧的一种新方法。

其实质是:使空气自下而上地吹过固体料层,吹风速度达到使固体粒子相互分离,并做不停地复杂运动,运动的粒子处于悬浮状态,其外状如同水的沸腾翻动不已。

由于粒子可以较长时间处于悬浮状态,就构成了氧化各个矿粒最有利的条件,故使焙烧大大强化。

沸腾焙烧的基本原理是利用流态化技术,使参与反应或热、质传递的气体和固体充分接触,实现它们之间最快的传质,传热和动量传递速度,获得最大设备的生产能力。

沸腾炉初步设计方案

沸腾炉初步设计方案

沸腾炉初步设计方案一、沸腾炉的概述1、沸腾炉的简介沸腾锅炉的工作原理是将破碎到一定粒度的煤末,用风吹起,在炉膛的一定高度上成沸腾状燃烧。

煤在沸腾炉中的燃烧,既不是在炉排上进行的,也不是像煤粉炉那样悬浮在空间燃烧,而是在沸腾炉料床上进行的。

沸腾炉的突出优点是,对煤种适应性广,可燃烧烟煤、无烟煤、褐煤和煤矸石。

它的另一个好处在于使燃料燃烧充分,从而提高燃料的利用率。

沸腾料层的平均温度一般在850一1050℃,料层很厚,相当于一个大蓄热池,其中燃料仅占5%左右,新加入的煤粒进入料层后就和温度高几十倍的灼热颗粒混合,因此能很快燃烧,故可应用煤矸石代替。

生产实践表明,利用含灰分高达70%、发热量仅7.54MJ/kg的煤矸石,锅炉运行正常.40%一50%的热可直接从床层接收。

2、工作原理固体燃料在炉内被向上流动的气流托起,在一定的高度范围内作上下翻滚运动,并以流态化(或称沸腾)状态进行燃烧的炉膛,又称流化床燃烧炉。

沸腾燃烧方式也用于其他的炉窑中。

沸腾燃烧方式的特点既不像在层燃炉中那样将固体燃料静止地放在炉排上燃烧;也不像在室燃炉中那样将液体、气体或磨成细粉状的固体燃料悬浮在炉膛空间中燃烧,而是把固体燃料破碎成一定粒度的粉末,使之在炉内以类似沸腾的状态燃烧。

在中国,沸腾炉用煤的粒度一般为8毫米以下。

3、结构和工作过程常用沸腾炉燃烧室的典型结构包括布风系统、沸腾床、进料和排渣系统3个部分。

①布风系统。

燃烧室底部为布风板,板上直接开孔或装许多带通风小孔的风帽。

布风板的作用是承载料层并使空气上升速度沿炉内截面分布均匀。

②沸腾床。

布风板上放置一定量的床料(包括固体燃料和大量的灰渣或石灰石颗粒)。

运行时,当料层中的空气达到一定上升速度时,沸腾床上的床料便从静止状态转入沸腾状态,这一风速称为临界沸腾风速。

为了保持剧烈的沸腾燃烧工况,沸腾炉正常运行时的风速要比临界沸腾风速大,使料层膨胀到一定高度。

床料沸腾高度约为静止料层的两倍,在此容积的燃料呈沸腾状态,故称为沸腾床,小颗粒则被气流带出炉外。

焙烧炉燃烧空气量计算公式

焙烧炉燃烧空气量计算公式

焙烧炉燃烧空气量计算公式在工业生产中,焙烧炉是一种常见的设备,用于对原料进行高温煅烧或热处理。

焙烧炉的燃烧过程需要精确控制空气量,以确保燃烧效率和产品质量。

因此,燃烧空气量的计算是焙烧炉运行中的重要问题之一。

燃烧空气量计算的公式可以帮助工程师和操作人员准确地确定所需的空气量,以便进行有效的燃烧控制。

本文将介绍焙烧炉燃烧空气量计算的基本原理和公式,并探讨如何应用这些公式进行实际操作。

基本原理。

在焙烧炉中,燃料和空气混合并在高温下燃烧,产生热量和燃烧产物。

燃烧过程需要适当的空气量来提供氧气,以支持燃料的燃烧。

过多的空气会导致能量浪费和燃烧产物中氧化物的增加,而过少的空气则会导致不完全燃烧和产生有害气体。

因此,确定适当的燃烧空气量是焙烧炉运行中的关键问题。

燃烧空气量的计算需要考虑燃料的种类、含氧量、燃烧产物的排放要求等因素。

通常情况下,可以使用以下的燃烧空气量计算公式来进行计算:Qa = Qs + (Qsα + Qsβ + Qsγ) / (1-α-β-γ)。

其中,Qa为燃烧所需空气量,Qs为燃料理论空气量,α、β、γ分别为燃料的水分、氢分和硫分对空气量的修正系数。

公式中的Qs表示燃料的理论空气量,是指燃料完全燃烧所需的空气量。

通常情况下,燃料的理论空气量可以通过燃料的化学成分和燃烧反应的平衡方程来计算。

对于不同种类的燃料,其理论空气量也会有所不同。

修正系数α、β、γ分别考虑了燃料中水分、氢分和硫分对燃烧空气量的影响。

由于这些成分在燃烧过程中会释放出水蒸气、氢气和二氧化硫等物质,因此需要根据燃料的具体成分来确定修正系数的数值。

实际应用。

在实际操作中,焙烧炉的操作人员可以根据燃料的种类和成分,以及燃烧产物的排放要求,确定燃烧空气量的计算公式和修正系数的数值。

然后,根据燃料的实际使用量和燃烧条件,计算出具体的燃烧空气量。

为了更准确地控制燃烧空气量,可以使用各种传感器和控制装置来监测燃料和空气的流量和成分,实时调整燃烧空气量,以满足燃烧过程的要求。

锌精矿焙烧课计

锌精矿焙烧课计

1、设计任务设计一个年产10000吨电锌厂焙烧车间〔初步设计〕1.1、原始数据电锌年产量:10000吨锌精矿的化学成分〔%〕1.2、技术条件选择沸腾层高度:1.5m左右空气过剩系数:沸腾层温度:850~900C炉顶温度:820~870炉顶负压:-10~30Pa直线速度:~出炉烟气量、温度:9001.3、技术经济指标年处理锌精矿:年工作日:300天沸腾炉炉床面积:28m2沸腾炉炉床能力:5.2t/(m2d)焙烧矿产出率〔包括烟尘和焙砂〕:88%〔占锌精矿的〕烟尘含锌量:54.89%焙砂含锌量:1%焙烧料含锌量:48%脱硫率:93.6%焙烧锌直收率:52%冶炼总回收率:95%出炉烟尘含量:35%〔占焙烧矿的〕量:9365%〔体积百分数〕出炉烟气SO2烟尘含Ss量:1.73%焙砂含Ss量:0.4%2-量:2.14%烟尘含Sso42-量:1.10%焙砂含Sso42、原始资料、锌矿的分布及品位截至2002年,全世界查明锌储量为20000万吨,储量根底为45000万吨,现有储量和储量根底的静态保证年限为23年和51年。

锌储量和储量根底占锌资源量的%和%。

中国锌的储量和储量根底均居世界首位,已成为世界最大的铅锌资源国家。

根据统计资料,在我国铅锌储量中铅锌平均品位只有 4.66%,而根据目前铅锌价格水平和本钱水平,只有铅锌(1:2.5)合计地质品位在7%~8%以上的地质储量才是能经济利用的储量,目前我国能经济利用的铅锌合计储量只有万吨,仅占总储量的 42.6%。

锌在自然界多以硫化物的状态存在,主要矿物是闪锌矿〔ZnS〕,但这种硫化矿的形成过程中有FeS固溶体,成为铁闪锌矿〔nZnSmFeS〕.含铁高的闪锌矿会使提取冶炼过程复杂化。

流化床的地表部位还常有一部打分被氧化的氧化矿,如菱锌矿〔ZnCO3〕、硅锌矿〔Zn2SiO4〕、导极矿〔H2Zn2SiO5〕等。

我国铅锌储量较多的省(区)主要是云南、广东、甘肃、四川、广西、内蒙古、湖南和青海等八省(区),其铅锌储量占全国总储量的80.7%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应急预案沸腾焙烧炉设计目录第一章设计概述 (1)1.1设计依据 (1)1.2设计原则和指导思想 (1)1.3课程设计任务 (2)第二章工艺流程的选择与论证 (2)2.1原料组成及特点 (2)2.2沸腾焙烧工艺及主要设备的选择 (1)第三章物料衡算及热平衡计算 (6)3.1锌精矿流态化焙烧物料平衡计算 (6)3.1.1锌精矿硫态化焙烧冶金计算 (6)3.1.2烟尘产出率及其化学和物相组成计算 (9)3.1.3焙砂产出率及其化学与物相组成计算 (13)3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (16)3.2热平衡计算 (21)3.2.1热收入 (21)3.2.2热支出 (25)第四章沸腾焙烧炉的选型计算 (30)4.1床面积 (30)4.2前室面积 (30)4.3炉膛面积和直径 (13)4.4炉膛高度 (31)4.5气体分布板及风帽 (32)4.5.1气体分布板孔眼率 (32)4.5.2风帽 (32)4.6沸腾冷却层面积 (32)4.7水套中循环水的消耗量 (14)4.8风箱容积 (15)4.9加料管面积 (15)4.10溢流排料口 (15)4.11排烟口面积 (15)参考文献 (15)第一章设计概述 (1)1.1设计依据 (1)根据《冶金工程专业课程设计指导书》。

(1)第二章工艺流程的选择与论证 (2)2.1原料组成及特点 (2)2.2沸腾焙烧工艺及主要设备的选择 (2)第三章物料衡算及热平衡计算 (6)3.1锌精矿流态化焙烧物料平衡计算 (6)3.1.1锌精矿硫态化焙烧冶金计算 (6)3.1.2烟尘产出率及其化学和物相组成计算 (9)3.1.3焙砂产出率及其化学与物相组成计算 (13)3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (16)3.2热平衡计算 (21)3.2.1热收入 (21)3.2.2热支出 (25)第四章沸腾焙烧炉的选型计算 (30)4.1床面积 (30)4.5.1气体分布板孔眼率 (32)风帽的形式多采用标准伞形风帽Ǿ8×6 mm(孔径×孔数),炉底风帽的排列方法,对于圆形炉底采用同心圆排列发,通常同心圆之距离为170-180 mm,每一圆周上的中心距为150-200mm,孔眼率(孔眼总面积与床面积之比)为0.95-1.2%。

(32)1.确定炉底上风帽孔眼的总数目: (32)n=1.2f W V孔眼=1.200005.01078.8⨯⨯=21288 ...................................... 32 其中,V-鼓入沸腾炉内的实际空气量 (m 3/s)V= (32)f -一个孔眼的面积 m 2 (32)W 孔眼-孔眼中空气的喷射速度 m/s (32)1.2-储备系数 (32)2.确定孔眼率 (33)=+••=%5.782前室本床孔孔F F nb d =1.28% (33)其中,d 孔为风帽孔眼直径 (33)4.5.2风帽个数: (33)第一章设计概述1.1设计依据根据《冶金工程专业课程设计指导书》。

1.2设计原则和指导思想对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为:1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计;2、设计中对主要工艺流程进行多方案比较,以确定最佳方案;3、设计中应充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。

所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则;4、要按照国家有关劳动安全工业卫生及消防的标准及行业设计规定进行设计;5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术;6、设计中应充分考虑节约能源、节约用地,实行自愿的综合利用,改善劳动条件以及保护生态环境。

1.3毕业设计任务一、沸腾焙烧炉专题概述二、沸腾焙烧三、沸腾焙烧热平衡计算四、主要设备(沸腾炉和鼓风炉)设计计算五、沸腾炉主要经济技术指标第二章工艺流程的选择与论证2.1原料组成及特点本次设计处理的原料锌精矿成分如下表所示。

D组锌精矿的化学成分2.2沸腾焙烧工艺及主要设备的选择金属锌的生产,无论是用火法还是湿法,90%以上都是以硫化锌精矿为原料。

硫化锌不能被廉价的、最容易获得的碳质还原剂还原,也不容易被廉价的,并且在浸出—电积湿法炼锌生产流程中可以再生的硫酸稀溶液(废电解液)所浸出,因此对硫化锌精矿氧化焙烧使之转变成氧化锌是很有必要的。

焙烧就是通常采用的完成化合物形态转变的化学过程,是冶炼前对矿石或精矿进行预处理的一种高温作业。

硫化物的焙烧过程是一个发生气固反应的过程,将大量的空气(或富氧空气)通入硫化矿物料层,在高温下发生反应,氧与硫化物中的硫化合产生气体SO2,有价金属则变成为氧化物或硫酸盐。

同时去掉砷、锑等杂质,硫生成二氧化硫进入烟气,作为制硫酸的原料。

焙烧过程得到的固体产物就被称为焙砂或焙烧矿。

焙烧过程是复杂的,生成的产物不尽一致,可能有多种化合物并存。

一般来说,硫化物的氧化反应主要有:1)硫化物氧化生成硫酸盐MeS + 2 O2 = MeSO42)硫化物氧化生成氧化物MeS + 1.5 O2 = MeO + SO23)金属硫化物直接氧化生成金属MeS + 2 O2 = MeO + SO24)硫酸盐离解MeSO4 = MeO + SO3SO3 = SO2 + 0.5 O2此外,在硫化锌精矿中,通常还有多种化合价的金属硫化物,其高价硫化物的离解压一般都比较高,故极不稳定,焙烧时高价态硫化物离解成低价态的硫化物,然后再继续进行其焙烧氧化反应过程。

在焙烧过程中,精矿中某种金属硫化物和它的硫酸盐在焙烧条件下都是不稳定的化合物时,也可能相互反应,如:FeS + 3FeSO4 = 4FeO + 4SO2由上述各种反应可知,锌精矿中各种金属硫化物焙烧的主要产物是MeO、MeSO4以及SO2、SO3和O2。

此外还可能有MeO·Fe2O3,MeO·SiO2等。

沸腾焙烧炉炉体(下图)为钢壳内衬保温砖再衬耐火砖构成。

为防止冷凝酸腐蚀,钢壳外面有保温层。

炉子的最下部是风室,设有空气进口管,其上是空气分布板。

空气分布板上是耐火混凝土炉床,埋设有许多侧面开小孔的风帽。

炉膛中部为向上扩大的圆锥体,上部焙烧空间的截面积比沸腾层的截面积大,以减少固体粒子吹出。

沸腾层中装有的冷却管,炉体还设有加料口、矿渣溢流口、炉气出口、二次空气进口、点火口等接管。

炉顶有防爆孔。

操作指标和条件主要有焙烧强度、沸腾层高度、沸腾层温度、炉气成分等。

①焙烧强度习惯上以单位沸腾层截面积一日处理含硫35%矿石的吨数计算。

焙烧强度与沸腾层操作气速成正比。

气速是沸腾层中固体粒子大小的函数,一般在1~3m/s范围内。

一般浮选矿的焙烧强度为15~20t/(dm⋅)。

m⋅);对于通过3×3mm的筛孔的破碎块矿,焙烧强度为30t/(d②沸腾层高度即炉内排渣溢流堰离风帽的高度,一般为0.9~1.5m。

③沸腾层温度随硫化矿物、焙烧方法等不同而异。

例如:锌精矿氧化焙烧为1070~1100℃,而硫酸化焙烧为900~930℃;硫铁矿的氧化焙烧温度为850~950℃。

④炉气成分硫铁矿氧化焙烧时,炉气中二氧化硫13%~13.5%,三氧化硫≤0.1%。

硫酸化焙烧,空气过剩系数大,故炉气中二氧化硫浓度低而三氧化硫含量增加。

特点:①焙烧强度高;②矿渣残硫低;③可以焙烧低品位矿;④炉气中二氧化硫浓度高、三氧化硫含量少;⑤可以较多地回收热能产生中压蒸汽,焙烧过程产生的蒸汽通常有35%~45%是通过沸腾层中的冷却管获得;⑥炉床温度均匀;⑦结构简单,无转动部件,且投资省,维修费用少;⑧操作人员少,自动化程度高,操作费用低;⑨开车迅速而方便,停车引起的空气污染少。

但沸腾炉炉气带矿尘较多,空气鼓风机动力消耗较大。

第三章 物料衡算及热平衡计算3.1锌精矿流态化焙烧物料平衡计算 3.1.1锌精矿硫态化焙烧冶金计算根据精矿的物相组成分析,精矿中各元素呈下列化合物形态Zn 、Cd 、Pb 、Cu 、Fe 分别呈ZnS 、CdS 、PbS 、2CuFeS 、87S Fe 2FeS ;脉石中的Ca 、Mg 、Si 分别呈3CaCO 、3MgCO 、2SiO 形态存在。

以100kg 锌精矿(干量)进行计算。

1.ZnS 量 :kg 99.704.654.9767.47=⨯ 其中Zn :47.67kg S :23.32kg2.CdS 量:kg 23.04.1124.14418.0=⨯ 其中 Cd :0.18kg S :0.05kg3.PbS 量:kg 13.42.2072.23958.3=⨯ 其中:Pb :3.58kg S :0.55kg4.2CuFeS 量:kg 69.05.6335.18324.0=⨯ 其中:Cu :0.24kg Fe :0.21kg S :0.24kg5. 2FeS 和87S Fe 量:除去2CuFeS 中Fe 的含量,余下的Fe 为 5.37kg 0.21-5.58=,除去ZnS 、CdS 、PbS 、2CuFeS 中S 的含量,余下的S 量为Kg 78.4)24.055.005.032.23(94.28=+++-。

此S 量全部分布在2FeS 和87S Fe 中,设2FeS 中Fe 为x kg ,S 量为y kg ,则872S Fe FeS ⎪⎪⎩⎪⎪⎨⎧⨯-=⨯-⨯=83278.4785.5537.523285.55yx yx 解得:x =2.57kg ,y =2.95kg 即2FeS 中:Fe=2.57kg 、S=2.95kg 、2FeS =5.52kg 。

87S Fe 中:Fe :5.37-2.57=2.8kg S :4.78-2.95=1.83kg 87S Fe :4.36kg6. 3CaCO 量: 1.58kg 其中CaO :0.89kg 2CO :0.69kg7. 3MgCO 量:1.43kg 其中MgO :0.68kg 2CO :0.75kg表3-1 混合精矿物相组成,kg3.1.2烟尘产出率及其化学和物相组成计算焙烧矿产出率一般为锌精矿的88%,烟尘产出率取50%,则烟尘量为:44公斤。

镉60%进入烟尘,锌48%进入烟尘,其它组分在烟尘中的分配率假定为50%,空气过剩系数 1.25。

烟尘产出率及烟尘物相组成计算: Zn kg 2.882248.07.674=⨯ Cd kg 108.060.018.0=⨯ Pb kg 1.7950.03.58=⨯ Cu kg 21.050.042.0=⨯ Fe kg 2.7950.05.58=⨯ CaO kg 445.050.00.89=⨯ MgO kg 34.050.068.0=⨯2SiO kg 3.4150.06.82=⨯s S 0.761x kg4SO S 0.942x kg其他 kg 99.150.03.98=⨯各组分化合物进入烟尘的数量为:1.ZnS 量:kg 316.2324.97761.0=⨯ 其中:Zn 1.555kg S 0.761kg2.4ZnSO 量:kg 751.4324.161942.0=⨯ 其中:Zn 1.925kg S 0.942kg O 1.884kg3.32O Fe ZnO ⋅量:烟尘中Fe 先生成32O Fe ,其量为:kg 3.9897.1117.1592.79=⨯,32O Fe 有31与ZnO 结合成32O Fe ZnO ⋅,其量为:kg 1.33313.989=⨯。

相关文档
最新文档