电磁场理论

电磁场理论
电磁场理论

第九章 电磁场理论

教学基本要求:

1、 了解电介质的极化,磁介质的磁化现象以及微观解释,了解铁磁质的特性,了解各

项同性介质中的D 和E,H 和B 之间的关系和区别,了解介质中的高斯定理和安培环路定理。 2、 了解电容。

3、 了解电能密度和磁能密度的概念。

了解麦克斯韦方程组的物理意义。了解电磁场的物质性

§9-1 电介质和导体

一、电介质的极化

(一)电介质分子的偶极子模型 1. 偶极子模型:核,核外电子

2. 无极分子:0=l ( ,,,222CO N H )

3. 有极分子:0≠l ( ,,2CO O H

(二)电介质的极化和击穿

1. 极化:在外场作用下介质表面出现束缚电荷的现象 ① 无极分子的极化—位移极化 ② 有极分子的极化—以转向极化为主

2. 电介质的击穿:外场强很大时,绝缘体→导

(三)电极化强度P

1. 定义:单位体积内分子电矩的矢量和

V

p P i ?∑=

2. 单位:2

-?m C 3. 量纲:2

-ITL 4.

P 与E

的关系:E P e 0εχ=

E

E

e χ:电极化率,纯数与电介质有关

5. P

与σ'的关系:n P ?='σ

(三)均匀电介质中的场强E

1.

相对介电常数:E

E r 0

2.

电介质中的场强: E E E E r

'+==

00ε e r χε+=1

(四)有电介质时的环流定理和高斯定理

1. 环流定理:0=??L l d E

2.高斯定理:q S d D S ∑=??

P E E E E D e r +=+===000)1(εχεεεε

例1.

两块无限大的导体平板A、B,面积为S,间距为d ,平行放置,

A板带有电量Q,B板不带电,求静电平衡时两板各个表面上的电荷面密度以及两板间的电势差; 另:(1)若q Q q Q ==21

,2

(2)若B板或A板接地

(3)若中间连线,则情况如何? 例2.

一半径为1R 的导体小球,带电量为q ,放在内外半径分别

为2R 和3R 的同心导体球壳内,导体球带电量为Q。求: (1) 小球与球壳的电势; (2) 小球与球壳的电势差; 另: (1) 若壳接地,则电荷分布?电势差?

(2) 若接地后,拆除地线,再将内球接地,则结果如何?

3

1

σ

4

σA

例3. 半径为R,带电量为q 的金属球,周围充满相对介电常数为r ε的介质,求: (1) 球内外任一点的场强;

(2) 靠近金属球表面的电介质面上的束缚电荷量'q ;

(3)

若r ε分布在1R ~2R 的球壳内,则场强、电势分布?介质内的极化

强度P

,介质表面的束缚电荷面密度'σ? 二、静电场中的导体

(一)导体的静电平衡条件

1. 概念:导体,静电感应现象,静电平衡状态,附加电场 2. 平衡条件:

0=内E ,表面表面⊥E

或:导体为等势体,表面为等势面

(二)平衡带电导体上的电荷分布

1. 电荷分布在表面,内部各处无净电荷存在 ① 导体内没有空腔

② 导体内有空腔,空腔内无电荷

③ 导体内有空腔,空腔内有电荷 2.

电荷在导体表面上曲率大处面密度大,曲率小处面密度小

实例:利用尖端放电(避雷针,静电电机)避免尖端放电(高压输电线,电极等) 3. 导体表面附近处的场强与该处表面电荷面密度成正比

n

εσ

(三) 静电屏敝 1. 外屏敝:空腔导体屏敝外电场

2.

内屏敝:接地的空腔导体,屏敝内电场。屏敝线

三、 电容 电容器

(一)电容器的电容 1. 定义:

说明:C 与极板、介质等电容器自身因素有关,而与

U q ?,等外界因素无关

2. 电容器电容的计算:

C U E q →?→→

① 平行板电容器的电容

② 圆柱形电容器的电容

1

2ln 2R R l C πε=

③ 球形电容器的电容

A

B B

A R R R R C -=πε4

孤立导体:

∞→R ,R C πε4=

除了电容以外,电容器还有另一指标:耐压值,超过则击穿

一般电容都有明示,如:F V μ10,400

,F V μ22,100

(二) 电容器的联接 1.

串联

2. 并联

四、电场的能量

(一) 电容器的能量

平行板电容器:

QU CU C Q W 2

121222===

适用于各种结构的电容器

(二) 电场的能量 1. 能量:

V E CU W 222

1

21ε==

2. 能量体密度:

DE E V W w 2

1

212===

ε 为点函数,适用于任何电场, 非均匀电场的能量:

dV E dV w W V

V

?

?==22

1

ε 例1. 一平行板电容器的极板面积为S ,极板间距离为d ,且充电到电势

差为U ,然后把充电用的电池撤去,再把两极板拉开到距离为2d ,试用S 、d 、U 表示

(1) 新的电势差

(2) 最初与最后电容器储存的能量; (3) 拉开两极板所需之功

§9-2 磁介质

一、磁介质的磁化 磁化强度

(一) 磁介质的磁化

'B B B p +=0

(二) 磁介质的分类

顺磁质—0μμ>,0B ,'B

同向,0B B >

抗磁质—0μμ<,0B ,'B

反向,0B B < 铁磁质:0μμ>>,0B B >> (三) 磁化机理 1.

分子电流与分子磁矩m p

n S I p m 0=

2.

顺磁质分子与抗磁质分子

0≠m p ,0=m p

3.

磁化原理 00=B :0≠m p ,0=∑m p , 0=m p

,0=∑m p

00≠B :0≠m p ,0≠∑m p , 0=m p

,0≠∑m p

0≠m p

:B p M m ?=,使m p 往0B 方向转,0B 越强,转向作用越大。

0=m p :0≠m p ?,m p

?与B 反向。

'

I I I f f F m e -=-=0

'

I I I f f F m e +=+=0

(四)磁化强度矢量M

v

?

V

p M m

?∑=

(与B

外同向)

V

p M m ??∑=

(与B

反向)

单位:1-?m A

(五) 磁化强度与磁化面电流

S i M =

推导:

nI B 00μ=

顺磁质(如图)

l i I S S =

S I :分子表面电流 S i :分子表面电流的线密度

lS i S I p S S m ==∑,S S i lS

lS

i M ==

二、磁介质中的安培环路定理、磁场强度

(一) 真空中的安培环路定理

∑?=?I l d B 0μ , 0

0I I B B ==∑

(二) 磁介质中的安培环路定理

∑?=?I l d B 0μ

,

S

I I I '

B B B +=+=∑00

简化:

00

00I l d )M B

(l d M I l d B )

I I (l d B S =?-?+=?+=?????

μμμ

电磁场理论习题解读

思考与练习一 1.证明矢量3?2??z y x e e e -+=A 和z y x e e e ???++=B 相互垂直。 2. 已知矢量 1.55.8z y e ?e ?+=A 和4936z y e ?.e ?+-=B ,求两矢量的夹角。 3. 如果0=++z z y y x x B A B A B A ,证明矢量A 和B 处处垂直。 4. 导出正交曲线坐标系中相邻两点弧长的一般表达式。 5.根据算符?的与矢量性,推导下列公式: ()()()()B A B A A B A B B A ??+???+??+???=??)( ()()A A A A A 2??-?=???2 1 []H E E H H E ???-???=??? 6.设u 是空间坐标z ,y ,x 的函数,证明: u du df u f ?=?)(, ()du d u u A A ??=??, ()du d u u A A ??=??,()[]0=????z ,y ,x A 。 7.设222)()()(z z y y x x R '-+'-+'-='-=r r 为源点x '到场点x 的距离,R 的方向规定为从源点指向场点。证明下列结果, R R R R =?'-=?, 311R R R R -=?'-=?,03=??R R ,033=??'-=??R R R R )0(≠R (最后一式在0=R 点不成立)。 8. 求[])sin(0r k E ???及[])sin(0r k E ???,其中0E a ,为常矢量。 9. 应用高斯定理证明 ???=??v s d dV f s f ,应用斯克斯(Stokes )定理证明??=??s L dl dS ??。 10.证明Gauss 积分公式[]??????+???=??s V dv d ψφψφψφ2s 。 11.导出在任意正交曲线坐标系中()321q ,q ,q F ??、()[]321q ,q ,q F ???、()3212q ,q ,q f ?的表达式。 12. 从梯度、散度和旋度的定义出发,简述它们的意义,比较它们的差别,导出它们在正交曲线坐标系中的表达式。

经典电磁理论的建立.

经典电磁理论的建立 在古代,人们对静电和静磁现象已分别有一些认识,但从这门学科的发展来看,直到十八世纪末十九世纪初,电和磁之间的联系才被揭露出来,并逐步发展成为一门新的学科——电磁学。电磁学的发展之所以比较晚,主要是由于电磁学的研究需要借助于更为精密的仪器和更精确的实验方法,而这些条件只有生产发展到一定水平之后才能具备。 首先对于电和磁现象进行系统地实验研究的是英国的威廉·吉尔伯特。他通过一系列的实验认识到电力和磁力是性质不同的两种力。例如,磁力只对天然磁石起作用,而电力能作用于许多材料。他第一个将琥珀与毛皮摩擦后吸引轻小物体的性质叫做“电”。吉尔伯特这种关于电和磁在本质上不同的观点,给后来的电磁学的发展留下了深刻的影响,直至十九世纪初,许多科学家都把这两种现象看作是毫无联系的。吉尔伯特之后的整个十七世纪,对电和磁的研究进展不大。 到了十八世纪四十年代,起电装置的改善和大气现象的研究,引起了物理学家的极大兴趣。1745年荷兰莱顿大学的马森布罗克(1692~1761)和德国的克莱斯德(1700~1748)各自发明了“蓄电”的最早器具——莱顿瓶。1752年7月,美国的富兰克林进行了一次震动世界的吸取天电的风筝实验,从而使人们认识到天空的闪电和地面上的莱顿瓶放电现象是一致的。富兰克林还提出了电荷守恒的思想和电的“单流质”说,他认为一个物体所带的电流质是一个常量,如果流质在一个物体比常量多,就带负电,比常量少就带正电。他在风筝实验的基础上,发明了“避雷针”。由于他在电学方面做出了杰出贡献,而被誉为近代电学的奠基人。 我们知道,牛顿在发现万有引力的过程中,曾用数学方法证明过,如果引力随着引力中心距离的平方反比减少,一个均匀球壳对其内部的物体就没有引力的作用。1775年,富兰克林发现将一小块软木块悬于带电的金属罐内并不受到电力的作用。他的朋友普里斯特列(1733~1804)根据这个实验和牛顿对万有引力定律的数学证明推想电的作用力也遵守平方反比定律。1771年,英国物理学家卡文迪许也用类似的实验和推理的方法对电力相互作用的规律进行了研究,他从实验得到电力与距离的n 比定 律。库仑定律的发现为静电学奠定了理论基础。通过西蒙·泊松(1781~1840)、高斯(1777~1855)和乔治·格林(1793~1841)等人的工作,确定了处理静电场和静磁场的数学方法。 十八世纪末,1780年意大利的医生和动物学教授伽伐尼(1737~1798)在解剖青蛙时,发现了电流,这是电学发展史上的一个转折点。在伽伐尼发现的基础上,伏打于1800年制成伏打“电堆”,得到了比较强的电流,从而使人的认识由静电进入动电,由瞬时电流发展到恒定电流,为进一步研究电流运动的规律和电运动与其他运动形式的联系和转化创造了条件。

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将

电磁场理论知识点总结

电磁场与电磁波总结 第1章 场论初步 一、矢量代数 A ? B =AB cos θ A B ?=AB e AB sin θ A ?( B ? C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz 单位矢量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d d z ρ?ρρ?l 矢量面元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位矢量的关系 ?=??=e e e e e =e e e e z z z ρ??ρρ? 3. 球坐标系 矢量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位矢量的关系 ?=??=e e e e e =e e e e r r r θ? θ??θ cos sin 0sin cos 0 001x r y z z A A A A A A ????????????=-?? ????????????????????? sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ???? ?????? ? ?=-????????????-?????? θ?θ?θ? θθ?θ?θ?? sin 0cos cos 0sin 0 10r r z A A A A A A ???? ?????? ??=-???????????????? ??θ??θθθθ 三、矢量场的散度和旋度

电磁学经典练习题与答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[] 图3-1 A.图①B.图②C.图③D.图④ 2.下列关于静电场的说法中正确的是[] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 B.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]A.a点的电势一定高于b点的电势 B.带电粒子的电势能一定减少 C.电场强度一定等于ΔE/dq D.a、b两点间的电势差大小一定等于ΔE/q 4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]A.它们的相互作用力不断减少 B.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说确的是[] 图3-2

A.它们所需要的向心力不相等 B.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[] 图3-3 A.b点场强B.c点场强 C.b点电势D.c点电势 7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说确的是[] 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动 D.若剪断悬线,则小球做匀加速直线运动 9.将一个6V、6W的小灯甲连接在阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]A.小灯乙可能正常发光 B.小灯乙可能因电压过高而烧毁 C.小灯乙可能因电压较低而不能正常发光 D.小灯乙一定正常发光 10.用三个电动势均为1.5V、阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[] 图3-6 11.如图3-10所示的电路中,R 1、R 2 、R 3 、R 4 、R 5 为阻值固定的 电阻,R 6 为可变电阻,A为阻可忽略的电流表,V为阻很大的电压表,电源的

电磁学发展简史

电磁学发展简史 07 电联毛华超 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。 二.安培和法拉第奠定了电动力学基础 1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

麦克斯韦电磁场理论的诞生历程

麦克斯韦电磁场理论的诞生历程 柴XX (理学院光信息科学与技术1002班学号XXX) 摘要:1855年至1865年,麦克斯韦在全面地审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 关键词:麦克斯韦、电磁理论、诞生 引言 电磁场理论的发展经历了三次飞跃:一是库仑定律的建立,二是运动电荷磁效应的发现,三是变化着的电场和磁场的内在联系的假设。 根据一些互不相关适用范围各不相同的实验定律(库仑定律、毕一萨定律和电磁感应定律),能否扩展为一组有内在联系的普遍成立的、能对电磁现象作出统一描述的数学理论体系,这是摆在当时物理学界的一大问题。 法拉第为此走出了坚定的第一步,紧接着麦克斯韦迈开了关键性的第二步。 一、法拉第的奠基 法拉第坚信电磁作用是一种近距作用,他为此提出的力线、场观念具有极其深奥的物理思想。描述场的力线、力管虽是一种定性理论,却为建立电磁学的数学理论提供了物理依据。场观念是物理学中一个全新的观念,一个开创性见解,是对超距作用观点的挑战,其价值要比电磁感应定律的发现高出许多倍。它暗示电磁理论和力学理论在方法论和数学结构上会有极大的差异:力学对质点的描述仅仅涉及到整个电磁场空间。从超距作用过渡到以场为基本变量,以致使电磁理论成为一个时代的场理论。 一门真正的科学理论应该是定量的。由于数学的准确性、抽象性、广泛性,早已成为物理学的亲密朋友。用数学语言精确表述创造性科学思想,深刻揭示自然规律,是科学发展的要求,也是科学成熟的重要标志。 物理学家一要善于提出反映事物本质的物理观念,二要善于将物理问题转化成为数学问题,并用恰当方法求解,三要善于透过数学结果看出隐藏其后的新的物理思想。 法拉第借用力线把场的许多性质用简单而又极富启发性地表示出来了。但终因缺乏数学功底,苦于无法用恰当的数学语言来精确描述,不能更深刻地揭示电磁现象的内在规律性。但深奥的力线、场思想都鼓舞着麦克斯韦接过法拉第的火炬继续向前跑。 二、麦克斯韦的努力与电磁场理论的诞生 麦克斯韦大学毕业不久,读到了法拉第的《电学实验研究》,就被法拉第闪光的科学思想吸引住了,决计以数学弥补其不足。麦克斯韦受过良好教育,先在爱丁堡大学攻读数学、物理,后转入剑桥大学专攻数学,成绩优异。受两位导师霍普金斯和斯托克斯的直接影响,他很重视数学和物理的结合,成为一位优秀的数学物理学家。这一点对他日后完成电磁理论是至关重要的。 法拉第和麦克斯韦两个人都是很有胆识和极富想象力的。一个是实验巨匠,长于物理直

电磁学的发展及生活生产中的应用

电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮 引言: 随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。内容: 简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。因此,要了解电磁学的应用就必须先了解它的发展。 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。电磁学的进一步发展促进了电磁在生活技术当中的应用。 (一)民用--磁悬浮列车 1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。 1960年美国科学家詹姆斯?鲍威尔和高登?丹提出磁悬浮列车的设计,利用

强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。德国的磁悬浮列车采用磁力吸引的原理,克劳斯?马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。 随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。由于是悬空行驶,因而基本上不作用车轮。但在起动时,还需有车轮做辅助支撑,这和飞机起降时需要轮子相似。这列超导磁悬浮列车由于试验线路太短,未能充分展示出空的卓越性能。 (二)军用—电磁炮 早在1845年,查尔斯?惠斯通就制作出了世界第一台磁阻直流电动机,并用它把金属棒抛射到20米远。此后,德国数学家柯比又提出了用电磁推进方法制造“电气炮”的设想。而第一个正式提出电磁发射(电磁炮)概念并进行试验的是挪威奥斯陆大学物理学教授伯克兰。他在1901年获得了“电火炮”专利。1920年,法国的福琼?维莱普勒发表了《电气火炮》文章。德国的汉斯莱曾将10克弹丸用电磁炮加速到1.2公里,秒的初速。1946年,美国的威斯汀豪斯电气公司建成了一个全尺寸的电磁飞机弹射器,取名“电拖”。 到20世纪70年代,随着脉冲功率技术的兴起和相关科学技术的发展,电磁发射技术取得了长足的进步。澳大利亚国立大学的查里德?马歇尔博士运用新技术,把3克弹丸加速到了5.9公里,秒。这一成就从实验上证明了用电磁力把物体推进到超高速度是可行的。他的成就1978年公布后,使世界相关领域的科学家振奋不

“电磁场理论”课程教学大纲

西安交通大学 “电磁场理论”课程教学大纲 英文名称:Theory of Electromagnetic Field 课程编码:PHYS2012 学时:64 学分:4 适用对象:电子科学与技术专业本科生 先修课程:普通物理,数理方程,矢量与张量分析 使用教材及参考书: 金泽松,《电磁场理论>>, 电子科技大学出版社, 1995 郭硕鸿,《电动力学》,高等教育出版社,1989 冯慈璋,《电磁场》高等教育出版社,1983 李承祖,《电动力学教程》(修订版),国防科技大学出版社,1997 一、课程性质、目的和任务 本课程是电子科学与技术系各专业本科生必修的一门工程基础课.通过本课程的学习,使学生熟悉电磁场的基本理论,掌握基本规律,加深对电磁场的性质和时空概念的理解,获得分析和处理一些电磁现象的方法和能力,为以后的专业课程学习打下基础。 二、教学基本要求 1. 了解电磁现象的普遍规律,掌握库仑定律、高斯定理、毕奥定律、电磁感应定律和麦克斯韦方程组, 熟悉电磁场的边值关系。 2. 了解静电场和稳恒电流磁场的性质,熟悉静电势和微分方程、磁矢势和微分方程,掌握求解静电场和磁场问题的常用分析方法。 3.掌握波动方程和亥姆霍兹方程,熟悉平面电磁波的性质, 掌握电磁波传播的规律。 4.了解时变电磁场的性质和势,掌握辐射电磁场的规律和计算方法。 5.了解狭义相对论和相对论电动力学,掌握电磁场量在不同参考系间的变化规律。了解带电粒子和电磁场的相互作用,掌握运动带电粒子的位和电磁场,了解加速运动带电粒子的辐射。 三、教学内容及要求 第一章:电磁现象的普遍规律 1.了解电荷和电场、电流和磁场。 2.掌握库仑定律、高斯定理、毕奥定律、电磁感应定律。 3.重点掌握麦克斯韦方程组和电磁场的边值关系。 4.了解介质的电磁性质。 5.掌握电磁场的能量和能流密度表示式,了解电磁能量的传输。

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

电磁场理论习题及答案1

一. 1.对于矢量A,若A= e x A+y e y A+z e z A, x 则: e?x e=;z e?z e=; y e?x e=;x e?x e= z 2.对于某一矢量A,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系 为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

大学物理电磁学静电场经典习题详解

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 3 2的上夸克和两个带e 3 1 -下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60?10-15 m 。求它们之间的斥力。 题7.1解:由于夸克可视为经典点电荷,由库仑定律 r r 2 2 0r 2210N 78.394141 e e e F ===r e r q q πεπε F 与r e 方向相同表明它们之间为斥力。 题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。证明电子的旋转频率满足 4 2k 202 32me E εν= 其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。 题7.2分析:根据题意将电子作为经典粒子处理。电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有 2 2 0241r e r v m πε= 由此出发命题可证。 证:由上述分析可得电子的动能为 r e mv E 2 02k 8121πε= = 电子旋转角速度为 3 02 2 4mr e πεω= 由上述两式消去r ,得 4 3k 20 222 324me E επων= = 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。 题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。为方便计算可以利用晶格的对称性求氯离子所受的合力。 解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故 01=F (2)除了有缺陷的那条对角线外,其它铯离 子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为 N 1092.13492 022 0212-?== = a e r q q F πεπε 2F 方向如图所示。

Maxwell电磁场理论的历史意义

Maxwell电磁场理论的历史意义 在物理学史中,Maxwell电磁场理论是Newton力学之后划时代的卓越贡献。它被誉为19世纪物理学最伟大的成就,由此,Maxwell和Faraday也当之元愧地被誉为19世纪最伟大的物理学家。电磁场理论的影响是广泛而深远的,难以细述,这里择要作一些介绍,以利于认识它的历史意义。 Maxwell电磁场理论是一个完整的理论体系,它的建立不仅为电磁学领域已有的研究成果作了很好的总结。而且为进一步的研究提供了理论基础,从而迎来了电磁学全面莲勃发展的新时期。 Maxwell电磁场理论的建立开辟了许多新的研究课题和新的研究方向。例如,电磁波的研究带来了通讯、广播和电视事业的发展。例如,物质电磁性质的研究推动了材料科学的进展又如,带电粒子和电磁场相互作用的探讨,与许多其他分支学科有关,导致不少交叉学科(如等离子体物理、磁流体力学等)的形成与发展所有这些,对于20世纪科学的发展、技术的进步以及物质文化生活的繁荣昌盛,都起了重要的作用。 光的电磁理论是Maxwell电磁场理论的重大成果之一,它证明光波就是电磁波,从而把光现象纳入了电磁学领域,实现了光学与电磁学的统一。如所周知,在电磁场理论建立之前,T。Young吧的干涉理论、A。J。Fresnel的衍射理论以及大量相关的实验研究。使古老的波动光学得以复苏,达到了前所未有的高度。然而,作为波动光学理论基础的Huygens —Fresnel原理,其实质仍是一种假设,缺乏应有的根据,存在明显的局限性。光的电磁理论的建立,表明Maxwell方程成为波动光学的理论基础,它阐明了Huygens—Fresnel原理的适用范围及不足,克服了它的局限性。使得以研究光传播为主要课题的传统波动光学出现了质的飞跃,获得厂新生。与此同时。在Maxwell电磁场理论和物理学其他重要进展的基础上,现代光学的各个分支应运而生,迅猛发展。毫无疑问,光的电磁理论是光学历史中重要的里程碑。 Maxwell电磁场理论的历史意义还在于引起厂物理实在观念的深刻变革在电磁场理论建立之前,所谓物理实在指的就是质点即实物粒子,当时认为世间万物无非都是质点的组合,别无其他。质点具有质量、能量、动量等基本物理性质,质点的运动遵循Newton定律,它的数学形式是一组常微分方程。此外,对于非接触物体之间的各种作用(如引力,磁力,电力),超距作用观点占据统治地位,即认为既无需媒介物传递,也无需传递时间。电磁场理论使人们认识到除了实物粒子外,还有电磁场这种完全不同丁实物粒了的另一类物理实在。电磁场具有能量、动量等基本物理性质,电磁场可以脱离物质单独存在,并且能够与物质交换能量和动量,电磁场的运动变化遵循Maxwell方程,这是一组偏微分方程电磁场理论表明。非接触的电磁物体之间的电磁作用,是以电磁场为媒介物传递的,是需要传递时间的,即是近距作用因此,Maxwell电磁场理论的建立及其实验证实,引起了物理实在观念的深刻变革,打破了超距作用一统天下的局面。Einstein在评价电磁场理论时强调指出:“实在概念的这一变革是物理学自Newton以来的一次最深刻和最富有成效的变革。” 然而,也应该清醒地看到,Faraday和Maxwell的场观念还不够彻底。他们认为,以太是某种弹性介质,电磁场则是以太的某种状态,这就在一定程度上带有机械论的色彩。如所周知,作为弹性介质的以太所应具有的种种性质以及探索以太的失败,令人难以理解也难以自圆其说。同时。Maxwell电磁场理论、Galileo变换和相对性原理三者之间的不能共存,更使人们陷人了困境。上述种种尖锐的矛盾迫使人们重新审视物理学大厦赖以支撑的基石,弄清楚哪些是颠扑不破的真理,哪些则需要修正或扬弃。20世纪韧,Einstein在相对性原理和光速不变原理基础上,建立了狭义相对论。它否定了Newton的绝对时空观,确立了崭新的相对论时空观,把Galileo变换修正为Lorentz变换,宣告真空中光速c是一切实物和信号速

相关文档
最新文档