高分子化学知识点总结材料12254

高分子化学知识点总结材料12254
高分子化学知识点总结材料12254

第一章绪论

1.1 高分子的基本概念

高分子化学:研究高分子化合物合成与化学反应的一门科学。

单体:能通过相互反应生成高分子的化合物。

高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。

主链:构成高分子骨架结构,以化学键结合的原子集合。

侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。

端基:连接在主链末端原子上的原子或原子集合。

重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。

结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。

单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。

聚合反应:由低分子单体合成聚合物的反应。

连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。

逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。

加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。

缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。

1.2 高分子化合物的分类

1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。④无机高分子:主链与侧链均无碳原子的高分子。

2)按用途分可分为:塑料、橡胶、纤维三大类,如果再加上涂料、粘合剂和功能高分子则为六大类。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。

3)按来源分可分为:天然高分子、合成高分子、半天然高分子(改性的天然高分子)

4)按分子的形状分:线形高分子、支化高分子、交联(或称网状)高分子

5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金)

6)按聚合反应类型分:缩聚物、加聚物

7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分

子可言。这类聚合物受热不软化,也不易被溶剂所溶胀。

8)按相对分子质量分:高聚物、低聚物、齐聚物、预聚物。

1.3 相对分子质量及其分布

1)相对分子质量

平均相对分子质量:相对于一般低分子化合物都具有确定的相对分子质量而言,一般合成聚合物都

不是由具有相同相对分子质量的大分子组成,而是由许多相对分子质量大小不等的同系物分子组成的混合物。因此,高分子化合物的相对分子质量只是这些同系物相对分子质量的统计平均值。

数均分子量: 一种按聚合物分子数目统计平均的分子量,即高分子样品的总重量W 除以其分子的总数量:

/i i i n i i i i i i

n M m m M x M n n m M ====∑∑∑∑∑∑ ,i i w x 为i-聚体的分子分率和质量分率。某体系的总质量m 为分子总数所平均。

重均分子量: 一种按聚合物重量统计平均的分子量,即i 聚体的分子量乘以其重量分数的加和。

采用光散射法测得: 2

i

i i

i w i i i i i

n m m M M w M m n M ===∑∑∑∑∑

粘均分子量:对于一定的聚合物-溶剂体系,其特性粘数[η]和分子量的关系(Mark-Houwink 方程)为1/1/1i a a a a i i i i i i n m m M M m n M η+????== ? ? ? ?????

∑∑∑∑ 用粘度法测得的聚合物的分子量。 Z 均分子量: 一种按照Z 值(Zi ≡WiMi )统计平均的分子量(可通过超速离心法测定),即

2i i i i w

i i i i i

n m m M M w M m n M ===∑∑∑∑∑ 2)聚合度 聚合度(DP ):即高分子链中重复单元的重复次数,以n X 表示;衡量聚合物分子大小的指标。

聚合度DP 与相对分子质量的关系为

n M DP M =? 式中M 为重复单元的相对分子质量.

由于共聚物和混缩聚物的重复单元由两个或两个以上结构单元组成,如果采用聚合度DP 往往会带来计算上的不便,因此大部分情况下,将聚合度定义为每个大分子链所含结构单元数目的平均值,通常以n X 表示。

聚合度n X 与相对分子质量的关系为

0n n M X M =?, 0M 为结构单元的平均相对分子质量。

特别强调:聚合度的计算最好以结构单元数目而不以重复单元数目为基准,即通常采用的是n X 表示聚合度。

3) 相对分子质量分布

多分散性:聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,这种相对分子质量的不均一性称为相对分子质量的多分散性。

多分散性有三种表示法:①多分散系数;②分级曲数;③分布函数。

多分散系(指)数可以用重均分子量和数均分子量的比值来表示,这一比值称为多分散指数,其符号为/(/)w n z w D M M M M 或,对于完全单分散的聚合物D=1,其数值大小表征聚合物相对分子质量大小悬殊的程度。

分子量分布(MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。

1.4 高分子化合物的基本特点:

特点一:分子量大(一般在一万以上)

特点二:组成简单、结构有规

特点三:分子形态呈多样性

特点四:分子量具多分散性

特点五:具有显著的多层次结构

第二章 缩聚和逐步聚合

2.1 逐步聚合反应的基本概念

1 逐步聚合的特征

逐步聚合:通常是由单体所带的两种不同的官能团之间发生化学反应而进行的。无活性中心,单体

官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。

其特征为:①逐步聚合反应是通过单体功能基之间的反应逐步进行的。在反应初期,聚合物远未达到实用要求的高分子量(>5000—10000)时,单体就已经消失了。②逐步聚合反应的速率是不同大小分子间反应速率的总和。③聚合产物的相对分子质量随转化率增高而逐步增大的。④在高转化率才能生成高分子量的聚合物。

2逐步聚合反应的分类

1)按反应机理分类

逐步缩聚反应:带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应,即缩掉小分子而进行的聚合。反应过程中,不小分子副产物生成。

逐步加成聚合:单体分子通过反复加成,使分子间形成共价键,逐步生成高相对分子质量聚合物的过程,其聚合物形成的同时没有小分子析出,如聚氨酯的合成。逐步聚合反应的所有中间产物分子两端都带有可以继续进行约定缩合反应的官能团,而且都是相对稳定的。当某种单体所含有官能团的物质的量多于另一种单体时,聚合反应就无法再继续下去。

2)按聚合物链结构分类

线形逐步聚合反应:参加反应的单体都只带有两个官能团,聚合过程中,分子链在两个方向上增长,分子量逐步增大,体系的粘度逐渐上升,最后形成高分子的聚合反应。

支化、交联聚合反应(体型聚合):参加聚合反应的单体至少有一个含有两个以上官能团时,反应

过程中,分子链从多个方向增长。调节两种单体的配比,可以生成支化聚合物或交联聚合物(体型聚合物)

3)按参加反应的单体种类分类

(1)逐步均聚反应:只有一种或两种单体参加聚合反应,生成的聚合物只含有一种重复单元。

(2)逐步共聚反应:两种或两种以上单体参加聚合反应,生成的聚合物含有两种或两种以上的重复单元。

3. 缩聚反应

缩聚反应:是缩合聚合的简称,是多次缩合重复结果形成缩聚物的过程。缩合和缩聚都是基团间的反应,两种不同基团可以分属于两种单体分子,也可能同在一种单体分子上。

官能度f :一分子聚合反应原料中能参与反应的官能团数称为官能度。

1-1、1-2、1-3体系缩合,将形成低分子物;2-2或2-官能度体系缩聚,形成线形缩聚物;2-3、2-4或3-3体系则形成体形缩聚物。

4. 线形缩聚机理

线形缩聚机理的特征有:逐步和可逆。

1)线型缩聚反应的逐步性

缩聚大分子的生长是由于官能团相互反应的结果。缩聚早期,单体很快消失,转变成二聚体、三聚体、四聚体等低聚物,转化率很高,以后的缩聚反应则在低聚物之间进行。缩聚反应就是这样逐步进行下去的,聚合度随时间或反应程度而增加。延长聚合时间的主要目的在于提高产物相对分子质量,而不在于提高转化率。缩聚早期,单体的转化率就很高,而相对分子质量却很低。

转化率:是指转变成聚合物的单体部分占起始单体量的百分数。

逐步特性是所有缩聚反应所共有的。

2)线型缩聚反应的平衡性

许多缩聚反应是可逆的,其可逆的程度可由平衡常数来衡量。根据其大小,可将线型缩聚大致分成三类:①平衡常数小,如聚酯化反应,K ≈4,低分子副产物水的存在对聚合物相对分子质量影响很大,应除去。②平衡常数中等,如聚酰胺化反应,K ≈300~500,水对聚合物相对分子质量有所影响。③平衡常数很大或看作不可逆,如聚碳酸酯和聚砜一类的缩聚,平衡常数总在几千以上。

可逆平衡的程度则各类缩聚反应有明显的差别。

3) 线型缩聚反应的平衡常数

Flory 等活性理论:单官能团化合物的分子链达到一定长度之后,其官能团的化学反应活性与分子链长无关。

按照官能团等活性理论,可以用一个平衡常数表征整个聚合反应的平衡特征,并以体系中的官能团浓度代替单体浓度。以聚酯反应为例,则其平衡常数为

2[~~~~][][][]

OCO H O K COOH OH =--- 方括号的含义是代表官能团的浓度和小分子的浓度。

Flory 等活性理论的适用条件:①缩聚反应体系必须是真溶液,均相体系,全部反应物、中间产物和最终产物都溶于这个介质。②官能团所处的环境——邻近基团效应和空间阻碍两方面因素在反应过程中应当不变。③聚合物的相对分子质量不能太高,反应速率不能太大,反应体系黏度不能太高,以不影响小分子产物的逸出、不妨碍建立平衡为限,不能使扩散成为控制速率的主要因素。

4) 反应程度和聚合度

考虑到在线型缩聚反应中实际参加反应的是官能团而不是整个单体分子,所以通常采用已经参加了反应的官能团与起始官能团的物质的量之比即反应程度p 来表征该反应进行的程度:

00

N N p N -==已反应官能团数/起始官能团总数 式中:0N 为反应起始时单体的总物质的量;N 为缩聚反应体系中同系物(含单体)的总物质的量。

线型平衡缩聚物的数均聚合度与反应程度的关系为

11n X p

=+ 线型平衡缩聚物的重均聚合度与反应程度的关系为

11w p X p

+=

- 线型平衡缩聚物相对分子质量分散度为 1w w n n

X M p M X =+= 当线型平衡缩聚反应程度很高(1p →)时,聚合物的分散度接近于2。

5) 缩聚反应中的副反应

缩聚通常在较高的温度下进行,往往伴有基团消去、化学降解、链交换等副反应。缩聚反应中的副反应:①链裂解反应是发生于缩聚物分子链与小分子有机或无机化合物之间的副反应,如聚酯的水解、醇解、酸解、胺解等。②链交换反应发生于两个大分子链之间的副反应。③环化反应是发生于大分子链的副反应。④官能团分解反应是发生于大分子链的副反应,如高温下羧基的脱羧、醇羟基的氧化反应等。

缩聚副反应的结果:①链裂解使聚合度降低。②链交换使分散度降低,链交换反应在一定程度上对

改善缩聚物的性能有利。③环化反应使聚合反应无法进行。④官能团分解反应危及聚合反应的顺利进行。 减少缩聚副反应所采取的措施:①为了减轻链裂解副反应的影响,必须首先考虑提高原料单体的纯度,来尽可能降低有害杂质特别是单官能团化合物的含量。②提高单体浓度等有利于双(多)分子之间反应的条件可以抑制环化副反应的发生;适当降低反应温度对于减轻环化副反应的影响有一定效果。③由于官能团分解反应的活化能高于聚合反应,所以应尽可能避免反应温度过高和反应器的局部过热,同时惰性气体排除反应器中的空气是减少官能团分解副反应的有效措施。

6) 线型平衡缩聚反应的影响因素

温度、压力、单体浓度、催化剂、搅拌和惰性气体保护是影响缩聚反应的六个外因;平衡常数是影响缩聚反应的因。

(1)反应温度的影响。①升高温度使平衡常数和聚合度降低。②升高温度会提高线型平衡缩聚反应的速率,降低体系黏度,有利于排除小分子。③升高温度会导致副反应的发生,所以必须通过试验确定最佳的反应温度。

(2)反应器压力。①在聚合反应后期减压有利于排除小分子。②在反应初期减压不利于维持低沸点单体的等物质的量配比。所以,采取反应初期加压反应后期减压的方法,就能兼顾既不破坏原料单体的物质的量配比,又可以达到更高的反应程度和聚合度的目的。

(3)催化剂。催化剂可提高聚合反应速率,而反应平衡常数不改变。

(4)单体浓度。高的单体浓度可以得到较高相对分子质量的聚合物。

(5)搅拌。①有利于反应物料的均匀混合与扩散。②强化传热过程以利于温度控制。③有利于排除生成的小分子副产物。④高强度的搅拌剪切力可导致线形大分子链断裂,从而引发机械降解。

(6)惰性气体。①避免氧化反应的发生。②有利于排除反应过程中生成的小分子。③又可能带出单体,

不利于维持低沸点单体的等物质的量配比。所以如果原料单体的沸点较低,则不宜在反应初期,而只能在反应中后期通入惰性气体。

7) 获得高相对分子质量缩聚物的基本条件

获得高相对分子质量缩聚物的重要条件是:①单体纯净,无单官能团化合物。②官能团等物质的量配比。③尽可能高的反应程度,包括温度控制、催化剂、后期减压排除小分子、惰性气体保护等。

2.2 官能团等活性概念

官能团等活性概念:反应物的两个官能团的反应活性是相等的,它与分子链的大小(分子量)无关,与另一个官能团是否已经反应也无关。

适合缩聚反应的单体必须具备两个基本条件:①带有两个不同或相同的官能团。②这两种官能团之间或者与别的单体的官能团之间可以进行化学反应并生成稳定的共价键。

单体活性的三个决定因素:①官能团取代负电性。如羧酸衍生物的活性取决于酰基取代基的电负性大小,其酰基取代基的电负性越大,羧酸衍生物的活性越高。②官能团邻近基团。如甘油参加一般缩聚反应时伯羟基的反应活性较高,而促羟基的活性较低。③碳原子数及环化倾向。特别注意的是,四五个碳原子的氨基酸和羟基酸具有强烈的环化倾向而不能聚合。

2.3逐步聚合反应动力学

在二元酸和二元醇的缩聚反应中,根据Flory 等活性理论,可假定每一步的速率常数相等。

1.聚酯反应机理

Flory 认为酸催化是酯化反应的必要条件。原料羧酸本身是能够离解并提供质子的催化剂,发生“自催化作用”,也可以采用外加酸作催化剂。

2.聚酯反应动力学方程

参加反应的官能团是等物质的量配比时,外加酸催化的聚酯反应属于二级反应,其动力学方程为

'0

'01/[]1/[][]1

n k t M M X k M t =-=+

式中:'k k =[外加酸];0[]M 为羟基或羧基浓度。 参加反应的官能团是等物质的量配比时,自催化三级反应动力学方程为

22201/(1)2[]11/(1)n n X p X kt M p =-→=+=-

注意:上述两个动力学方程并没有考虑到逆反应。

2.4聚合度与平衡常数的关系

官能团等活性和等物质的量配比时,线型平衡缩聚反应达到平衡时聚合物同系物(其中含单体)的平均聚合度(n X )与平衡常数(K )、反应程度(p )以及体系中小分子存留率(w n )之间的关系为

11n X P ==≈- 这是一个普遍公式,式中:0/w w n N N =,定义为存留在体系中小分子的物质的量分数;w n 为生成小分子(这里用H 2O 代表)的物质的量。

1)密闭体系

平衡聚合反应:单体与聚合物之间存在平衡关系的聚合反应称为~或可逆聚合反应。通常将逆反应叫做解聚反应。

缩聚反应在与外界完全无传质过程的所谓“密闭反应器”中进行。

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

高分子化学与物理实验指导书总结

高分子化学与物理实验指导书

1. 实验课时间安排 高分子化学实验是在学生主修《高分子化学与物理》课程基础上开设的。其中学时安排如下: 2. 预习情况检查方式 要求学生在实验前必须做好实验预习,否则不予参加实验。实验预习主要包括以下两个方面的内容: 1、检查实验预习报告(预习报告要求包括实验目的、实验原理、实验所需仪器及药品、实验步骤等) 2、老师在实验前要检查学生的实验预习情况,可采取口头提问的方式了解学是对实验的预习情况。 3. 相关知识的讲解 针对高分子化学开设的不同实验,指导教师要做好相关的讲解工作。主要包括:实验一甲基丙烯酸甲酯的本体聚合 实验二酚醛树脂的缩聚 实验三PP球晶观察 实验四PS粘均分子量测定

实验一甲基丙烯酸甲酯的本体聚合 一、实验目的 1. 掌握自由基本体聚合的原理及合成方法; 2. 了解有机玻璃的生产工艺。 二、实验原理 聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃。有机玻璃广泛用在工业、农业、军事、生活等的各个领域,如飞机、汽车的透明窗玻璃、罩盖等。在建筑、电气、医疗卫生、机电等行业也广泛使用,如制造光学仪器、电器、医疗器械、透明模型、装饰品、广告铭牌等。每年全世界要消耗数以百万吨的有机玻璃及其制品。 工业上制备有机玻璃主要采用本体、悬浮聚合法,其次是溶液和乳液法。而有机玻璃的板、棒、管材制品通常都用本体浇铸聚合的方法来制备。如果直接做甲基丙烯酸甲酯的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。如果选用其它聚合方法(如悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。因此,工业上或实验室目前多采用浇注方法。即:将本体聚合迅速进行到某种程度(转化率 10% 左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到 93 ~ 95% 左右,最后在 100 ℃下聚合至反应完全。其反应方程式如下: 本实验采用本体聚合法制备有机玻璃。本体聚合是在没有介质存在的情况下进行的聚合反应,体系中可以加引发剂,也可以不加引发剂。按照聚合物在单体中的溶解情况,可以分为均相聚合和多相聚合两种:聚合物溶于单体,为均相聚合,如甲基丙烯酸甲酯,苯乙烯等的聚合;聚合物不溶于单体,则为多相聚合,如氯乙烯,丙烯腈的聚合。 本体聚合中因为体系中无介质存在,反应是粘度不断增大,反应热不容易排出,局部容易过热,导致单体气化或聚合物裂解,结果产品内有气泡或空心。在甲基丙烯酸甲酯聚合过程中甚至会使反应进入爆炸聚合阶段(爆聚),所以反应必须严格控制温度。

高分子化学重点

第一章 绪论 单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。 高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。 结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。 重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。 单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。 重复单元或结构单元类似大分子链中的一个环节,故俗称链节 由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节 聚合度:聚合度是衡量高分子大小的一个指标。 合成尼龙-66具有另一特征: H 2N(CH 2)6NH 2 + HOOC(CH 2)4COOH H--NH(CH 2)6NH--CO(CH 2)4CO--OH n (2n-1) H 2O + 结构单元 结构单元 重复结构单元 有两种表示法:[1]以大分子链中的结构单元数目表示,记作: [2]:以大分子链中的重复单元数目表示,记作: 单元的分子量 结构单元=重复单元=链节1 单体单元 单体在形成高分子的过程中要失掉一些原子 结构单元 1 重复单元 1 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维 玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。 分子量及其分布 数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数 ∑∑∑∑∑∑= = = =i i i i i i i i i n M x M W W N M N N W M ) ( n x DP n DP x n ==

(完整版)初中化学金属知识点总结

金属和金属材料复习教案 [考点梳理] 考点1 金属材料 1.金属材料包括纯金属(90多种)和合金(几千种)两类。 金属属于金属材料,但金属材料不一定是纯金属,也可能是合金。 2.金属制品是由金属材料制成的,铁、铜、铝及其合金是人类使用最多的金属材料。 考点2 金属材料的发展史 根据历史的学习,我们可以知道金属材料的发展过程。商朝,人们开始使用青铜器;春秋时期开始冶铁;战国时期开始炼钢;铜和铁一直是人类广泛应用的金属材料。在100多年前,又开始了铝的使用,因铝具有密度小和抗腐蚀等许多优良性能,铝的产量已超过了铜,位于第二位。 金属分类:重金属:如铜、锌、铅等 轻金属:如钠、镁、铝等; 黑色金属:通常指铁、锰、铬及它们的合金。Fe、Mn、Cr(铬) 有色金属:通常是指除黑色金属以外的其他金属。 考点3 金属的物理性质 1.共性:大多数金属都具有金属光泽,密度和硬度较大,熔沸点较高,具有良好的延展性和导电、导热性,在室温下除汞为液体,其余金属均为固体。 (1)常温下一般为固态(汞为液态),有金属光泽。 (2)大多数呈银白色(铜为紫红色,金为黄色) (3)有良好的导热性、导电性、延展性 2.一些金属的特性:铁、铝等大多数金属都呈银白色,铜呈紫红色,金呈黄色;常温下大多数金属都是固体,汞却是液体;各种金属的导电性、导热性、密度、熔点、硬度等差异较大;银的导电性和导热性最好,锇的密度最大,锂的密度最小,钨的熔点最高,汞的熔点最低,铬的硬度最大。 (1)铝:地壳中含量最多的金属元素(2)钙:人体中含量最多的金属元素 (3)铁:目前世界年产量最多的金属(铁>铝>铜)(4)银:导电、导热性最好的金属(银>铜>金>铝)(5)铬:硬度最高的金属(6)钨:熔点最高的金属(7)汞:熔点最低的金属 (8)锇:密度最大的金属(9)锂:密度最小的金属 检测一:金属材料(包括和 ) 1、金属的物理性质

高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格) 高吸油树脂类型及制备方法:(1)聚丙烯酸酯类(2)聚烯烃类树酯(3)丙烯酸酯和烯烃共聚物(4)聚氨酯吸油泡沫

高分子化学概念总结

高分子化学试题 目录 高分子化学试题 (1) 一、名词解释 (1) 第一章绪论(Introduction) (1) 第二章自由基聚合(Free-Radical Polymerization) (4) 第三章自由基共聚合(Free-Radical Co-polymerization) (9) 第四章聚合方法(Process of Polymerization) (11) 第五章离子聚合(Ionic Polymerization) (12) 二、填空题 (15) 一、名词解释 第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。

聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量 (Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index) :重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。

材料化学总结

第一章绪论 ●材料和化学药品 化学药品的用途主要基于其消耗; 材料是可以重复或连续使用而不会不可逆地变成别的物质。 ●材料的分类 按组成、结构特点分:金属材料、无机非金属材料、高分子材料、复合材料 按使用性能分:Structural Materials ——主要利用材料的力学性能;Functional Materials ——主要利用材料的物理和化学性能 按用途分:导电材料、绝缘材料、生物医用材料、航空航天材料、能源材料、电子信息材料、感光材料等等●材料化学的主要内容:结构、性能、制备、应用 第二章材料的结构 2.1 元素和化学键 ●了解元素的各种性质及其变化规律:第一电离能、电子亲和势、电负性、原子及离子半径 ●注意掌握各种结合键的特性及其所形成晶体材料的主要特点 ●了解势能阱的概念: 吸引能(attractive energy,EA):源于原子核与电子云间的静电引力 排斥能(repulsive energy,ER):源于两原子核之间以及两原子的电子云之间相互排斥 总势能(potential energy):吸引能与排斥能之和 总势能随原子间距离变化的曲线称为势能图(势能阱) 较深的势能阱表示原子间结合较紧密,其对应的材料就较难熔融,并具有较高的弹性模量和较低的热膨胀系数。 2.2 晶体学基本概念 ●晶体与非晶体(结构特点、性能特点、相互转化) 晶体:原子或原子团、离子或分子在空间按一定规律呈周期性地排列构成(长程有序) 非晶体:原子、分子或离子无规则地堆积在一起所形成(长程无序、短程有序) 晶态与非晶态之间的转变 ? 非晶态所属的状态属于热力学亚稳态,所以非晶态固体总有向晶态转化的趋势,即非晶态固体在一定温度下会自发地结晶,转化到稳定性更高的晶体状态。 ? 通常呈晶体的物质如果将它从液态快速冷却下来也可能得到非晶态。 ●晶格、晶胞和晶格参数 周期性:同一种质点在空间排列上每隔一定距离重复出现。 周期:任一方向排在一直线上的相邻两质点之间的距离。 晶格(lattice):把晶体中质点的中心用直线联起来构成的空间格架。 结点(lattice points):质点的中心位置。 空间点阵(space lattice):由这些结点构成的空间总体。 晶胞(unit cell):构成晶格的最基本的几何单元。 ●晶系 熟记7个晶系的晶格参数特征 了解14种空间点阵类型 ●晶向指数和晶面指数 理解晶面和晶向的含义 晶面——晶体点阵在任何方向上分解为相互平行的结点平面称为晶面,即结晶多面体上的面。

计算机在材料化学中的应用知识点总结

计算机在材料化学中的应用 第一章绪论 1.工程模拟:在模型的基础上观察客观世界的各种系统并进行实验研究的技术。 2.模型的构造 (1)模型的分类:物理模型(动、静);描述性模型;数学模型(动、静;数值法、解析法)(2)模型的构造方法: a.理论分析; b.类比分析; c.数据分析:使用系统回归分析的方法利用若干能表征系统规律,描述系统状态的数据来建立系统的数学模型。 d.人工假设:基于对系统的了解,将系统中不确定的因素假定为若干组确定的取值,而建立系统模型。 3.过程模拟(流程模拟) a.稳态流程模拟; b.动态流程模拟:利用计算机技术、图形原理和成像方法在屏幕上以动态、直观、立体、彩色的方式显示物体运动的过程模拟。 4.工程模拟研究的步骤: 问题描述; 设定目标和总体方案; 构造模型; 数据收集; 编制程序; 程序验证; 模型确认; 实验确认。 5.相关英文简称 CAD:计算机辅助设计。 CAM:计算机辅助制造。 CAPP:计算机辅助工艺过程设计(computer aided process planning)。 在化学领域CAPP:计算机辅助合成路线设计。 DCS:分散控制系统。 6.分子模拟的方法中主要有四种:量子力学方法、分子力学方法、分子动力学方法、分子蒙特卡洛方法。 7.分子模拟法是用计算机以原子水平的分子模型来模拟分子的结构和行为,进而模拟分子系统的各种物理与化学性质。(定义)

8.分子模拟方法与高分子理论和材料设计的关系 第二章数值计算 方程求根 1.二分法 原则:保持新区间两端的函数值异号,对分n次得到第n个区间的长度为最初区间长度(x1-x0)的1/2n ,在误差允许范围内,取In的中点为方程的根,则误差小于1/2(n+1) (x1-x0),这种对分区间,不断缩小根的搜索范围的方法叫二分法。 此法简单、快速、不易丢根。 二分法求根原则(跳出条件): (1)函数f(x)的绝对值小于指定的e1; (2)最后的小区间的一半宽度小于指定的自变量容差e2。 二分法函数: V oid root(float a,float b,int*n,float fa,float fb,float e1,float e2,float rt[20]) { float a0,f0;a0=(a+b)/2;f0=f(a0); While((fabs(a-b)>e2)&&(f0>e1)) { if(f0*fa>0){a=a0;fa=f0;} If(f0*fb>0){b=a0;fb=f0} a0=(a+b)/2;f0=f(a0); } *n=*n+1;rt[*n]=a0; } 弦截法求根:不取区间的中点,而取AB与X轴的交点为根的估算值。 优点:比原来趋近根的速度快 2.迭代法 方法概述:二分法和弦截法实质上就是迭代法,在迭代的每一步都是利用两个初始的―x‖去求一个新的―x‖值,能否在迭代的每一步只用一个―x‖值去求新的―x‖呢?这就是一点迭代法,通常简称为迭代法。 3牛顿法 方法原理:将f(x)在x=x0附近按泰勒级数展开; f (x) = f (x0) + (x-x0) f′(x0) + !2)0 (2 x x f〞(x0) + …

高分子化学复习题答案资料

答案大部分都是在网上或者书上找到的,少数自己总结的,不能确保百分之百正确,仅供 参考,如发现错误和遗漏之处,请大家指出! 计算题第二题方法应该没错,答案有保留小数方面的问题,如果有人找到正确的解答欢迎 补充。 一、名词解释 1. 凝胶化现象:多官能团单体聚合到某一程度,开始交联,粘度突增,气泡也难上升的现象。 2. 多分散性:合成聚合物总是存在一定的分子量分布,常称作多分散性。 3. 玻璃化温度:非晶态热塑性聚合物在玻璃态下受热转变成高弹态时的转变温度。 4. 自由基聚合:自由基成为活性种,打开烯类的n键,弓I发聚合,成为自由基聚合。| 5. 胶束成核:难溶于水的单体其短链自由基只增长少数单元(<4),就被沉析出来,与初级自由基一起 被增溶胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。 6. 力口聚:稀类单体n键断裂而后加成聚合起来的反应。 7. 缩聚反应:是官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、氨或氯化氢等低分子副产 物产生。 8. 接枝共聚物:主链由某一种单元组成,支链则由另一种单元组成。 9. 竞聚率:是指单体均聚和共聚链增长反应速率之比。 10. 均相成核:溶于水中的单体引发聚合形成短链自由基,多条这样亲水性较大、链较长的短链自由基 相互聚集在一起,絮凝成核的现象。 11. 定向聚合:定向聚合指单体经过定向配位、络合活化、插入增长等形成立构规整(或定向)聚合物 的过程 12. 开环聚合:环状单体b -键断裂而后开环、形成线性聚合物的反应,称作开环聚合。 13. 共聚合:由两种或两种以上单体共同聚合,生成同一分子中含有两种或两种以上单体单元的聚合物的反应。 14. 化学计量聚合 :阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计 量聚合。 15. 嵌段共聚物:是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物,每 一锻炼可长达至几千结构单元。

高分子化学知识总结

一、绪论 1.聚合物的分类及命名可按来源、合成方法、用途、热行为、结构等来分类,主要是按主链结构来分类,分为:(1)碳链聚合物,(2)杂链聚合物,(3)元素有机聚合物; 2.聚合物的命名 (1)单体来源命名法 烯类聚合物单体名前加“聚”; 两种单体合成的,取二者简名加后缀“树脂”“橡胶”; 杂链聚合物按其特征结构命名; *有些聚合物按单体名来命名容易引起混淆,例如[]22OCH CH --,可以从环氧乙烷、乙二醇、氯丙醇或氯甲醚来合成,因为环氧乙烷单体最常用,故通常称作聚环氧乙烷,按结构该聚合物应称作聚氧乙烯。 (2)系统命名法 命名原则和程序:先确定重复单元结构,再排好其中次级单元次序,给重复单元命名,最后冠以“聚”字,就成为聚合物的名称。写次级单元时候,先写侧基最少的元素,再写有取代的亚甲基,然后写无取代的亚甲基。 3.聚合反应 (1)按单体-聚合物结构变化分类 缩聚 官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、 氨或氯化氢等低分子产物产生 加聚 烯类单体π键断裂而后加成聚合起来的反应称作加聚,产物称作加聚 物。加聚物结构单元的元素组成与其单体相同,仅仅是电子结构有所变化,因此加聚物的分子量是单体分子量的整数倍 开环聚合 环状单体σ键断裂而后聚合成线形聚合物的反应,反应时无低分子副 产物产生 (2)按聚合物机理分类 逐步聚合 多数缩聚和聚加成反应属于逐步聚合,其特征是低分子转变成高分 子是缓慢逐步进行的,每步反应的速率和活化能大致相同,单体分子首先聚合成二、三、四具体等低聚物(齐聚物),短期内单体转化率很高,随后,低聚物间相互缩聚分子量缓慢增加,直至集团反应程度很高分子量才达到较高的数值 *连锁聚合 多数烯类单体的加聚反应属于连锁聚合。有自由基、阴离子或阳离 子聚合,自由基聚合过程中,分子量变化不大,除微量引发剂外,体系始终由单体和高分子量聚合物组成,没有分子量递增的中间产物,转化率随时间而增大,单体则相应减少。活性阴离子聚合的特征是分子量随转化率的增大而线性增加。 4.分子量是影响强度的重要因素,聚合物强度随着分子量的增大而增加。 5.平均分子量 (1)数均分子量n M (通常由渗透压,蒸汽压等依数性方法测定)定义:某 体系的总质量m 被分子总数所平均。

九年级化学第八章金属知识点总结

艰第八单元 金属和金属材料 第一节 金属材料 ● 金属材料:金属材料包括纯金属以及它们的合金。 ● 金属的物理性质 ? 在常温下一般为固态(汞为液态),有金属光泽(大多数金属呈银白色,铜呈紫红色,金呈黄色); ? 导电性、导热性、熔点较高、有延展性、能够弯曲、硬度较大、密度较大。 ● 金属之最 ? 地壳中含量最多的金属元素——铝 ? 人体中含量最多的金属元素——钙 ? 目前世界年产量最多的金属——铁(铁>铝>铜) ? 导电、导热性最好的金属——银(银>铜>金>铝) ? 熔点最高的金属——钨 ? 熔点最低的金属——汞 ? 硬度最大的金属——铬 ? 密度最大的金属——锇 ? 密度最小的金属——锂 ● 金属的分类 ● 金属的应用 物质的性质在很大程度上决定了物质的用途,但这不是唯一的决定因素。在考虑物质的用途时,还需要考虑价格、资源、是否美观、使用是否便利,以及废料是否易于回收和对环境的影响等多种因素。 ? 铜、铝——电线——导电性好、价格低廉 ? 钨——灯丝——熔点高 ? 铬——电镀——硬度大 ? 铁——菜刀、镰刀、锤子等 ? 汞——体温计液柱 ? 银——保温瓶内胆 ? 铝——“银粉”、锡箔纸 ● 合金:由两种或两种以上的金属或金属与非金属经一定方法所合成的具有金属特性的物质。 合金是混合物。金属氧化物不是合金。 ● 目前已制得的纯金属只有90多种,而合金已达几千种。 ● 合金的硬度一般比组成它的纯金属的硬度大,抗腐蚀性强。 ● 合金的熔点一般比组成它的纯金属的熔点低。 ● 黑色金属:通常指铁、锰、铬及它们的合金。 有色金属:通常是指除黑色金属以外的其他金属。 重金属:如铜、锌、铅等 轻金属:如钠、镁、铝等

高分子化学心得体会

高分子化学心得体会 在未学习高分子化学以前,对高分子化合物的认识停留在涤纶、橡胶、纤维、树脂等这一些常见的化合物上,对高分子化学的认知就是我们有机化学所讲述的聚合物之间的加成、缩聚之类。学习了高分子化学之后,让我了解到现在的高分子科学的研究十一高分子化学为基础,研究高分子化合物的分子设计、合成及改性等,为高分子科学研究提供新生化合物、为国民经济提供新材料及合成方法。而高分子科学的发展由三大合成材料(塑料、合成橡胶和合成纤维)到了精细高分子、功能高分子、生物医学高分子等领域。下面我就本学期以来自己对高分子化学主要内容的学习的心得体会做一简单地总结。 一、对高分子化合物的基本认识 1、高分子化合物的定义及特点 所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在10000以上的化合物。所谓“相对分子质量在10000以上”其实只是一个大概的数值。对于不同种类的高分子化合物而言,具备高分子材料特殊物性所必需的相对分子质量下限各不相同,甚至相去甚远。 高分子化合物的基本特点主要表现在4个方面:a.相对分子质量很大,而且具有多分散性,一般高分子化合物实际上都是由相对分子质量大小不等的同系物组成的混合物,其相对分子质量具有统计平均意义;b.化学组成比较简单,分子结构有规律;c.分子形态多种多样;d.物性迥异于低分子同系物,尤其是具有黏弹性。 2、高分子化合物的分类 A.按照来源分类 可分为天然高分子和合成高分子两大类。天然高分子如云母、石棉、石墨、蛋白质、淀粉、纤维素、核糖核酸(RNA)、脱氧核糖核酸(DNA)等;合成高分子如聚乙烯、尼龙-66、涤纶等。 B.按材料用途分类 可分为塑料、橡胶、纤维、涂料、胶黏剂和功能高分子等6大类。 C.按主链元素组成分类 a.碳链高分子(主链完全由碳原子组成。如聚乙烯); b.杂链高分子(主链除碳原子

有机化学知识点总结归纳(全)

催化剂 加热、加压 有机化学知识点归纳 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 物理性质:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。 一般地,C1~C4气态,C5~C16液态,C17以上固态。 2.它们的熔沸点由低到高。 3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。 4.烷烃都不溶于水,易溶于有机溶剂 D) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 C 16H 34 C 8H 18 + C 8H 16 ④烃类燃烧通式: O H 2 CO O )4(H C 222y x y x t x +++????→?点燃 ⑤烃的含氧衍生物燃烧通式: O H 2 CO O )24(O H C 222y x z y x z y x +-+ +????→?点燃 E) 实验室制法:甲烷:3423CH COONa NaOH CH Na CO +→↑+ 注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水(不能用NaAc 晶体) 4.CaO :吸水、稀释NaOH 、不是催化剂 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。 C) 化学性质: CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2 CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团 CaO △

材料化学考试重点整理

第一章 1、材料的基本概念 材料是人类赖以生存的基础,材料的发展和进步伴随着人类文明发展和进步的全过程。材料是国民经济建设,国防建设和人民生活不可缺少的重要组成部分,是社会现代化的物质基础与先导。 材料,尤其是新材料的研究、开发与应用反映着一个国家的科学技术与工业水平。 材料特别是新材料与社会现代化及现代文明的关系十分密切,新材料对提高人民生活,增加国家安全,提高工业生产率与经济增长提供了物质基础,因此新材料的发展十分重要。 材料是一切科学技术的物质基础,而各种材料的起点主要来源于材料的化学制备和化学改性。 2、什么是材料科学工程 具有物理学、化学、冶金学、金属学、陶瓷学、计算数学等多学科交叉与结合的特点,并且具有鲜明的工程性。 3、什么是材料化学 材料化学在研究开发新材料中的作用,就是用化学理论和方法来研究功能分子以及由功能分子构筑的材料的结构与功能关系,使人们能够设计新型材料,提供的各种化学合成反应和方法使人们可以获得具有所设计结构的材料。 采用新技术和新工艺方法,合成新物质和新材料,通过化学反应实现各组分在原子或分子水平上的相互转换过程。涉及材料的制备、组成、结构、性质及其应用的一门科学。 材料化学既是材料科学的一个重要分支,也是材料科学的核心内容。同时又是化学学科的一个组成部分,具有明显的交叉学科、边缘学科的性质。是材料学专业学生的一门重要的专业基础知识课程。 4、材料的分类 (1)按照材料的使用性能:可分为结构材料与功能材料两类 结构材料的使用性能主要是力学性能; 功能材料的使用性能主要是光、电、磁、热、声等功能性能。 (2)以材料所含的化学物质的不同将材料分为四类:金属材料、非金属材料、高分子材料及由此三类材料相互组合而成的复合材料。 第二章 1、原子结合---键合 两种主要类型的原子键:一次键和二次键。 (1)一次键的三个主要类型:离子键、共价键和金属键。(一次键都涉及电子的转移,或者是电子的共用。)一次键通常比二次键强一个数量级以上。 ①金属键:自由电子和正离子组成的晶体格子之间的相互作用就是金属键。没有方向性和饱和性的。 ②离子键:包含正电性和负电性两种元素的化合物最通常的键类型为离子键。阴阳离子的电子云通常都是球形对称的,故离子键没有方向性和饱和性。 ③共价键:由两个原子共有最外层电子的键合,使每个原子都达到稳定的饱和电子层。共价键具有方向性和饱和性。 (2)二次键:范德华键(二次键既不涉及电子的转移,也不涉及电子的共用。) 以弱静电吸引的方式使分子或原子团连接在一起的,比前3种键合力要弱得多。包含色散效应、分子极化、氢键。 ①色散效应:对称的分子和惰性气体原子,由于电子运动的结果,有时分子或原子的内部会发生电子的偏离而引起瞬时的极化,形成诱导瞬间电偶极子,就会产生很弱的吸引力,这样的吸引力在其它力不存在时能使分子间产生结合。 ②分子极化:原子、离子及分子的电荷并不是固定在一定部位上,它们在相互靠近时,电荷会发生偏移,形成

高分子化学知识总结

二、缩聚和逐步聚合 2.2 缩聚反应(缩聚反应是缩合聚合的简称,是多次缩合重复结果形成缩聚物 的过程) (1) 缩合反应 *官能度:一分子中能参与反应的官能团数称作官能度(f );考虑官能度时需以参与的反应集团为基准。 (2)缩合反应 线形缩聚的首要条件是需要2-2或2-官能度体系作原料,采用2-3或2-4官能度体系是,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构,这就称作体形缩聚。 (3) 共缩聚 羟基酸或氨基酸一种单体的缩聚,可称作均缩聚;由二元酸和二元醇2种单体进行的缩聚是最普通的缩聚;从改进缩聚物结构性能角度考虑,将1种二元酸和2种二元醇、2种二元酸和2种二元醇进行所谓“共缩聚”。 2.3 线形缩聚反应的机理 2.3.1 线形缩聚和成环倾向 *线形缩聚时,需考虑单体及其中间产物的成环倾向,一般情况下,五、六元环的结构比较稳定。 *成环是单分子反应,缩聚则是双分子反应,因此,低浓度有利于成环,高浓度有利于线形缩聚。 2.3.2 线形缩聚机理 (特征有2:逐步、可逆) (1)逐步特性 缩聚反应无特定的活性种,各步反应速率常数和活化能基本相等,缩聚早期,转化率就很高,因此用基团的反应程度来表述反应的程度更为确切,现已等摩尔二元酸和二元醇的缩聚反应为例来说明 *反应程度p 的定义为参与反应的基团数(0N N -)占起始基团数0N 的分数,因此: 0001N N N p N N -==- *如将大分子的结构单元数定义为聚合度n X ,则: 0n N X N ==结构单元总数大分子数 进一步可得 11n X p =-; (2) 可逆平衡 聚酯化和低分子酯化反应相似,都是可逆平衡反应,正反应是酯化,逆反应是水解。 *平衡常数小,低分子副产物水的存在限制了分子量的提高,需在高度减压条件下脱除; *平衡常数中等,300—400;水对分子量有所影响,聚合早期可在水中进行,只是后期,需要在一定的减压条件下脱水,提高反应程度; *平衡常数很大,K>1000;可以看作不可逆。 2.3.3 缩聚中的副反应 (1)消去反应; 影响产物的分子量

完整高分子化学知识点

2.名词解释 交替共聚物:两种单体在大分子链上严格交替相间排列。 嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。 异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。计算方法为参加反应的官能团数占起始官能团数的比例。 转化率:进入共聚物的单体量占起始单体量M的百分比。笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 诱导分解:诱导分解(Induced Decomposition)自由基向引发剂转移的反应为诱导分解。自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。(每一份子平均带的官能度) 凝胶点:开始出现凝胶瞬间的临界反应程度Pc。高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。 配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)链中增长形成大分子的过程。这种聚合本质上是单体对增长链Mt-R键的插入反应,所以又称为插入聚合。(配位聚合具有以下特点:活性中心是阴离子性质的,因此可称为配位阴离子聚合;单体π电子进入嗜电子金属空轨道,配位形成π络合物;π络合物进一步形成四圆环过渡态;单体插入金属-碳键完成链增长;可形成立构规整聚合物。配位聚合引发剂有四种:Z-N催化剂;π烯丙基过渡金属型催化剂;烷基锂引发剂;茂金属引发剂。其中茂金属引发剂为新近的发展,可用于多种烯类单体的聚合,包括氯乙烯。) 线形缩聚:是两种或者以上的双官能团单体聚合最终生成物是长链的线性大分子 理想衡比共聚:不论单体配比和转化率如何,共聚物组成总是与单体组成完全相等,共聚物组成曲线是一条对角线。 动力学链长:是指活性中心(自由基)从产生到消失所消耗的单体数目 立构规整度:是立构规整聚合物占总聚合物的分数,是评价聚合物性能、引发剂定向聚合能力的一个重要指标。 降解:大分子分解成较小的分子。(分子量变小的反应) 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。PMA聚丙烯酸甲酯PAN 聚丙烯腈PTFE 聚四氟乙烯 SMA 苯乙烯-马来酸酐(顺丁烯二酸酐)AIBN 偶氮二异丁腈ABVN 偶氮二亿庚腈BPO 过氧化二苯甲酰PP 聚丙烯 PS 聚苯乙烯PMMA 聚甲基丙烯酸甲酯PVA 聚乙烯醇PAN 聚丙烯晴PET 聚酯PA66 6 尼龙66PA6 尼龙. PET:聚对苯二甲酸乙二醇酯PVAc聚醋酸乙烯酯ABS 丙烯醇-丁二烯-苯乙烯共聚物3影响线形缩聚聚合物的分子量因素答:反应程度,平衡常数,。Xn=1/1-p=√k+1;

最新-潘祖仁第五版高分子化学知识点 精品

潘祖仁第五版高分子化学知识点 篇一:高分子化学第五版潘祖仁第一章思考题1举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。 在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。 在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。 如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。 以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以表示。 2举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。 聚合物()可以看作是高分子()的同义词,也曾使用的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。 多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

高分子化学总结教学内容

名词解释 1:凝胶点:开始出现凝胶瞬间的反应程度。 2:凝胶效应:体系粘度增加所引起的自动加速现象。 3:诱导分解:链自由基向引发剂的转移反应,使引发剂效率降低。 4:动力学链长:每个活性中心自引发至终止平均消耗的单体分子数。 5:理想恒比共聚:当r1=r2=1时,无论配比和转化率如何,共聚物的组成和单体的组成完全相同,F1=f1时,共聚物组成的曲线为一对角线。 6:竞聚率:单体均聚和共聚链增长的速率常数之比。(用于表征两单体的相对活性) 7:官能度:一分子中能参与反应的官能团数。 8:反应程度:参与反应的集团数(N0-N)占起始基团数N0的百分数。 9:环氧值:100g树脂中含有的环氧基的摩尔数。 10:半衰期:引发剂分解至起始浓度一半时所需的时间。 11:引发效率:引发剂分解生成的自由基中能用于引发聚合反应的百分数。 12:笼蔽效应:由于初级自由基受溶剂分子包围,限制了自由基的扩散,,导致初级自由基之间发生耦合或歧化终止,使引发率f降低的效应。 13:数钧聚合度:平均每个聚合物分子所包含的结构单元数。 14:Q,e概念:单体的共轭效应因子Q和极性效应因子e与单体竞聚率相关联的定量关联式。15:临界胶速浓度:乳化剂开始形成胶速的临界浓度。 问答题 1:什么是自动加速现象,产生的原因是什么?对聚合度及聚合反应产生怎样的影响?离子聚合中是否发生自动加速现象? 答:①自动加速现象:单体和引发剂的浓度随着转化率的增加而降低后,聚合速率理应降低,但达一定转化率后,却出现了聚合反应速率增加的现象。 ②产生原因:随聚合反应的进行,体系粘度不断增大,当体系粘度增加到一定程度时,双基终止受阻碍,使Kt明显变小,链终止速度下降,但单体扩散的速率几乎不受影响,Kp下降很小,链增长的速率变化不大,因此相对提高了聚合反应的速率,出现了自动加速现象。③影响:导致聚合反应速率增加,体系粘度增加,导致分子量和分散性增加,影响产品质量,易发生局部过热而出现暴聚。 改善:降低体系粘度如溶液聚合,强化传热如搅拌,此外选用良溶剂,如增大溶剂用量,提高或降低聚合物分子质量都会减轻自动加速程度。 ④:在离子聚合过程中,由于同种电荷相互排斥而无法双基终止,因而不会产生自动加速现象。 2:为什么缩聚反应中不能用转化率而用反应程度来描述反应过程? 答:缩聚反应的本质是官能团之间的反应,在缩聚早期,转化率就很高,转化率并无实际意义,只有官能团之间充分反应才能生成大分子。 3:能否用蒸馏的方法提纯高分子化合物,为什么? 答:不能,由于高分子化合物分子间作用力往往超过高分子主链中共价键的键合力,所以当温度升高达气化温度之前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构。4:推导自由基聚合动力学方程时,作了哪些基本假设? 答:①:等活性假设:链自由基活性与链长无关,即各步增长反应速率常数相等。 ②:稳态假设:自由基浓度不发生改变进入稳态状态,即引发速率等于终止速率。 ③:高分子聚合度很大:用于增长的单体远远多于用于引发消耗的单体。 ④:链转移不影响聚合速率,仅影响分子量

相关文档
最新文档