单相桥式全控整流电路实验

单相桥式全控整流电路实验
单相桥式全控整流电路实验

u2

powergui

Continuous Voltage Measurement 1

v +-

Voltage Measurement

v +

-

VT 4

g

m

a

k

VT 3

g

m

a

k

VT 2

g

m

a

k

VT 1

g

m

a

k

Series RLC Branch

Scope

Pulse Generator 4

Pulse Generator 3

Pulse Generator 2

Pulse Generator 1

Current Measurement

i +

-pulse1

pulse1

pulse

u2

id

ud

单相桥式整流电路实验

课题单相桥式整流电路执教者教学时间40×2分钟 教学方法启发讲授、项目示范、练习巩固教学用具黑板/粉笔,投影,二极管整流电路示范装置,交流电源调节器,通用双踪示波器,万用表 教学目的通过对单相桥式整流电路原理的理解,能够正确的使用和安装单向桥式整流电路或桥堆(1)根据二极管的单向导电性正确判断桥中二极管的导通、截止状态,并用波形表示;(2)使用示波器分析工作中电路的波形,正确判断桥及桥中二极管的工作情况是否正常;(3)使用万用表对桥的输入、输出电压进行测量、监控,掌握桥的输入、输出关系;(4)根据要求正确地选择二极管或集成的桥堆; (5)正确安装整流桥并接入电路,注意好的职业习惯的培养; 教学重点单向桥式整流电路原理的理解及电路安装 教学难点(1)桥中各桥臂二极管的工作情况分析;(2)整流桥中二极管参数的选择; (3)二极管在整流电路安装时的操作要点。 教学过程 项目内容备注 导入:8min 1、二极管的单向导电性; 2、单向半波、全波整流电路的优劣特点 使用万用表和示波器 对相关内容进行复习。

教学过程( 续) 新 课: 65 min 单相桥式 整流电路 原理 (35min) 1、用不同颜色的发光二极管代替普通的整流二极管组成桥式整流电路,正确接入电 路,演示二极管整流过程。 2、将双踪示波器分别接入相邻、相对两桥臂,观察其变化过程。(1、2共18min) 3、使用万用表对其输入、输出电压进一步跟踪,调节输入电压的大小,测量输出电 压,发现它们之间的数量关系。(14min) 4、师生对上述过程进行分析,探究上述现象形成的原因。(3min) 运用模块式任务导向 教学原理,展开教学, 以突出重点、分化难 点。 器件的选 择与电路 安装 (30min) 1、根据上述原理分析,获得二极管桥式整流电路中二极管上承受最大反压、流过二 极管整流电流值与整流桥交流侧输入电压的关系,从而理解该电路在选择二极管时 所采用的经验式。 2、示范练习并指导学生根据需要选择二极管,并将其正确接入电路。 注意事项 电路安装时,一定要认准交流侧“阴阳-阴阳”串联,直流侧“阴阴-阳阳”并联; 测试桥式整流电路输入、输出电压时要注意万用表使用安全; 测试信号波形时,因测试探头“公共接地”端在测试中的作用,在测试时为了分析方便,当测试扫描一旦确 定,在进行输出、管压降测试时,不要再次调节该参数。 课堂总结及作 业布置(5min) 总结本教学单元的重点,巧妙设置问题考查学生的掌握程度,同时提出思考,为进入滤波电路学习做好铺垫。课堂答疑(2 min)针对本教学单元内的相关问题,课堂上回答学生的疑问,并对比较集中的、非常规性的问题在全班进行解释。教学反思(附后) 2

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相半控桥整流电路实验报告

目录 一、实验基本内容----------------------------------2 1.实验项目名称-----------------------------------2 2.实验已知条件-----------------------------------2 3.实验完成目标-----------------------------------3 二、实验条件描述-----------------------------------3 1.主要设备仪器-----------------------------------3 2.小组人员分工-----------------------------------3 三、实验过程描述-----------------------------------4 1.实现同步---------------------------------------4 2.半控桥纯阻性负载试验---------------------------4 3.半控桥阻-感性负载(串联L=200mH)实验-----------6 四、实验仿真---------------------------------------9 五、实验数据处理及讨论-----------------------------18 六、实验思考---------------------------------------22

一、实验基本内容 1.实验项目名称:单相半控桥整流电路实验 2.实验已知条件:单相半控桥整流电路如图所示,图中晶闸管VT1,二极管VD4组成一对桥臂,VT3,VD2组成另一对桥臂,变压器u2加在桥臂的中间。 (1)阻性负载电源电压u2在(0,α),VD2,VT3承受反向阳极电压处于截止状态,由于VT1未加触发脉冲而使VT1,VD4处于正向阻断状态,此时ud=0 , uVT1=u2, uVD2= -u2, uVT3=0, uVD4=0;wt=α时刻,触发VT1,VT1,VD4立即导通,VD2,VT3承受反向电压关断,此时ud= u2 , uVT1= 0, uVD2= -u2, uVT3=-u2, uVD4=0;u2在负半周(π,π+α)期间,VT3,VD2虽然承受正向阳极电压但由于门极没有触发信号而正向阻断,此时ud=0,uVT1=0,uVD4=u2,uVT3= -u2,uVD2=0; wt=π+α时刻触发VT3,则VT3,VD2,此时ud= u2,uVT1=-u2,uVD4=u2, uVT3=0, uVD2=0。 (2)感性负载负载电感足够大从而使负载电流连续且为一水平线。电源电压u2的正半周,wt=α时刻触发晶闸管VT1,则VT1,VD4立即导通,电流从电源出来经VT1,负载,VD4流回电源,此时ud=u2。当wt=π时,电源电压u2经零变负,由于电感的存在,VT1将继续导通,此时a点电位较b点电位低,二极管自然换相,从VD4换至VD2,这样电流不再经过变压器绕组,而由VT1,VD2续流,忽略器件导通压降,ud=0,整流电路不会输出负电压。电源电压u2的负半周,wt=π+α时刻触发VT3,则VT3,VD2导通,使VT1承受反向电压关断,电源通过VT3和VD2又向负载供电,ud= -u2。U2从负半周过零变正时,电流从VD2换流至VD4,电感通过VT3,VD4续流,ud又为零。以后,VT1再次触发导通,重复上诉过程。 3. 实验完成目标: (1)实现控制触发脉冲与晶闸管同步。

单相桥式晶闸管全控整流电路课程设计

学号:2011551917 湘潭大学 课程设计 题目单相全控桥式晶闸管整流电路设计 学院信息工程学院 专业自动化专业 班级自动化4班 姓名严梦宇 指导教师兰志勇 2014 年 5 月19 日

课程设计任务书 学生姓名:严梦宇专业班级:自动化4班 指导教师:兰志勇工作单位:湘潭大学 题目: 初始条件:单相全控桥式晶闸管整流电路的设计(阻感负载) 1、电源电压:交流100V、50Hz 2、输出功率:500w 3、移相范围0°~90° 摘要 本次课程设计只要是对单相全控桥式晶闸管整流电路的研究。首先对几种典型的整流电路的介绍,从而对比出桥式全控整流的优点,然后对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。主电路中包括电路参数的计算,器件的选型;触发电路中包括器件选择,参数设计;保护电路包括过电压保护,过电流保护,电压上升率抑制,电流上升率抑制。之后就对整体 电路进行Matlab仿真,最后对仿真结果进行分析与总结。 关键词:单相全控桥、晶闸管、整流 单相桥式全控整流电路 电路简图如图: 单相桥式全控整流电路 此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负

载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。 而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。 系统流程框图 根据方案选择与设计任务要求,画出系统电路的流程框图如图1-5所示。整流电路主要由驱动电路、保护电路和整流主电路组成。根据设计任务,在此设计中采用单相桥式全控整流电路带阻感性负载。 系统流程框图 主电路的设计 主电路原理图如图1-6所示 主电路原理图 输入 过电流保护 整流主电路 过电压保护 驱动触发电路 输出

实验二 单相桥式全控整流电路实验

实验二单相桥式全控整流电路实验 一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载及电阻-电感性负载下的工作特性。 3.熟悉NMCL-05锯齿波触发电路的工作。 二.实验线路及原理 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻-电感性负载。 四.实验设备及仪器 1.NMCL-III教学实验台主控制屏 2.NMCL-32主控制屏

3.NMCL-05组件及SMCL-01或NMCL-31 4.MEL-03A组件和NMCL-331多电感组件 5.NMCL-35和NMCL-33组件 6.双踪示波器 7.万用表 五.注意事项 1.本实验中触发可控硅的脉冲来自NMCL-05挂箱。 2.负载电阻调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 3.电感的值可根据需要选择并且必须与电阻串联,需防止过大的电感造成可控硅不能导通。 4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 5.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 六.实验方法 1.将NMCL-05面板左上角的同步电压输入接NMCL-32的U、V输出端,“触发电路选择”拨向“锯齿波”。 2.单相桥式全控整流电路供电给电阻负载 接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。合上主电路电源,调节U ct ,测量在不同α角(30°、60°、90°) 时整流电路的输出电压U d =f(t),晶闸管的端电压U VT =f(t)的波形,并记录 相应α角时的输出电压U d 和U VT 的波形。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。3.单相桥式全控整流电路供电给电阻-电感性负载 接上电路负载为阻感型,测量在不同控制电压U ct 时的输出电压U d =f(t),负

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录 完美篇 单相桥式全控整流电路仿真建模分析 (1) (一)单相桥式全控整流电路(纯电阻负载) (2) 1.电路的结构与工作原理 (2) 2.建模 (3) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (12) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (13) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 U1U2Ud Id + - T VT3 VT1 VT2VT4 a b R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式全控整流电路

单相桥式全控整流电路 一、原理 图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。假设电路已工作于稳态。 在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。 图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。 产生有源逆变的条件如下: (1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 (2)要求晶闸管的控制角α>π/2.,使Ud为负值。 两者必须同时具备才能实现有源逆变。 二、实验内容 (1)单相桥式全控整流电路带电阻性负载。 (2)单相桥式有源逆变电路带电阻电感性负载。 (3)有源逆变电路逆变颠覆现象的观察。 (4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。 三、实验仿真 1.带电阻电感性负载的仿真 启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。双击各模块,在出现的对话框内设置相应的参数。

实验二 单相桥式全控整流电路实验 电力电子技术实验

一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。 3.熟悉NMCL—05(E)组件或NMCL—36组件。 二.实验线路及原理 参见图1-3。 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻—电感性负载。 四.实验设备及仪器 1.教学实验台主控制屏; 2.NMCL—33组件; 3.NMCL—05(E)组件或NMCL—36组件; 4.MEL-03(A)组件; 5.NMCL—35组件; 6.双踪示波器(自备); 7.万用表(自备)。 五.注意事项 1.本实验中触发可控硅的脉冲来自NMCL-05挂箱(或NMCL—36组件),故NMCL-33的内部脉冲需断,以免造成误触发。 2.电阻R D的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。 4.NMCL-05(E)(或NMCL—36)面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 5.逆变变压器采用NMCL—35组式变压器,原边为220V,副边为110V。 6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 六.实验方法

图1-3 单相桥式全控整流电路 1.将NMCL—05(E)(或NMCL—36)面板左上角的同步电压输入接NMCL—3 2的U、V输出端),“触发电路选择”拨向“锯齿波”。 2.断开NMCL-35和NMCL-33的连接线,合上主电路电源,此时锯齿波触发电路应处于工作状态。 NMCL-31的给定电位器RP1逆时针调到底,使U ct=0。调节偏移电压电位器RP2,使 =90°。 断开主电源,连接NMCL-35和NMCL-33。 3.单相桥式全控整流电路供电给电阻负载。 接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。

单相桥式全控整流电路课程设计

目录一设计目的 1 二设计任务 1 三设计内容与要求 1 四设计资料及有关规定 五设计成果要求 5.2课程设计方案的选择 5.2.1整流电路 5.3主电路的设计 5.3.1系统总设计框图 5.3.4晶闸管基本参数 5.3.4.1 动态特性 5.3.4.2晶闸管的主要参数说明 5.3.4.3晶闸管的选型 5.3.5变压器的选取 5.3.6 性能指标分析 5.4触发电路和保护电路的设计 5.4.1触发电路 5.4.2保护电路的设计 5.4.2.1 主电路的过电压保护电路设计 5.4.2.2主电路的过电流保护电路设计 5.4.2.3电流上升率、电压上升率的抑制保护5.6设计总结

单相全控晶闸管整流电路课程设计 一 设计目的 (1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力; (2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。 (3)培养独立思考、独立收集资料、独立设计的能力; (4)培养分析、总结及撰写技术报告的能力。 二 设计任务 (1)进行设计方案的比较,并选定设计方案; (2)课程设计的主要内容是主电路的确定,主电路的分析说明 主电路元器件的计算和选型,以及控制电路的设计; (3)完成主电路的原理分析,各主要元器件的选择; (4)完成驱动电路的设计,保护电路的设计; 三 设计内容与要求 负载为电阻电感性负载:L=700mH,R=500欧姆 技术要求:电网供电电压为单相220V,50赫兹,输出电压为100V, 输出功率为1000W 设计技术要求: (1)电源电压:交流100V/50Hz (2)输出功率:500W; (3)移相范围:0~90度。 。

单相桥式全控整流电路(阻感性负载)

1. 单相桥式全控整流电路(阻-感性负载) 1.1单相桥式全控整流电路电路结构(阻-感性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示 图1. 单相桥式全控整流电路(阻-感性负载) 1.2单相桥式全控整流电路工作原理(阻-感性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在u2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在u2负半波的ωt=π+α时刻及以后: 在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 1.3单相桥式全控整流电路仿真模型(阻-感性负载) 单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示: 图2 单相双半波可控整流电路仿真模型(阻-感性负载)

单相桥式全控整流电路设计说明

电子技术课程设计说明书 单相桥式全控整流电路设计 学生姓名:学号: 学院:计算机与控制工程学院---- 专业:电气工程及其自动化------ 指导教师:李静李郁峰--------- 2016年 1 月

目录 1引言 (1) 1.1整流电路 (1) 1.2整流电路的发展与应用 (1) 2 课程设计目的与要求 (1) 2.1课程设计目的 (1) 2.2课程设计的预备知识 (2) 2.3 课程设计要求 (2) 3元器件的选择 (2) 3.1晶闸管 (2) 3.1.1晶闸管的结构 (2) 3.1.2晶闸管的工作原理图 (2) 3.1.3晶闸管的门极触发条件 (3) 3.1.4晶闸管的主要参数说明 (3) 3.2 可关断晶闸管 (4) 4电路的结构与工作原理 (5) 4.1电路结构 (5) 4.2 工作原理 (5) 4.3基本数量关系 (5) 5 MATLAB仿真 (6) 5.1 MATLAB软件介绍 (6) 5.2 系统建模与参数设置 (6) 5.2.1 仿真图形 (6) 5.2.2模型参数设置 (7) 5.3 仿真结果与分析 (8) 6 结论 (9) 参考文献 (9) 致谢 (9)

1引言 1.1整流电路 整流电路是电力电子中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。大多数整流电路由变压器.整流主电路和滤波器等组成。它在直流电动机的调速,发电机的励磁调节,电解,电镀等领域得到广泛应用。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中交流成分。变压器设置与否是具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入详述分为单相电路和多相电路;按变压器二次侧的方向是单向还是双向,又可分为单拍电路和双拍电路。 1.2整流电路的发展与应用 电力电子器件的发展对电力电子的发展起着决定性的作用。1947年美国贝尔实验室发明了晶体管,引发了电子技术的一场革命;70年代后期,以门极可关断晶闸管(GTO).电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件发展迅速,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。另外,采用全控型器件的电路的主要控制方式为PWM脉宽调制式,后来,又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC),随着全控型电力电子器件的发展,电力电子电路的工作频率也不断提高。同时,电力电子器件的开关损耗也随之增大,为了减小开关损耗,软开关技术应运而生,零电压开关(ZVS)和零电流开关(ZCS)把电力电子技术和整流电路的发展推向了新的高潮。 2 课程设计目的与要求 2.1课程设计目的 “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,通过电力电子计术的课程设计达到以下几个目的: (1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的

单相桥式半空整流电路MATLAB仿真实验报告

一、单相桥式半控整流电路(电阻性负载)1.电路结构与工作原理 (1)电路结构 T u1 u2 it1 i2 id2 VT1VT3 VD2VD4 id4 it3 u R 2.建模 3.仿真结果分析 α=30°单相桥式半控整流电路(电阻性负载)

α=60°单相桥式半控整流电路(电阻性负载) α=90°单相桥式半控整流电路(电阻性负载) 4.小结 尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。 二、单相桥式半控整流电路(阻-感性负载、不带续流二极管) 1.电路结构与工作原理

(1)电路结构 L (2)工作原理 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。 2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L →R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(u d=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 2.建模

3.仿真结果分析 α=30°单相桥式半控整流电路(阻感性负载) α=60°单相桥式半控整流电路(阻感性负载)

α=90°单相桥式半控整流电路(阻感性负载) 4.小结 电路具有自续流能力,但实用中还需要加设续流二极管VD,以避免可能发生的失控现象。 三、单相桥式半控整流电路(带续流二极管) 1.电路结构与工作原理 (1)电路结构 T u2 it1 i2 id2 VT1VT3 VD2VD4 id4 it3 R u R L ul id VD ud (2)工作原理

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

实验三单相桥式全控整流电路实验

实验三单相桥式全控整流电路实验 一.实验目的 1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载时的工作。 二.实验线路及原理 参见图1。 三.实验内容 1.单相桥式全控整流电路供电给电阻负载。 2.单相桥式全控整流电路供电给电阻—电感性负载。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.NMCL—35组件 6.NMCL—41组件 7.双踪示波器 五.注意事项 1.负载电阻R D的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。 2.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通 3.NMCL—05E面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。 4.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。 5. 本实验中用示波器观察主电路中电压波形时需用到衰减探头,为防止短路事故,在观察各主电路电压时同时只允许用一个探头观察信号。不要两路一起用。 六.实验方法 1.触发电路的调试 ①将NMCL—05E面板左上角的“同步电压输入~220V”接交流电源电压输出的 U、V输出端(旧:A1,B1),找出锯齿波触发电路。

②将给定电压Ug(新:NMCL-41;旧:DJK06,注意DJK06的地信号须与NMCL—05E的地信号相连)调至零电压,并将其接入“锯齿波触发电路”中的“Uct”,此时Uct=0V。按下电源启动按钮(即合上主电源),用示波器同时观察“锯齿波触发电路”中“1”和“5”孔电压波形,调节偏移电压电位器RP2,使α=90° 2.断开主电源,将NMCL-33中“脉冲观察及通断控制”处的开关打在“脉冲断”的位置。按图接线。 3.单相桥式全控整流电路供电给电阻负载。 短接平波电抗器L,调节电阻负载至最大,合上主电路电源,调节U ct,记录在不同α 角(30°、60°、90°)时整流电路的输出电压U d=f(t)的波形,晶闸管的端电压U VT=f(t)的波形(注意:观察电压波形时需用带衰减探头),并记录相应α时的U d和交流输入电 压U2(变压器副边电压)值。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。 4.单相桥式全控整流电路供电给电阻—电感性负载。 断开平波电抗器L短接线,观察α=30°时的输出电压U d波形、晶闸管端电压U VT波 形及负载电流id波形(id波形可通过观察负载电阻两端的电压获得) 注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载 电流不能超过0.8A,U ct从零起调。 七.实验报告 1.绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当α=60°,90°时的 U d、U VT波形,并加以分析。 2.绘出单相桥式晶闸管全控整流电路供电给电阻—电感性负载情况下,当α=90°时 的U d、i d、U VT波形,并加以分析。 3.实验心得体会。

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式全控整流电路

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______ 班级:自动化_________________ 组别:第组___________________ 分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分析..................................................- 1 - 1.电路的结构与工作原理...........................................................................- 1 - 2.建模…………….............................................................................................- 3 - 3.仿真结果与分析.......................................................................................- 5 - 4.小结…………….............................................................................................- 5 - 二.单项全控整流电路组感负载工作分析..................................................- 6 - 1.电路的结构与工作原理...........................................................................- 6 - 2.建模……………..............................................................................................- 8 - 3.仿真结果与分析......................................................................................- 10- 4.小结…………….............................................................................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分析...............................- 11 - 1.电路的结构与工作原理...........................................................................- 11 - 2.建模……………..............................................................................................- 13 - 3.仿真结果与分析........................................................................................- 15 - 4.小结……………..............................................................................................- 15 - 四.总结…………….............................................................................................- 16 - 图索引

单相全波和桥式整流电路

单相全波整流电路中,若要求输出直流电压为18v,则整流电压器二次侧的输出电压时多少 1》要求整流输出直流电压为18v而没有电容器滤波时,变压器二次侧的输出电压:U交=U直/0.9=18/0.9=20(V) 2》整流输出直流设置了电容器滤波后电压为18v时,变压器二次侧的输出电压:U交=U直/0.9/1.41=18/0.9/1.41≈14(V)

在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。 晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的 变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就 是在自然换相点触发换相时的情况。图1是电路接线图。 为了分析方便起见,把一个周期等分6段(见图2)。 在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被 触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。 这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b 两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。 加在负载上的整流电压为 ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 ud=ub-uc=ubc 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。 5.由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°~100°,称为宽脉冲触发。另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。这种方法称双脉冲触发。 6.整流输出的电压,也就是负载上的电压。整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头uab、uac、ubc、uba、uca、ucb均为线电压的一部分,是上述线电压的包络线。相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。 7.晶闸管所承受的电压。三相桥式整流电路在任何瞬间仅有二臂的元件导通,其余四臂的元件均承受变化着的反向电压。例如在第(1)段时期,KP1和KP6导通,此时KP3和KP4,承受反向线电压uba=ub-ua。KP2承受反向线电压

相关文档
最新文档