计算机图形学

计算机图形学
计算机图形学

计算机图形学基础

第一章

1.名词解释:

图形:从客观世界物体中抽象出来的带有颜色信息及形状信息的图和形。

图像:

点阵法:是用具有灰度或颜色信息的点阵来表示的一种方法。

参数法:是以计算机中所记录图形的形状参数与属性参数来表示图像的一种方法。

2.图形包括那两方面的要素,在计算机中如何表示他们?

构成图形的要素可以分为两类:一类是刻画形状的点、线、面、体等几何要素;另一类是反映物体本身固有属性,如表面属性或材质的明暗、灰度、色彩等非几何要素。

3.什么叫计算机图形学?分析计算机图形学,数字图像处理和计算机视觉学科间的关系。

计算机图形学是研究怎样利用计算机来显示、生成和处理图形的原理、方法和技术的一门学科。【关系图在课本第一页】

4,有关计算机图形学的软件标准有哪些?

计算机图形核心系统(GKS)及其语言联编、计算机图形元文件(CGM),计算机图形接口(CGI),基本图形转换规范(IGES)、产品数据转换(STEP)

6.试发挥你的想象力,举例说明计算机图形学有哪些应用范围,解决的问题是什么?

【具体参照课本第5页】

第二章

1.名词解释

LCD:就是LiquidCrystalDisplay,它是利用液晶的光电效应,通过施加电压改变液晶的光学

特性,从而造成对入射光的调剂,使通过液晶的透射光或反射光受所加电压的控制,达到显示的目的。

LED:即Liquid-EmittingDiode,采用二极管激发的光来显示图像。

随机扫描:采用随机定位的方式控制电子束运动

光栅扫描:示器显示图形时,电子束依照固定的扫描线和规定的扫描顺序进行扫描。电子束先从荧光屏左上角开始,向右扫一条水平线,然后迅速地回扫到左边

偏下一点的位置,再扫第二条水平线,照此固定的路径及顺序扫下去,直到最后

一条水平线,即完成了整个屏幕的扫描。

刷新:刷新是经过一段时间后,信息可能丢失,需要重写,为了使信息储存更长的时间,必

须不断的刷新每个储存单元中储存的信息,也就是将各储存单元中的数据读出之后,再

写回到元单元中,对各储存单元中的电容器进行充电.

刷新频率:刷新率是指电子束对屏幕上的图像重复扫描的次数。

屏幕分辨率:通常用水平方向上的光点数与垂直方向上的光点数的乘积来表示。【39页】

显示分辨率:他是计算机显示控制器能够提供的不同显示模式下的分辨率。【39页】

存储分辨率:

2.一个交互式计算机图形学系统必须有哪几种功能?其结构如何?

一个交互式计算机图形系统应具有计算、存储、交互、输入和输出等5肿功能。

结构【详见16页】

3.试列举出你所知道的图形输入与输出设备

5.阴极射线管有哪几部分组成?他们的功能分别是什么??

阴极射线管CRT由电子枪、偏转系统及荧光屏三个部分组成。

功能【详见课本24—27页】

6.简述什么叫桶形失真?如何校正?

桶形失真是由于光线的倾斜度大引起的,与球差和像散不同,失真不破坏光束的同心

性,从而不影响像的清晰度。失真表现在像平面内图形的各部分与原物不成比例。畸

变的情况与光阑的位置有关。

校正:

一是使产生偏转磁场的锯齿形成电流预先产生一些失真;二是故意将偏转磁场做成略

有不均匀性,接近管轴中央处略强,周围略弱。

9.简述光栅扫描图形显示器的工作原理

工作原理:在这种显示器中,电子束的运动轨迹是固定的。即从左到右、自上而下扫描荧光屏,来产生一幅光栅。特点:由于图形是以点阵的形式存储在帧缓冲器中。所以光栅扫描显示器的电子束按从上到下、从左到右的顺序依次扫描屏幕,来建立图形。【课本30页】

11.基于光栅扫描的图形显示子系统由哪几个逻辑部件组成?他们的功能分别是什么?【36】帧缓冲存储器和显示控制器。

功能:帧缓冲存储器就是用来存储像素颜色值的存储器。显示控制器功能是依据设定的显示工作方式,自主的,反复不断的读取帧缓存中的图像点阵数据,将他们转换成R,G,B三色

信号并配以同步信号送至显示器。

14.图像的硬拷贝设备有哪些?简述其各自的特点。

有打印机,绘图仪

特点:【43页】

第三章

2.什么是用户模型?设计一个好的用户接口要涉及哪些因素?

用户模型是用户接口设计的基础,他提供给用户有关他所处理的对象以及作用于这些对象的处理过程的一个概念模型。

一个接口应具备(1)易于被用户理解并接受,(2)易于操作和使用,(3)高效率,可靠性

和实用性。【50页】

9.举例说明什么是请求方式、取样方式、事件方式及其组合方式。

【详见课本57页】

第四章

1.名词解释

规则对象:是指能用欧式几何进行描述的形体,如点、直线、曲线、平面、曲面或实体。不规则对象:是指不能用欧式几何进行描述的形体

几何造型:规则对象的造型称几何造型。

图形信息:构成对象的点,线,面的位置和几何尺寸,以及他们相互间的关系等都是图形信息。

非图形信息:表示对象图形的线型,颜色,亮度以及供模拟和分析用的质量,比重,体积等数据,是有关对象的非图形信息。

几何信息:一般指形体在欧式空间中的位置和大小。

拓扑信息:是形体各分量(点、线、面)的数目及相互间的连接关系。

刚体运动:是指不改变图形上任意两点间的距离,也不改变图形的几何性质。

2.欧式空间中的几何元素包含哪些?如何表示?

点,线,面,环,体【72-73】

3.利用正则集的概念简述实体的定义

通过对边界表示的物体做正则集合运算可构造新的边界表示的物体。

对具有平面边界、曲面边界的物体进行集合运算的算法很多,算法的大致过程包括四个阶段,即:

相交检测:

预检查两个物体是否相交。

计算交线:

计算物体表面之间的交线。

表面分类:

对物体的表面分类。

结果表示:

获得正则集合运算结果物体的边界面之后,依据该边界表示所采用的数据结构,建立其边界表示。

5.简单多边形的欧拉公式满足什么条件?

简单多面体的顶点数V,边数E,和面数F满足V-E+F=2,多面体满足:V-E+F-H=2(C-G),其中

H表示多面体表面上孔的个数,G表示贯穿多面体的孔的个数。

6.试比较线框模型和实体模型的优缺点。

线框模型存在着几个缺陷:二义性,容易构造出无效形体,不能正确表示曲面信息,无法进行图形的线面消隐,加重用户的输入负担,难以保证数据的统一性和有效性。

构造实体几何法的优点:可以构造出多种不同的符合需要的实体。问题:求交困难,CSG 树不能显式地表示形体的边界

解决:光线投射(Ray-casting)算法

第五章

1.名词解释

扫描转换:图形生成算法针对后一种图形的光栅化的情形,给出在光栅扫描显示器等数字设备上确定一个最佳逼近于图形的像素集的过程称图形的扫描转换。

八分法画圆:要得到整个圆的扫描转换像素集,只要扫描转换八分之一圆弧即可,称为八分法画圆。

走样:用离散量表示连续量而引起的失真,叫走样。

反走样:为了提高图形的显示质量,需要减少或消除走样现象。用于减少或消除走样的技术称为反走样。

2.分别利用DDA算法,中点Bresenham算法和Bresenham算法扫描转换直线段p1p2,其中

p1为(0,0),p2为(8,6)

DDA算法:

voidCMainFrame::OnDdaline()

{

//TODO:Addyourcommandhandlercodehere

CDC*pDC=GetDC();

intxa=0,ya=0,xb=8,yb=6,c=RGB(255,0,0);

intx,y;

floatdx,dy,k;

dx=(float)(xb-xa),dy=(float)(yb-ya);

k=dy/dx,y=ya;

if((0

{

for(x=xa;x<=xb;x++)

{pDC->SetPixel(x,int(y+0.5),c);

y=y+k;}

}

if(abs(k)>=1)

{

for(y=ya;y<=yb;y++)

{pDC->SetPixel(int(x+0.5),y,c);

x=x+1/k;}

}

ReleaseDC(pDC);

}

Bresenham算法:

voidCMainFrame::OnBresenhamline()

{

//TODO:Addyourcommandhandlercodehere

CDC*pDC=GetDC();

intxa=0,ya=0,xb=8,yb=6,c=RGB(0,255,0);

floata,b,d1,d2,d,x,y;

a=ya-yb,b=xb-xa,d=2*a+b;

d1=2*a,d2=2*(a+b);

x=xa,y=ya;

pDC->SetPixel(x,y,c);

while(x

{

if(d<0)

{

x++,y++,d+=d2;

}

else

{

x++,d+=d1;

}

pDC->SetPixel(x,y,c);

}

ReleaseDC(pDC);

}

中点画线:

voidCMainFrame::OnMidpointline()

{

//TODO:Addyourcommandhandlercodehere

CDC*pDC=GetDC();

intx1=0,y1=0,x2=8,y2=6,c=RGB(0,0,255);

inti,s1,s2,interchange;

floatx,y,deltax,deltay,f,temp;

x=x1;

y=y1;

deltax=abs(x2-x1);

deltax=abs(y2-y1);

if(x2-x1>=0)s1=1;elses1=-1;

if(y2-y1>=0)s2=1;elses2=-1;

if(deltay>deltax)

{

temp=deltax;

deltax=deltay;

deltay=temp;

interchange=1;

}

elseinterchange=0;

f=2*deltay-deltax;

pDC->SetPixel(x,y,c);

for(i=1;i<=deltax;i++)

{

if(f>=0)

{

if(interchange==1)x+=s1;

elsey+=s2;

pDC->SetPixel(x,y,c);

f=f-2*deltax;

}

else{

if(interchange==1)y+=s2;

elsex+=s1;

f=f+2*deltay;

}

}

}

3.试用中点Bresenham算法画直线段的原理推导斜率在【-1,0】之间的直线段绘制过程(要求写清原理,误差函数,递推公式以及最终画图过程)

y i

y i-1

y i-2

x i k[-1,0],即|k|≤1∴取|dx|=1|k||dx|=1∵k∈

[-1,0]|k|≤

①取dx=1,dy=-k

设di=F(xi+1,yi-0.5)

=yi-0.5-k(xi+1)-b

(xi+1,yi)当di≥0,di≥0,下一点(xi+1,yi)

di+1=F(xi+2,yi-0.5)=di-k

(xi+1,yi-1)当di≤0,di≤0,下一点(xi+1,yi-1)

di+1=F(xi+2,yi-1.5)=di-1-k

x i+1x i+2第四象限

d0=F(x0+1,y0-0.5)=-(k+0.5)

令Di=2dxdi,D0=-(dx+2dy),D与d同号Di=2dxdi,得

(xi,yi-1),Di+1=Di-2dy当Di≥0,Di≥0,下一点

(xi,yi-1),Di+1=Di-2dy

(xi+1,yi-1),Di+1=Di-2(dx+dy)当Di≤0,Di≤0,下一点

(xi+1,yi-1),Di+1=Di-2(dx+dy)

②取dx=-1,dy=k

y i+2

y i+1

y i

x i

x i-2x i-1

第二象限

设di=F(xi-1,yi+0.5)

=yi+0.5-k(xi-1)-b

(xi-1,yi)当di≥0,di≥0,下一点(xi-1,yi)

di+1=F(xi-2,yi+0.5)=di+k

(xi-1,yi+1)当di≤0,di≤0,下一点(xi-1,yi+1)

di+1=F(xi-2,yi+1.5)=di+1+k

d0=F(x0-1,y0+0.5)=0.5+k

令Di=2dxdi,D0=dx+2dy,D与d异号Di=2dxdi,得

(xi-1,yi),Di+1=Di+2dy当Di≤0,Di≤0,下一点

(xi-1,yi),Di+1=Di+2dy

(xi-1,yi+1),Di+1=Di+2(dx+dy)当Di≥0,Di≥0,下一点

(xi-1,yi+1),Di+1=Di+2(dx+dy)

4.将中点Bresenham算法画直线段算法推广以便能画出任意斜率的直线段(要求写清原理,误差函数,递推公式以及最终画图过程)

计算机图形学 答案

计算机图形学Ⅰ 专业:计算机科学与技术 计算机科学与技术2092 2012年12月

第1章绪论 1、计算机图形学的概念?(或什么是计算机图形学?) 计算机图形学是研究怎样利用计算机表示、生成、处理和显示图形的(原理、算法、方法和技术)一门学科。 2、图形与图像的区别? 图像是指计算机内以位图(Bitmap)形式存在的灰度信息;图形含有几何属性,更强调物体(或场景)的几何表示,是由物体(或场景)的几何模型(几何参数)和物理属性(属性参数)共同组成的。 3、计算机图形学的研究内容? 计算机图形学的研究内容非常广泛,有图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真和虚拟现实等。 4、计算机图形学的最高奖是以 Coons 的名字命名的,而分别获得第一届(1983年)和第二 届(1985年)Steven A. Coons 奖的,恰好是 Ivan E. Sutherland 和 Pierre Bézier 。 5、1971年,Gourand提出“漫反射模型+插值”的思想,被称为 Gourand 明暗处理。 6、1975年,Phong提出了著名的简单光照模型—— Phong模型。 7、1980年,Whitted提出了一个光透明模型—— Whitted模型,并第一次给出光线跟踪算 法的范例,实现了Whitted模型。 8、以 SIGGRAPH 会议的情况介绍,来结束计算机图形学的历史回顾。 9、什么是三维形体重建? 三维形体重建就是从二维信息中提取三维信息,通过对这些信息进行分类、综合等一系列处理,在三维空间中重新构造出二维信息所对应的三维形体,恢复形体的点、线、面及其拓扑关系,从而实现形体的重建。 10、在漫游当中还要根据CT图像区分出不同的体内组织,这项技术叫分割。 11、一个图形系统通常由图形处理器、图形输入设备和输出设备构成。 12、CRT显示器的简易结构图 12、LCD液晶显示器的基本技术指标有:可视角度、点距和分辨率。

计算机图形学试题附答案完整版

名词解释 将图形描述转换成用像素矩阵表示的过程称为扫描转换。 1.图形 2.像素图 3.参数图 4.扫描线 5.构造实体几何表示法 6.投影 7.参数向量方程 8.自由曲线 9.曲线拟合 10.曲线插值 11.区域填充 12.扫描转换 三、填空 1.图形软件的建立方法包括提供图形程序包、和采用专用高级语言。 2.直线的属性包括线型、和颜色。 3.颜色通常用红、绿和蓝三原色的含量来表示。对于不具有彩色功能的显示系统,颜色显示为。 4.平面图形在内存中有两种表示方法,即和矢量表示法。 5.字符作为图形有和矢量字符之分。 6.区域的表示有和边界表示两种形式。 7.区域的内点表示法枚举区域内的所有像素,通过来实现内点表示。 8.区域的边界表示法枚举区域边界上的所有像素,通过给赋予同一属性值来实现边界表示。 9.区域填充有和扫描转换填充。 10.区域填充属性包括填充式样、和填充图案。 11.对于图形,通常是以点变换为基础,把图形的一系列顶点作几何变换后,

连接新的顶点序列即可产生新的变换后的图形。 12.裁剪的基本目的是判断图形元素是否部分或全部落在之内。 13.字符裁剪方法包括、单个字符裁剪和字符串裁剪。 14.图形变换是指将图形的几何信息经过产生新的图形。 15.从平面上点的齐次坐标,经齐次坐标变换,最后转换为平面上点的坐标,这一变换过程称为。 16.实体的表面具有、有界性、非自交性和闭合性。 17.集合的内点是集合中的点,在该点的内的所有点都是集合中的元素。 18.空间一点的任意邻域内既有集合中的点,又有集合外的点,则称该点为集合的。 19.内点组成的集合称为集合的。 20.边界点组成的集合称为集合的。 21.任意一个实体可以表示为的并集。 22.集合与它的边界的并集称集合的。 23.取集合的内部,再取内部的闭包,所得的集合称为原集合的。 24.如果曲面上任意一点都存在一个充分小的邻域,该邻域与平面上的(开)圆盘同构,即邻域与圆盘之间存在连续的1-1映射,则称该曲面为。 25.对于一个占据有限空间的正则(点)集,如果其表面是,则该正则集为一个实体(有效物体)。 26.通过实体的边界来表示一个实体的方法称为。 27.表面由平面多边形构成的空间三维体称为。 28.扫描表示法的两个关键要素是和扫描轨迹。 29.标量:一个标量表示。 30.向量:一个向量是由若干个标量组成的,其中每个标量称为向量的一个分量。 四、简答题 1. 什么是图像的分辨率?

计算机图形学基础期末考试试题

一、填空题 1.将多边形外部一点A与某一点B用线段连接,若此线段与多边形边界相交的次数为??????????,则点B在多边形外部。若此线段与多边形边界相交的次数为??????????,则点B在多边形内部。 2.生成直线的四点要求是_______________________,____________________________,____________________________________,速度要快。 3.由5个控制顶点Pi(i=0,1,…4)所决定的3次B样条曲线,由??????????段3次B样条曲线段光滑连接而成。 4.用于减少或克服在“光栅图形显示器上绘制直线、多边形等连续图形时,由离散量表示连续量引起的失真”的技术叫??????????。 5.图形的数学表示法一般有??????????,??????????,??????????。 1.一个交互性的计算机图形系统应具有、、、、 输入等五方面的功能。 2.阴极射线管从结构上可以分为、和。 3.常用的图形绘制设备有和,其中支持矢量格式。 4.PHIGS和GKS将各种图形输入设备从逻辑上分为六种:定位设备、笔划设 备、、、和。 5.通常可以采用和处理线宽。 6.齐次坐标表示就是用维向量表示n维向量。 7.平行投影根据可以分为投影和投影。 8.一个交互式计算机图形处理系统包括图形软件和_____________,图形软件又分为 _____________、_____________和三部分。 9.构成图形的要素包括和,在计算机中通常用采用两种方法来表示 图形,他们是和。 10.荫罩式彩色显像管的结构包括、、和。 11.目前常用的PC图形显示子系统主要由3个部件组成:、和一 个ROM BIOS芯片。 12.在交互输入过程中,图形系统中有_____________、、和其组 合形式等几种输入(控制)模式。 13.填充一个特定区域,其属性选择包括、和。 14.计算机中表示带有颜色及形状信息的图和形常用和参数法,其中用参数法描 述的图形称为,用描述的图形称为。 15.在显示技术中,我们常常采用提高总的光强等级。 16.常用的交互式绘图技术有、、和。

计算机图形学实验一

实验一二维基本图元的生成与填充 实验目的 1.了解并掌握二维基本图元的生成算法与填充算法。 2.实现直线生成的DDA算法、中点算法和Bresenham算法。 3.实现圆和椭圆生成的DDA和中点算法, 对几种算法的优缺点有感性认识。 二.实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VC++6.0。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现生成直线的DDA算法、中点算法和Bresenham算法。 4.实现圆弧生成的中点算法。 5.实现多边形生成的常用算法, 如扫描线算法,边缘填充算法。 6.实现一般连通区域的基于扫描线的种子填充算法。 7.将生成算法以菜单或按钮形式集成到用户界面上。 8.直线与圆的坐标参数可以用鼠标或键盘输入。 6. 可以实现任何情形的直线和圆的生成。 实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 直线生成程序设计的步骤如下: 为编程实现上述算法,本程序利用最基本的绘制元素(如点、直线等),绘制图形。如图1-1所示,为程序运行主界面,通过选择菜单及下拉菜单的各功能项分别完成各种对应算法的图形绘制。 图1-1 基本图形生成的程序运行界面 2.创建工程名称为“基本图形的生成”单文档应用程序框架

(1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“基本图形的生成”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。 (5)在Step 6对话框中单击“完成”按钮,即完成“基本图形的生成”应用程序的所有选项,随后出现工程信息对话框(记录以上步骤各选项选择情况),如图1-2所示,单击“确定”按钮,完成应用程序框架的创建。 图1-2 信息程序基本 3.编辑菜单资源 设计如图1-1所示的菜单项。在工作区的ResourceView标签中,单击Menu项左边“+”,然后双击其子项IDR_MAINFRAME,并根据表1-1中的定义编辑菜单资源。此时VC已自动建好程序框架,如图1-2所示。 表1-1菜单资源表 菜单标题菜单项标题标示符ID 直线DDA算法生成直线ID_DDALINE Bresenham算法生成直线ID_BRESENHAMLINE 中点算法生成直线ID_MIDPOINTLINE 4.添加消息处理函数 利用ClassWizard(建立类向导)为应用程序添加与菜单项相关的消息处理函数,ClassName栏中选择CMyView,根据表1-2建立如下的消息映射函数,ClassWizard会自动完成有关的函数声明。 表1-2菜单项的消息处理函数 菜单项ID消息消息处理函数ID_DDALINE CONMMAN OnDdaline

计算机图形学第二版课后习题答案

第一章绪论 概念:计算机图形学、图形、图像、点阵法、参数法、 图形的几何要素、非几何要素、数字图像处理; 计算机图形学和计算机视觉的概念及三者之间的关系; 计算机图形系统的功能、计算机图形系统的总体结构。 第二章图形设备 图形输入设备:有哪些。 图形显示设备:CRT的结构、原理和工作方式。 彩色CRT:结构、原理。 随机扫描和光栅扫描的图形显示器的结构和工作原理。 图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算 第三章交互式技术 什么是输入模式的问题,有哪几种输入模式。 第四章图形的表示与数据结构 自学,建议至少阅读一遍 第五章基本图形生成算法 概念:点阵字符和矢量字符; 直线和圆的扫描转换算法; 多边形的扫描转换:有效边表算法; 区域填充:4/8连通的边界/泛填充算法;

内外测试:奇偶规则,非零环绕数规则; 反走样:反走样和走样的概念,过取样和区域取样。 5.1.2 中点 Bresenham 算法(P109) 5.1.2 改进 Bresenham 算法(P112) 习题答案

习题5(P144) 5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。(P111) 解: k<=-1 |△y|/|△x|>=1 y为最大位移方向 故有 构造判别式: 推导d各种情况的方法(设理想直线与y=yi+1的交点为Q): 所以有: y Q-kx Q-b=0 且y M=y Q d=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M) 所以,当k<0, d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。 d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。 d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。 所以有 递推公式的推导: d2=f(x i-1.5,y i+2) 当d>0时, d2=y i+2-k(x i-1.5)-b 增量为1+k =d1+1+k

计算机图形学实验报告实验2

大学实验报告 学院: 计算机科学与信息专业:计算机科学与技术班级:计科101 喻志华学号1008060024 实验组实验时间2013/3/30 指导教师吴云成绩实验项目名称圆和椭圆的生成算法 实 验目的 根据圆的Brensenham算法、中点算法和中点改进算法,以及椭圆的中点算法,编写程序,实现圆与椭圆的绘制。 实 验要求1.圆、椭圆的中点算法 2.圆的优化后的算法:二次差分法 3.编制源程序; 4.对于一些较为重要的算法,可以摘抄在报告中; 实验原理 1.中点算法 A.构造函数 F(X,Y)=X2+Y2-R2,则可知 F(M)< 0:M在圆,取T F(M)≥ 0:M在圆外,取 B B.第一个M点的值有: (一)DM0 = F(M0)= F(1,R-0.5)= 12+(R-0.5)2-R2=1.25-R 若 D=d-0.25 则判别式d<0等价于D<-0.25。即DM0=1-R与DM0=1.25-R等价。 (二)如果dM<0,表示下一中点M在圆,选择T点,且: dMT= F(MT)= F(xp+2,yp-0.5) 则: ?dMT= dMT - dM=2xp+3 (三)如果dM>0,表示下一中点M在圆外,选择B点,且: dMB= F(xMB,yMB)= F(xp+2,yp-1.5)则: ?dMB= dMB - dM=2xp-2yp +5 2.中点改进算法——增量算法

设圆上某点I(xi,yi);则下一点为J点,坐标为(xi+1,yj)dT=2xp+3; dB=2(xp-yp)+5; d1=d2=0; 因为x每次加1,所以 dj点 A.将增量?dMT=2(xi+1)+3=dT+2=dT+d1; (d1=d1+2) B.将增量?dMB=2(xi+1)-2yj+5=dB+d1+d2; dj较之于di,x部分增量增加相同的量,y部分两种情况 1.取T点,yj不减1,y部分增量的增量无变化 2.取B点,yj减1,y部分增量的增量加 2. 所以当y—时,d2=d2+2 因此,d<0, d=d+dT+d1; d>0, d=d+dB+d1+d2; 3.Brensenham算法 1.基本思想: 当|D(Ti)|≥|D(Bi)|,则Bi更接近于圆周,选择Bi; 当|D(Ti)|<|D(Bi)|,则Ti更接近于圆周,选择Ti; 若令D=|D(Ti)|-|D(Bi)| 则D≥0,取Bi; D<0,取Ti; 2.三种情况 A.设x0=0,y0=R;则T1为(1,R),B1为(1,R-1), d1=(12+R2-R2)+[(12+(R-1)2-R2]=3-2R B.若di<0,则取Ti作为下一点,即Pi(xi-1+1,yi-1); d(i+1)=di+4xi-1+6 C.若di≥0,则取Bi作为下一点,即Pi(xi-1+1,yi-1-1), d(i+1)=di+4(xi-1-yi-1)+10 4.椭圆的中点算法

计算机图形学

《计算机图形学》 实 验 报 告 姓名:邬维 学号: 20107989 班级:计算机科学与技术一班 指导老师:廖宁 成绩: 完成时间:2012-12-26

实验一 实验名称:Visual C++图形程序 一.实验目的 Visual C++是在Microsoft C 的基础上发展而来的,随着计算机软、硬件技术的快速发展,如今Visual C++已成为集编辑、编译、运行、调试于一体功能强大的集成编程环境。本章以Visual C++ 6.0 为对象,主要介绍V isual C++集成编成环境的使用、图形设备接口和常用图形程序设计、鼠标编程以及菜单设计等基础,目的是通过对Visual C++的学习,掌握V isual C++图形程序设计的方法,为计算机图形学原理部分的算法实现提供程序工具和方法。 二.实验环境 XP系统,Visual C++ 6.0。 三.实验内容 1.学习V isual C++图形程序设计的方法; 2.掌握V isual C++集成编成环境的使用、图形设备接口和常用图形程序设计、鼠标编程、橡皮筋交互技术、画刷与画笔以及菜单设计等; 3.利用CDC类已有的画笔划线等函数绘制一张笑脸,要求有眼睛鼻子和嘴巴,笑脸处于屏幕的中央,并加入文字。 四.实验步骤 1.先建立一个CDC工程。 2.在CCDCview找到OnDraw()函数编写一下代码: void CAAA View::OnDraw(CDC* pDC) { CAAADoc* pDoc = GetDocument(); ASSERT_V ALID(pDoc); // TODO: add draw code for native data here CPen mypen,*oldpen; mypen.CreatePen(PS_SOLID,2,RGB(0,0,0)); oldpen=pDC->SelectObject(&mypen); pDC->Ellipse(275,170,425,320); pDC->Arc(360,215,410,240,410,255,360,225); pDC->Arc(290,215,340,240,340,255,290,225); pDC->Arc(320,240,380,300,320,270,380,270); pDC->SelectObject(oldpen); pDC->TextOut(300,350,"开开心心每一天!"); pDC->MoveTo(350,240); pDC->LineTo(350,270); 3.编译、调试和运行程序,查看程序结果。

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

计算机图形学

a.扫描线算法:目标:利用相邻像素之间的连贯性,提高算法效率。处理对象:简单多边形,非自交多边形(边与边之间除了顶点外无其它交点)。扫描线:平行于坐标轴的直线,一般取平行于X轴。区间:扫描线与边的交点间的线段。基本原理:将整个绘图窗口内扫描多边形的问题分解到一条条扫描线,只要完成每条扫描线的绘制就实现了多边形的扫描转换;一条扫描线与多边形的边有偶数个交点,每2个点形成一区间。步骤:(对于每一条扫描线)(1)计算扫描线与边的交点(2)交点按x坐标从小到大排序(3)交点两两配对,填充区间。算法:1、建立ET;2、将扫描线纵坐标y的初值置为ET中非空元素的最小序号,如图中,y=1;3、置AEL为空;4、执行下列步骤直至ET和AEL都为空.4.1、如ET中的第y类非空,则将其中的所有边取出并插入AEL 中;4.2、如果有新边插入AEL,则对AEL中各边排序;4.3、对AEL中的边两两配对,(1和2为一对,3和4为一对,…),将每对边中x坐标按规则取整,获得有效的填充区段,再填充.4.4、将当前扫描线纵坐标 y 值递值1;4.5、将AEL中满足y = ymax边删去(因为每条边被看作下闭上开的);4.6、对AEL中剩下的每一条边的x 递增deltax,即x = x+deltax. b.走样与反走样:走样:用离散量(像素)表示连续的量(图形)而引起的失真,称为走样,或称为混淆。光栅图形的走样现象:阶梯(锯齿)状边界、图形细节失真、狭小图形遗失:动画序列中时隐时现,产生闪烁。反走样:在图形显示过程中,用于减少或消除走样(混淆)现象的方法。方法:提高分辨率方法{方法简单,但代价非常大,显示器的水平、竖直分辩率各提高一倍,则显示器的点距减少一倍,帧缓存容量则增加到原来的4倍,而扫描转换同样大小的图元却要花4倍时间}、非加权区域采样{扫描转换线段的两点假设:像素是数学上抽象的点,它的面积为0,它的亮度由覆盖该点的图形的亮度所决定;直线段是数学上抽象直线段,它的宽度为0。而现实:像素的面积不为0;直线段的宽度至少为1个像素;假设与现实的矛盾是导致走样出现的原因之一。解决方法:改变直线段模型,线上像素灰度不等。方法步骤:1、将直线段看作具有一定宽度的狭长矩形;2、当直线段与某像素有交时,求出两者相交区域的面积;3、根据相交区域的面积,确定该像素的亮度值}、加权区域采样{权函数w(x, y),以像素A的中心为原点建立二维坐标系,w(x, y)反应了微面积元dA对整个像素亮度的贡献大小,与 dA 到像素中心距离d 成反比。实现步骤:1.求直线段与像素的相交区域2.计算的值3.上面所得到的值介于0、1之间,用它乘像素的最大灰度值,即设该像素的显示灰度。问题:计算量大。 c.为什么需要齐次坐标? 1、对多个点计算多次不同的变换时,分别利用矩阵计算各变换导致计算量大2、运算表示形式不统一:平移为“+”、旋转和放缩为“·”3、统一运算形式后,可以先合成变换运算的矩阵,再作用于图形对象。 d.Sutherland-Hodgman算法:S-H算法基本思想(亦称逐边裁剪算法):将多边形关于矩形窗口的裁剪分解为多边形关于窗口四边所在直线的裁剪。步骤:1、多边形由一系列顶点表示:V1V2…Vn2、按一定(左上右下)的次序依次裁剪; 与左边所在直线裁剪

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学在实际中的应用

计算机图形学在实际中的应用 1963年,伊凡?苏泽兰在麻省理工学院发表了名为《画板》的博士论文,它标志着计算机图形学的正式诞生。至今已有四十多年的历史。此前的计算机主要是符号处理系统,自从有了计算机图形学,计算机可以部分地表现人的右脑功能了,所以计算机图形学的建立具有重要的意义。现在计算机图形学有了长足的发展。 对于我们目前来说,计算机图形学能让我们感受到的主要在游戏和电影上的应用。比如《魔兽世界》、《使命召唤》等各类大型3D游戏,以及《阿凡达》等3D电影。我们享受着计算机图形学快速发展带来的各种便利中。 在电脑游戏中,计算机图形学的首要任务就是实现电脑游戏中的虚拟场景,这主要通过在计算机中重现真实世界场景来实现。游戏编程的主要任务是要模拟真实物体的物理属性,即物体的形状,光学性质,表面的纹理和粗糙程度,以及物体间的相对位置、遮挡关系等等。其中,光照和表面属性是最难模拟的。为了模拟光照,已有各种各样的光照模型。从简单到复杂排列分别是:简单光照模型、局部光照模型和整体光照模型。从绘制方法上看有模拟光的实际传播过程的光线跟踪法,也有模拟能量交换的辐射度方法。除了在计算机中实现逼真物理模型外,电脑游戏中图形学应用的另一个研究重点是加速算法,力求能在最短时间内绘制出最真实的场景,提高游戏的流畅度。 计算机图形学不仅在我们的娱乐中给我们带来越来越逼真的体验。没有计算机图形学的快速发展,iphone、android等智能手机将不能给我们带来现在这样好的体验。其实计算机图形学的在我们生活中的应用领域非常的广。 计算机图形学还应用在科学计算可视化方面。在数值仿真、气象卫星、石油勘探、遥感卫星、医学影像、蛋白质分子结构等都会产生大量的数据,即使是专业人员也们很难从一大堆枯燥乏味的数字中迅速发现其内在规律和变化趋势。计算机图形学帮助科技人员更直观形象地理解大规模数据所蕴涵的科学现象和规律。比如我现在正在学习的数字信号处理这门课程,全部都是对数据的分析处理,如果没有MatLab这个计算软件的话,学习将比现在还痛苦。而Matlab就是计算机图形学在科技计算方面的一个软件。它的全称叫做MA Trix LABoratory,将成为21世纪的语言。 现在在电子设计方面,国内外基本上全部转移到计算机上来。各种电路仿真软件,电路设计软件,极大的方便了硬件的设计。EDA技术的快速发展,也是由于计算机图形学的快速发展而产生的。也是计算机图形学的一个应用领域:计算机辅助设计和计算机辅助制造。 在工程和产品设计中,计算机可以帮助设计人员担负计算、信息存储和制图等项工作。在设计中通常要用计算机对不同方案进行大量的计算、分析和比较,以决定最优方案;各种设计信息,不论是数字的、文字的或图形的,都能存放在计算机的内存或外存里,并能快速地检索;设计人员通常用草图开始设计,将草图变为工作图的繁重工作可以交给计算机完成;利用计算机可以进行与图形的编辑、放大、缩小、平移和旋转等有关的图形数据加工工作。 在计算机辅助制造这一应用中,对于机械制造业,利用电子数字计算机通过各种数值控制机床和设备,自动完成离散产品的加工、装配、检测和包装等制造过程,极大的减轻人

计算机图形学实验二

太原工业学院

实验拓展:绘制颜色渐变的三角形和四边形。 void CTriangle::Draw(CDC* pDC)//画出来一个三角形 { pDC->MoveTo(point0.x,point0.y); pDC->LineTo(point1.x,point1.y); pDC->LineTo(point2.x,point2.y); pDC->LineTo(point0.x,point0.y); } void CTriangle::GouraudShader(CDC* pDC) { SortVertex();//point0点为y坐标最小的点,point1点为y坐标最大的点,point2点的y坐标位于二者之间。如果y值相同,取x最小的点//定义三角形覆盖的扫描线条数 int nTotalScanLine = point1.y - point0.y + 1; //定义span的起点与终点数组 SpanLeft = new CPoint2[nTotalScanLine];//跨度左边数组 SpanRight = new CPoint2[nTotalScanLine];//跨度右边数组 //判断三角形与P0P1边的位置关系,0-1-2为右手系 int nDeltz = (point1.x - point0.x) * (point2.y - point1.y) - (point1.y - point0.y) * (point2.x - point1.x);//点矢量叉积的z坐标 if(nDeltz > 0)//三角形位于P0P1边的左侧 { nIndex = 0; DDA(point0, point2, TRUE); DDA(point2, point1, TRUE); nIndex = 0; DDA(point0, point1, FALSE); }

计算机图形学

沈阳工业大学 软件学院 虚拟现实技术的发展与应用 学生姓名:汤常珩 学号:141201206 专业班级:1402 指导教师:马广焜

二零一六年九月二十一日 虚拟现实技术的发展与应用 摘要 虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。 关键词:虚拟现实;模拟;仿真技术

目录 第一章引言 (4) 第二章发展历史 (4) 第三章关键技术 (4) 3.1显示 (5) 3.2 声音 (5) 3.3 语音 (5) 第四章应用 (6) 4.1 医学 (6) 4.2 军事 (7) 4.3 游戏 (7) 第五章结论 (8) 参考文献 (8)

第一章引言 虚拟现实(Virtual Reality,VR)是以计算机技术为核心,结合相关科学技术,生成与一定范围真实环境在视、听、触感等方面高度近似的数字化环境,用户借助必要的装备与数字化环境中的对象进行交互作用、相互影响,可以产生亲临对应真实环境的感受和体验。虚拟现实是人类在探索自然、认识自然过程中创造产生,逐步形成的一种用于认识自然、模拟自然,进而更好地适应和利用自然的科学方法和科学技术。随着社会生产力和科学技术的不断发展,各行业对VR技术的需求日益旺盛,人们对VR技术的研究日益重视,VR技术也取得了巨大进展,并逐步成为一个新的科学技术领域。 第二章发展历史 1956年,Heileg M. 开发了一个摩托车仿真器Sensorama,具有三维显示及立体声效果,并能产生振动感觉。他在1962年的“Sensorama Simulator”专利已具有一定的VR技术的思想。 计算技术和计算机的小型化的发展,推动了仿真技术的发展,逐步形成了计算机仿真科学技术学科。1965年,计算机图形学的重要奠基人Sutherland博士发表了一篇短文“The ultimate display“,以其敏锐的洞察力和丰富的想象力描绘了一种新的显示技术。他设想在这种显示技术支持下,观察者可以直接沉浸在计算机控制的虚拟环境之中,就如同日常生活在真实世界一样。同时,观察者还能以自然的方式与虚拟环境中的对象进行交互,如触摸感知和控制虚拟对象等。Sutherland的文章从计算机显示和人机交互的角度提出了模拟现实世界的思想,推动了计算机图形图像技术的发展,并启发了头盔显示器、数据手套等新型人机交互设备的研究。 1966年,Sutherland I. E. 等开始研制头盔式显示器,随后又将模拟力和触觉的反馈装置加入到系统中。1973年,Krueger M. 提出了“Artificial Reality”一词,这是早期出现的VR词语。由于受计算机技术本身发展的限制,总体上说20世纪六七十年代这一方向的技术发展不是很快,处于思想、概念和技术的酝酿形成阶段。 20世纪90年代以后,随着计算机技术与高性能计算、人机交互技术与设备、计算机网络与通信等科学技术领域的突破和高速发展,以及军事演练、航空航天、复杂设备研制等重要应用领域的巨大需求,VR技术进入了快速发展时期。[1] 第三章关键技术

计算机图形学作业答案

计算机图形学作业答案 第一章序论 第二章图形系统 1.什么是图像的分辨率? 解答:在水平和垂直方向上每单位长度(如英寸)所包含的像素点的数目。 2.计算在240像素/英寸下640×480图像的大小。 解答:(640/240)×(480/240)或者(8/3)×2英寸。 3.计算有512×512像素的2×2英寸图像的分辨率。 解答:512/2或256像素/英寸。 第三章二维图形生成技术 1.一条直线的两个端点是(0,0)和(6,18),计算x从0变到6时y所对应的值,并画出结果。 解答:由于直线的方程没有给出,所以必须找到直线的方程。下面是寻找直线方程(y =mx+b)的过程。首先寻找斜率: m =⊿y/⊿x =(y 2-y 1 )/(x 2 -x 1 )=(18-0)/(6-0) = 3 接着b在y轴的截距可以代入方程y=3x+b求出 0=3(0)+b。因此b=0,所以直线方程为y=3x。 2.使用斜截式方程画斜率介于0°和45°之间的直线的步骤是什么? 解答: (1)计算dx:dx=x 2-x 1 。 (2)计算dy:dy=y 2-y 1 。 (3)计算m:m=dy/dx。 (4)计算b: b=y 1-m×x 1 (5)设置左下方的端点坐标为(x,y),同时将x end 设为x的最大值。如果 dx < 0,则x=x 2、y=y 2 和x end =x 1 。如果dx > 0,那么x=x 1 、y=y 1 和x end =x 2 。 (6)测试整条线是否已经画完,如果x > x end 就停止。 (7)在当前的(x,y)坐标画一个点。 (8)增加x:x=x+1。 (9)根据方程y=mx+b计算下一个y值。 (10)转到步骤(6)。 3.请用伪代码程序描述使用斜截式方程画一条斜率介于45°和-45°(即|m|>1)之间的直线所需的步骤。

计算机图形学基础教程习题课1(第二版)(孙家广-胡事民编著)

1.列举计算机图形学的主要研究内容。 计算机中图形的表示方法、图形的计算、图形的处理和图形的显示。 图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。 2.常用的图形输出设备是什么? 显示器(CRT、LCD、等离子)、打印机、绘图仪等。 2.常用的图形输入设备是什么? 键盘、鼠标、跟踪球、空间球、数据手套、光笔、触摸屏、扫描仪等。 3.列出3种图形软件工具。 AutoCAD、SolidWorks、UG、ProEngineer、CorelDraw、Photoshop、PaintShop、Visio、3DMAX、MAYA、Alias、Softimage等。 错误:CAD 4.写出|k|>1的直线Bresenham画线算法。 d d d d 设直线方程为:y=kx+b,即x=(y-b)/k,有x i+1=x i+(y i+1-y i)/k=x i+1/k,其中k=dy/dx。因为直线的起始点在象素中心,所以误差项d的初值d0=0。y下标每增加1,d的值相应递增1/k,即d=d+1/k。一旦d≥1,就把它减去1,这样保证d在0、1之间。 ●当d≥0.5时,最接近于当前象素的右上方象素(xi+1,y i+1),x方向加1,d减 去1; ●而当d<0.5时,更接近于上方象素(x i,yi+1)。

为方便计算,令e=d-0.5,e的初值为-0.5,增量为1/k。 ●当e≥0时,取当前象素(x i,y i)的右上方象素(xi+1,y i+1),e减小1; ●而当e<0时,更接近于上方象素(xi,yi+1)。 voidBresenhamline (int x0,int y0,intx1, inty1,int color) { int x,y,dx,dy; float k,e; dx= x1-x0, dy = y1-y0,k=dy/dx; e=-0.5, x=x0, y=y0; for (i=0; i≤dy; i++) {drawpixel(x, y,color); y=y+1,e=e+1/k; if (e≥0) { x++, e=e-1;} } } 4.写出|k|>1的直线中点画线算法。 构造判别式:d=F(M)=F(xp+0.5,y p+1)=a(x p+0.5)+b(yp+1)+c ●当d<0,M在Q点左侧,取右上方P2为下一个象素; ●当d>0,M在Q点右侧,取上方P1为下一个象素; ●当d=0,选P1或P2均可,约定取P1为下一个象素;

计算机图形学实验二

实验报告 课程名称:计算机图形学 实验项目:区域填充算法 实验仪器:计算机 系别:计算机学院 专业:计算机科学与技术 班级姓名:计科1602/ 学号:2016011 日期:2018-12-8 成绩: 指导教师:

一.实验目的(Objects) 1.实现多边形的扫描线填充算法。 二.实验内容 (Contents) 实现多边形的扫描线填充算法,通过鼠标,交互的画出一个多边形,然后利用种子填充算法,填充指定的区域。不能使用任何自带的填充区域函数,只能使用画点、画线函数或是直接对图像的某个像素进行赋值操作;

三.实验内容 (Your steps or codes, Results) //widget.cpp //2016CYY Cprogramming #include"widget.h" #include #include #include using namespace std; #define H 1080 #define W 1920 int click = 0; //端点数量 QPoint temp; QPoint first; int result = 1; //判断有没有结束 int sign = 1; //2为画线 int length = 5; struct edge { int ymax; float x; float dx; edge *next; }; edge edge_; QVector edges[H]; QVector points;//填充用 bool fin = false; QPoint *Queue = (QPoint *)malloc(length * sizeof(QPoint)); //存放端点的数组 Widget::Widget(QWidget *parent) : QWidget(parent) { } Widget::~Widget() { } void Widget::mouseMoveEvent(QMouseEvent *event) { setMouseTracking(true); if (click > 0 && result != 0) { startPt = temp; endPt =event->pos(); sign = 2; update(); } } void Widget::mouseReleaseEvent(QMouseEvent *event) { if (event->button() == Qt::LeftButton) { } else if (event->button() == Qt::RightButton) { sign = 2;

相关文档
最新文档