电磁波及其传播

电磁波及其传播
电磁波及其传播

一、知识与技能

1.认识波的基本特征,知道波能够传播周期性变化的运动形态、能量、以及信息。2.了解振动的振幅、周期与频率,波长与波速的物理意义,知道它们是描述波的性质的物理量,知道波长,频率与波速的关系。

3.了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特性,知道

电磁波在真空中传播的速度。了解电磁屏蔽。

4.知道电磁波谱,了解电磁波的应用及其对人类生活和社会生活发展的影响。

二、过程与方法

1.实验观察。在观察演示实验的现象的基础上,归纳出波的基本特征;了解电磁波的存在;电磁屏蔽等现象。

2.阅读(或陈述)了解。对波的周期、频率,电磁波的意义及电磁波谱等物理知识采用阅读的方法获取。

3.图像意义分析。在学习波的特征的知识时,从对波形图的分析上入手,建立起振幅、波长等概念。

三、情感、态度与价值观

1.引发学生对波动现象的好奇心。引导和培养学生仔细观察实验现象并尝试归纳现象的学习习惯,激发学生勇于探索的积极性。

2.在学习麦克斯韦、赫兹对电磁波研究的贡献中,体会理论研究和实验探索对物理学发

展的重要性。

3.对“科学技术是一把双刃剑”,电磁波在被广泛应用,对人类作出巨大贡献的同时

也存在着副作用——会产生电磁污染的现象引起关注。同时也是进行辩证法教育,让学

生学会全面观察和看待问题。

教学过程

一、复习预习

学习预习本节课的知识点并引导学生回答下列问题

引导学生观察,提问:雷鸣闪电时,可以从开着的收音机里听到“喀、喀”的响声,这是因为什么呢?

二、知识讲解

课程引入:

电磁波的两面性:电磁污染与科技革命

英国曾有2400万只“家养”麻雀。这些麻雀都在房屋阁楼处做窝,每天在各家花园内嬉戏,成为英国一道风景线。然而,近年来,英国麻雀数量突然急剧减少。最近,英国科学家和动物学家指出,电磁波是造成麻雀失踪的罪魁祸首。研究表明,电磁波影响麻雀的方向感。麻雀依靠地球磁场来辨别方向,而电磁波会干扰麻雀找路的能力,从而使其迷失方向。

近20年来,国外学者越来越多地注意到低频非离子化电磁场的致癌作用。长期受到电磁辐射,会造成正常脑的支持细胞——胶质细胞发生DNA分子链的电离损害,导致DNA碱基分子链的断裂,引起细胞的癌变。据美国科罗拉多州大学研究人员调查,电磁污染较严重的丹佛地区儿童死于白血病者是其他地区的两倍以上。瑞典学者托梅尼奥在研究中发现,生活在电磁污染严重地区的儿童,患神经系统肿瘤的人数大量增加。

赫兹用实验证实了电磁波的存在,更重要的是导致了无线电的诞生,开辟了电子技术的新纪元,标志着从“有线电通信”向“无线电通信”的转折点。也是整个移动通信的发源点,应该说,从这时开始,人类开始进入了无线通信的新领域。

通过今天的学习,我们就可以揭开电磁波的神秘面纱。

考点/易错点1、波的基本特征:波都是在传播周期性变化的运动形态。

水和绳子传播的是凹凸相间的运动状态,弹簧传播的是疏密相间的运动状态——周期性变化

1、描述波的性质的物理量。

①振幅:波源偏离平衡位置的最大距离叫做振幅,用字母A表示,单位是米(m)。

②周期:波源振动一次所需要的时间叫做周期,用字母T表示,单位是秒(s)。

③频率:波源每秒内振动的次数叫频率,用字母f表示,单位是赫兹(Hz)。

④波长:波在一个周期内传播的距离叫波长,用字母λ表示,单位是米(m)。

⑤波速:波在1s内传播的距离叫波速,用字母v表示,单位是米/秒(m/s)。

2.波速、波长与频率的关系。 频率与周期的关系为T f 1= ;波速与波长、周期的关系为T v λ=;波速、波长与频率的关系为υ=λf 。 振幅A 反映了波源振动的强弱,频率和周期反映了振动的快慢;波速反映了传播的快慢。波既有传播凹凸相间运动形态的波,又有传播疏密相间运动形态的波。

考点/易错点2、光波属于电磁波

电磁波:电磁波是在空间传播的周期性变化的电磁场。光波属于电磁波。快速周期性变化的电流(也称振荡电流)的周围能产生电磁波。

电磁波的传播不需要介质(能在真空中传传播)。电磁波传播速度与光速相同,都等于3×108m/s。金属容器能够屏蔽电磁波,电磁波能把信息传播得更远。电磁波频率越高,能传播的信息就越大。

电磁波谱:按波长连续排到的一系列电磁波。

按频率由高到低的顺序记电磁波谱及对应的应用

电磁波也存在副作用——电磁污染,频率超过0.1MHz的电磁波在强度足够大时,会损伤人体的健康。

了解电磁波

阅读课本内容:了解麦克斯韦和赫兹的发现。

英国物理学家麦克斯韦建立了电磁场理论并预言电磁波的存在。

德国物理学家赫兹第一次用实验证实了电磁波的存在。

电磁波是在空间传播的周期性变化的电磁场

三、例题精析

【例题1】

【题干】反映波传播快慢的物理量是()

A. 波长

B. 振幅

C. 频率

D. 波速

【答案】D

【解析】根据波的特征:振幅、频率与周期、波速的意义填写.反映波源振动的强弱的是振幅;反映波源振动的快慢的是频率与周期;反映波传播的快慢的是波速。正确掌握描述波的性质的各物理量的作用是解决此题的关键。

【例题2】

【题干】雷鸣闪电时,可以从开着的收音机里听到“喀、喀”的响声,这是因为()

A. 收音机出现故障

B. 空气潮湿的缘故

C. 雷声传到了收音机中

D. 收音机收到了云间传来的电磁波

【答案】D

【解析】雷雨天闪电时,云层与云层间,云层与大地间都有放电现象。放电时高频率变化的电流产生电磁波向四周传播,当其传到收音机里,被收音机接收就听到“喀,喀”的响声。此现象有力地证明了变化的电流周围能够产生电磁波。

九年级物理 电磁波及其传播教案 苏科版

第二节电磁波及其传播 [设计意图] 本节由“波的基本特征”“了解电磁波”和“电磁波谱”三部份组成,内容抽象性较强,学生在这方面的知识相对欠缺。不易理解。故开始用一些有形的“机械波”引导学生认识波的基本特征,在此基础上,归纳出波的特征物理量。建立频率与周期的关系,得出波长、频率与波速的关系式。 “了解电磁波”分二个部分:验证电磁波的存在和探究电磁波的特性。以开展学生活动为主。让学生在实验中获取知识。 “电磁波谱”的教学从阅读图表入手,重点了解各波段电磁波的应用,使学生体会科学为人类生活服务。 [教学目标] 1.知识与技能: ⑴认识波的基本特征,知道波能够传播周期性变化的运动形态、能量、以及信息。 ⑵了解振动的振幅、周期与频率,波长与波速的物理意义,知道它们是描述波的性质的物理量,知道波长,频率与波速的关系。 ⑶了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特性,知道电磁波在真空中传播的速度。了解电磁屏蔽。 ⑷知道电磁波谱,了解电磁波的应用及其对人类生活和社会生活发展的影响。 2.过程与方法: ⑴实验观察。在观察演示实验的现象的基础上,归纳出波的基本特征;了解电磁波的存在;电磁屏蔽等现象。 ⑵阅读(或陈述)了解。对波的周期、频率,电磁波的意义及电磁波谱等物理知识采用阅读的方法获取。 ⑶图像意义分析。在学习波的特征的知识时,从对波形图的分析上入手,建立起振幅、波长等概念。 3.情感、态度、价值观: 引发学生对波动现象的好奇心。引导和培养学生仔细观察实验现象并尝试归纳现象的学习习惯,激发学生勇于探索的积极性。 在学习麦克斯韦、赫兹对电磁波研究的贡献中,体会理论研究和实验探索对物理学发展的重要性。 对“科学技术是一把双刃剑”,电磁波在被广泛应用,对人类作出巨大贡献的同时也存在着副作用——会产生电磁污染的现象引起关注。同时也是进行辩证法教育,让学生学会全面观察和看待问题。 [教学重、难点] “了解电磁波”并知道电磁波的存在及其特性是本节的重点。 波的基本形态和特征的教学是本节的难点。 [教具和学具] 1.电动小汽车,线控电动小汽车,遥控电动小汽车各一辆。 2. 细麻绳一根,纵波演示仪一架。长橡筋绳(或用松紧带代替)若干根。 3. 大玻璃水槽一只,细竹竿一根。 4. 收音机一架,电池一节,电线一小段。 5. 电吹风一只,电视机一台。

2021鲁科版选修第1节《电磁波的产生》word教案

2021鲁科版选修第1节《电磁波的产生》 word教案 三维教学目标 1、知识与技能 (1)了解电磁振荡产生的过程。 (2)了解赫兹实验及其意义。 (3)了解开放电路和实际发射电磁波的过程。 2、过程与方法 (1)通过对赫兹实验的过程与分析和阅读“资料活页”,体会解决问题,应抓住关键,并善于 类推和联想。 (2)通过“讨论与交流”,学会及时应用所学知识说明相关问题。 3、情感、态度与价值观 教学重点:电磁波的产生 教学难点:赫兹实验及应用所学知识说明相关问题。 教学方法:实验法、讨论与交流法 (一)引入 学习电磁振荡和电磁波的重要性。 无线电广播是利用电磁波传播的,电视广播也是利用电磁波传播的,导弹,人造地球卫星的操纵以及宇宙飞船跟地面的通信联系差不多上利用电磁波。那么,电磁波是什么呢?它是如何样产生的,有些什么性质以及如何样利用它来传递各种信号呢?这一章就要研究这些问题。要了解电磁波,第一就要了解什么是电磁振荡,我们就从电磁振荡开始学习。 (二)新课教学 1、实验:将电键K扳到1,给电容器充电,然后将电键扳到2,现在能够见到G表的指针来回摆动。 2、总结:能产生大小和方向都都作周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 1 K 2 ε C L G 3、振荡电流是一种交变电流,是一种频率专门高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 4、那么振荡电路中的交变电流有一些什么样的性质: (1)介绍振荡电路中交变电流的一些重要性质: — 乙丁

对应的电流图像: 对应电容器所带的电量: (2)电路分析: 甲图:电场能达到最大,磁场能为零,电路感应电流i=0 甲→乙:电场能↓,磁场能↑,电路中电流i↑,电路中电场能向磁场能转化,叫放电过程。 乙图:磁场能达到最大,电场能为零,电路中电流I达到最大。 乙→丙:电场能↑,磁场能↓,电路中电流i↓,电路中电场能向磁场能转化,叫充电过程。 丙图:电场能达到最大(与甲图的电场反向),磁场能为零,电路中电流为零。 丙→丁:电场能↓,磁场能↑,电路中电流i↑,电路中电场能向磁场能转化,叫放电过程。 丁图:磁场能达到最大,电场能为零,回路中电流达到最大(方向与原方向相反),丁→戊:电场能↑,磁场能↓,电路中电流i↓,电路中电场能向磁场能转化,叫充电过程。 戊与甲是重合的,从而振荡电路完成了一个周期。 综述: 第一、充电完毕(充电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 第二、放电完毕(放电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 第三、充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 第四、放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 归纳:在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。 例题1、在LC振荡电路中,某时刻若磁场B正在增加,则电容器处于(放)电状态, 电场能正在(减小)磁场能正在(增加)能量转变状态为(电场能正在向磁场能转化)电容器上板带(正)电。 B a b C 例题2、在LC的回路中,电流i——t的关系如图所示,①若规定逆时针方向为电流的正方向,说明t0时刻电路中能量变化情形,及电场能、磁场能、充放电等情形。②下列分析情形正确的是:(D) A、t1时刻电路的磁场能正在减小。 B、t1→t2时刻电路中的电量正在不断减少。 C、t2→t3时刻电容器正在充电。 D、t4时刻电容中的电场能最大。 i t 0 t1t0t2t3t4

论电磁波的产生及传播

论电磁波的产生及传播 广东省博罗高级中学(516100) 林海兵 摘要:电磁波是一种特殊的机械波,它的传播媒质是电性子。它是由电子运动激发电性子而形成。 关键词:电磁波,机械波,电性子,感应电场,速度矢量,磁场,剪应变矢量 1 经典电磁波理论 自从十八世纪末人们发现电荷开始,人们对电的一步步深入地研究使人类社会进入了一个崭新的纪元,从磨擦起电到电流的产生,到电流的热效应,到电流的磁效应,到电流在磁场的安培力,一直到电磁效应,电自始至终都与磁有着密不可分的关系,这种超乎寻常关系引起了麦克斯韦的极大的关注,并对其进行了前所未有的探索,最终麦克斯韦建立了感应电场与磁场之间关系的方程组。 1.1 麦克斯韦电磁方程组 麦克斯韦电磁方程组所描述的是均匀的自由空间的感应电场与磁场之间的关系: 0=??E 1.1 t B E ??-=?? 1.2 0=??B 1.3 t E B ??=?? εμ 1.4 对于以上的四式中的1.1与1.3两式,人们一直以为,这是描述自由空间的感应电场与磁场均为涡旋场,所谓涡旋场,是指描述场的电场线或磁场线均是一系列的闭合曲线,电场线或磁场线没有起点也没有终点。对于1.2与1.4两式,人们又一直认为,这是描述感应电场与磁场之间的相互激发的关系:变化的磁场将产生变化的感应电场,变化的感应电场也将产生磁场。人们对以上四式进行求解而得到的平面波方程发现,这两个相互激发的感应电场与磁场在任何时刻始终保持同相。 1.2 对电磁波的产生与传播的描述

最终人们建立了以麦克斯韦电磁方程组为基础的一个十分完美的电磁理论,并预言了电磁波的存在,指出电磁波的传播速度等于光速,麦克斯韦甚至认为,光波的本质就是一种电磁波。 关于电磁波的产生与传播,人们开始认为这是它以“以太”为传播媒质的,但是经历了一系列的观察测量实验之后,人们始终没有能够观察到“以太”的存在,于是,人们最终否定了“以太”的存在。于是,关于电磁波的传播,人们以为它是依靠“电磁场”这种物质传播,但是“电磁场”又是怎样的一种物质,人们又说不清楚,只能说它不是由物质粒子构成了,虽然人们看不见它,但可以通常实验来观察它,它对放入其中的带电粒子等有力的作用。在电磁波的传播过程中,人们一直以为,由变化的电场产生变化的感应磁场,变化的感应磁场再产生了变化的感应电场,变化的感应电场又产生了变化的感应磁场,变化的感应磁场再产生了变化的感应电场……由于变化的电场与变化的磁场之间不断地交替产生,就形成了电磁波在空间的传播。 对于电磁波的空间传播图像,人们始终没有能够找到一个很好地描述其传播的图像,于是人们根据以上的电磁场的相互激发产生的机理,人们得了如图1所示的电磁波的传播图 像。但是,由于根据麦克斯韦电磁方程组的平面波的解可知,这相互激发的电场与磁场是相位相同的场。很明显,图1所示的电磁波的电场与磁场是具有不同相位的,电场产生的磁场的相位一定落后于电场,由磁场产生的感应电场的相位也一定落后于磁场。所以,图1的描述很明显是错误的。于是又出现了如图2所示的图像。确实,图2能够很好地反映了感应电场与感应磁场的相位关系,也能够很好地反映出玻印亭矢量与电场和磁场的关系。但是它同样地存在一个不可克服的缺点:空间的电场与磁场不是涡旋场吗?图2如何把这涡旋场表示出来,再者,人们总是说电场与磁场是相互激发产生的,图2又如何表示其相互激发的关系? 1.3 对“场”的认识

第4章-电磁波的传播

第四章 电磁波的传播 1.考虑两列振幅、偏振方向相同、频率分别为ωωd +和ωωd -的线偏振平面波,沿z 轴方向传播。 (a)求合成波,证明波振幅非常数,而是一个波;(b)求合成波的相位传播速度和振幅传播速度。 解:设两列波的电场表达式分别为:)cos()(),(1101t z k t ω-=x E x E ;)cos()(),(2202t z k t ω-=x E x E 则,合成波为12 12 12 12 120(,)(,)2()cos( )cos( )2 2 2 2 k k k k t t z t z t ωωωω++--=+=- - E E x E x E x 其中dk k k +=1,dk k k -=2;ωωωd +=1,ωωωd -=2 所以002()cos()cos(d d )2()exp[()]cos(d d )kz t k z t i kz t k z t ωωωω=-?-?=-?-?E E x E x 相速由t kz ωφ-=确定:d d p z v t k ω = = ;群速由t d z dk ?-?=ωφ'确定,d d d d g z v t k ω= = 2.平面电磁波以=θ45°从真空入射到2=r ε的介质,电场垂直于入射面,求反射系数和折射系数。 解:根据折射定律 222111 sin sin " n μεθθμε= =,可得:30 θ''=o 据菲涅耳公式得:2 1212cos cos "23cos cos "23 R εθεθεθεθ? ?--== ? ?+ +? ? ,23123 T R =-=+ 3.可见平面光波由水入射到空气,入射角为60°,证明这时将会发生全反射,并求折射波沿表面传 播的相速度和透入空气的深度。该波在空气中的波长为501028.6-?=λcm ,水的折射率为n =1.33。 解:由折射定律得,临界角1arcsin 48.75601.33c θθ?? ==?<=? ??? ,所以,将会发生全反射。 由于sin 90sin x k k θ''=o ,所以折射波相速度3sin sin sin 2 p x v c v c k k n ωωθ θ θ ''== = = = ''水 透入空气的深度为15 1 2 2 21 1.710 2sin n λκπ θ--= ≈?-cm 4.频率为ω的电磁波在各向异性介质中传播时,若H B D E ,,,仍按)(t i e ω-?x k 变化,但D 不再与E 平行。 (a)证明0=?=?=?=?E B D B D k B k ,但一般0≠?E k ; (b)证明2 2 [()] k ωμ -?= E k E k D ; (c)证明能流S 与波矢k 一般不在同一方向上。 证明:(a)由0??=B ,得:0) (0)(0=?=?=??=??-?-?B k B k B B x k x k i e i e t i t i ωω,0=?∴B k ,可知:B k ⊥ 由()()000i t i t e i e i ωω?-?-????=?=?=k x k x D =D k D k B 得:0=?D k ,可知:⊥k D 由D H k H H x k ωωi i e t i -=?=??=??-?0)(][,得() 0ωμ ???=-=B k B B D ,可知:B D ⊥ 由B E k E E x k ωωi i e t i -=?=??=??-?0)(][,得()0ω ???= =k E E B E ,可知:B E ⊥ 易知D E k ,,共直于B 的面,又D k ⊥,所以,当且仅当D E //时,k E ⊥。所以,一般0≠?E k 。 (b)2 2 2 () ()k ωμωμ ??-?=- = k k E E k E k D (c)由于ωμ ?= k E H ,2 () ()E ωμωμ ??-?=?= = E k E k k E E S E H 由于一般情况下0≠?E k ,所以能流S 与波矢k 一般不在同一方向上。 5.有两个频率和振幅都相等的单色平面波沿z 轴传播,一个波沿x 方向偏振,另一个沿 y 方向偏振,

电磁波及其传播 (教案)

《电磁波及其传播》教学设计 吴江经济技术开发区实验初级中学张玉妹 一、教材分析 (一)教材分析 《电磁波及其传播》是苏科版九年级下册,第17章第二节内容,是本章的重点,也是难点。本节由“波的基本特征”“了解电磁波”和“电磁波谱”三部分内容组成,其中“了解电磁波”又由“活动17.2 验证电磁波的存在”和“活动17.3探究电磁波的传播特性”组成。内容相对比较抽象,所以在每部分内容呈现的时候,都采取学生体验的方式,让学生在体验中感知,在感知中探究从而获得新知。 本节课在教学顺序安排上做了较大幅度的调整,开始用对讲机引入课题,然后直接让学生感受电磁波的存在和电磁波可以在空气中传播,从而过渡到电磁波的传播特性的教学,最后从问题“电磁波究竟是什么”进入波的基本特征和电磁波谱的教学。物理新课程理念要求“从生活走向物理,从物理走向社会”,在课堂的最后环节设计了“高压线会产生电磁污染,是真的吗?”这个教学环节,让学生带着问题走出课堂。 (二)学情分析 虽然电磁波在我们的生活中有广泛的应用,但毕竟它看不见、摸不着,非常 的抽象,所以学生还是很难理解的。本节课通过学生直观的体验,让学生根据已有的知识经验去设计实验并自己去验证,充分发挥学生的主观能动性,使学生轻松、愉快的掌握知识,形成技能并锻炼能力。 本节课的难点在于如何理解“波的基本特征”,所以需要在教师实验演示、动画、视频等多种手段的辅助引导下,让学生理解波能传播周期性变化的运动状态,从而了解几个物理量的意义。 二、教学目标 (一)知识与技能 (1)认识波的基本特征,知道波能够传播周期性变化的运动形态。 (2)了解振动的振幅、周期与频率,波长与波速的物理意义,知道它们是描述波的性质的物理量。 (3)了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

电磁波及其传播

一、知识与技能 1.认识波的基本特征,知道波能够传播周期性变化的运动形态、能量、以及信息。2.了解振动的振幅、周期与频率,波长与波速的物理意义,知道它们是描述波的性质的物理量,知道波长,频率与波速的关系。 3.了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特性,知道

电磁波在真空中传播的速度。了解电磁屏蔽。 4.知道电磁波谱,了解电磁波的应用及其对人类生活和社会生活发展的影响。 二、过程与方法 1.实验观察。在观察演示实验的现象的基础上,归纳出波的基本特征;了解电磁波的存在;电磁屏蔽等现象。 2.阅读(或陈述)了解。对波的周期、频率,电磁波的意义及电磁波谱等物理知识采用阅读的方法获取。 3.图像意义分析。在学习波的特征的知识时,从对波形图的分析上入手,建立起振幅、波长等概念。 三、情感、态度与价值观 1.引发学生对波动现象的好奇心。引导和培养学生仔细观察实验现象并尝试归纳现象的学习习惯,激发学生勇于探索的积极性。

2.在学习麦克斯韦、赫兹对电磁波研究的贡献中,体会理论研究和实验探索对物理学发 展的重要性。 3.对“科学技术是一把双刃剑”,电磁波在被广泛应用,对人类作出巨大贡献的同时 也存在着副作用——会产生电磁污染的现象引起关注。同时也是进行辩证法教育,让学 生学会全面观察和看待问题。 教学过程 一、复习预习 学习预习本节课的知识点并引导学生回答下列问题 引导学生观察,提问:雷鸣闪电时,可以从开着的收音机里听到“喀、喀”的响声,这是因为什么呢?

二、知识讲解 课程引入: 电磁波的两面性:电磁污染与科技革命 英国曾有2400万只“家养”麻雀。这些麻雀都在房屋阁楼处做窝,每天在各家花园内嬉戏,成为英国一道风景线。然而,近年来,英国麻雀数量突然急剧减少。最近,英国科学家和动物学家指出,电磁波是造成麻雀失踪的罪魁祸首。研究表明,电磁波影响麻雀的方向感。麻雀依靠地球磁场来辨别方向,而电磁波会干扰麻雀找路的能力,从而使其迷失方向。 近20年来,国外学者越来越多地注意到低频非离子化电磁场的致癌作用。长期受到电磁辐射,会造成正常脑的支持细胞——胶质细胞发生DNA分子链的电离损害,导致DNA碱基分子链的断裂,引起细胞的癌变。据美国科罗拉多州大学研究人员调查,电磁污染较严重的丹佛地区儿童死于白血病者是其他地区的两倍以上。瑞典学者托梅尼奥在研究中发现,生活在电磁污染严重地区的儿童,患神经系统肿瘤的人数大量增加。

电磁波传播

电磁波传播特性实验报告 Part1 电磁波参量的测量 一、实验目的 1、了解电磁波综合测试仪的结构,掌握其工作原理 2、利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v。 二、实验原理 1、自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 得到电磁波的主要参数K和v等。 电磁波参量测试原理如图1-1所示,和分别表示发射和接收喇叭天线,A和B分别表示固定和可移动的金属反射板,C表示半透射板(有机玻璃板)。由TP发射平面电磁波,在平面波前进的方向上放置成°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A板方向传播,另一束向B板方向传播。由于A和B为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线处。于是收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。 移动反射板B,当的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波

当入射波以入射角向介质板C斜入射时,在分界面上产生反射波和折射波。设C板的反射系数为R,为由空气进入介质板的折射系数,为由介质板进入空气的折射系数。固定板A和可移动板B都是金属板,反射系数均为1?。在一次近似的条件下,接收喇叭天线处的相干波分别为 这里 其中,为B板移动距离,而与传播的路程差为2ΔL。 由于与的相位差为,因此,当2ΔL满足 和同相相加,接收指示为最大。 当2ΔL时满足 和反相抵消,接收指示为零。这里,n表示相干波合成驻波场的波节点数。

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

电磁波的传播

实验二电磁波的传播 实验目的: 1、掌握时变电磁场电磁波的传播特性; 2、熟悉入射波、反射波和合成波在不同时刻的波形特点; 3、理解电磁波的极化概念,熟悉三种极化形式的空间特点。 实验原理: 平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。 实验步骤: 1、电磁波的传播 (1)建立电磁波传播的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中电磁波随时间的传播规律 2、入射波、反射波和合成波 (1)建立入射波、反射波和合成波的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种波形在不同时刻的特点和关系 3、电磁波的极化 (1)建立线极化、圆极化和椭圆极化的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种极化形式的空间特性 实验报告要求: (1)抓仿真程序结果图 (2)理论分析与讨论

1、电磁波的传播 clear all w=6*pi*10^9; z=0::; c=3*10^8; k=w/c; n=5; rand('state',3) for t=0:pi/(w*4):(n*pi/(w*4)) d=t/(pi/(w*4)); x=cos(w*t-k*z); plot(z,x,'color',[rand,rand,rand]) hold on end title(‘电磁波在不同时刻的波形’) 由图形可得出该图形为无耗煤质中传播的均匀电磁波,它具有以下特点:(1)在无耗煤质中电磁波传播的速度仅取决于煤质参数本身,而与其他因素无关。 (2)均匀平面电磁波在无耗煤质中以恒定的速度无衰减的传播,在自由空间中其行进速度等于光速。 2、入射波、反射波、合成波 (1)axis equal; n=0;%改变n值得到不同时刻的电磁波状态z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); axis([0 10 ]); (2)axis equal; n=1/4;;%改变n值得到不同时刻的电磁波状态 z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); 电磁波在不同时刻的波形

鲁科版高中物理选修3-43.2电磁波的发射、传播和接收教案

第二节电磁波的发射、传播和接收 三维教学目标 1、知识与技能 (1)通过演示和讲解,让学生理解电磁场的理论; (2)了解电磁波的产生,掌握电磁波的传播公式及接收。 2、过程与方法 (1)通过对赫兹实验的过程与分析和阅读“资料活页”,体会解决问题,应抓住关键,并 善于类推和联想。 (2)通过“讨论与交流”,学会及时应用所学知识解释相关问题。 3、情感、态度与价值观 教学重点: 1.电磁波有效发射的条件,调制的含义及调制方式。 2.无线电波的传播方式及其应用。 3.无线电波接收原理。 教学难点: 1.无线电波调制的含义和方式的区别。 2.“电谐振”概念的形成。 教学方法:实验法、讲解法、讨论与交流法 (一)引入 1、一个变化的磁场中放一个闭合线圈会产生感应电流,这是一种电磁感应现象。麦克斯韦研究了这种现象,认为若电路闭合就会有感应电流;若电路不闭合,则会产生感应电场;这个电场驱使导体中电子的运动,从而产生了感应电流。 2、分析: ①恒定的电场周围无磁场,恒定的磁场周围无电场。 ②均匀变化的电场周围产生恒定的磁场,均匀变化的磁场周围产生恒定的电场。 ③周期性变化的电场周围存在同周期的磁场,周期性变化的磁场在周围产生同周期的电 场。 (二)新课教学 1、无线电波:无线电技术中使用的电磁波叫做无线电波。无线电波的波长从几毫米到几十千米。通常根据波长或频率把无线电波分成几个波段——长波、中波、中 短波、短波、微波。 2.无线电波的发射:如图所示。 ①调制:使电磁波随各种信号而改变 ②调幅和调频 3.无线电波的接收 ①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电 路中产生的振荡电流最强,这种现象叫做电谐振。 ②调谐:使接收电路产生电谐振的过程。调谐电路如图所示。通过改变电容 器电容来改变调谐电路的频率。

电磁波及其传播

感谢下载载

物理量,知道波长,频率与波速的关系。 3.了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特性,知道电磁波在真空中传播的速度。了解电磁屏蔽。 4.知道电磁波谱,了解电磁波的应用及其对人类生活和社会生活发展的影响。 二、过程与方法 1.实验观察。在观察演示实验的现象的基础上,归纳出波的基本特征;了解电磁波的存在;电磁屏蔽等现象。 2.阅读(或陈述)了解。对波的周期、频率,电磁波的意义及电磁波谱等物理知识采用阅读的方法获取。 3.图像意义分析。在学习波的特征的知识时,从对波形图的分析上入手,建立起振幅、 感谢下载载

波长等概念。 三、情感、态度与价值观 1.引发学生对波动现象的好奇心。引导和培养学生仔细观察实验现象并尝试归纳现象的学习习惯,激发学生勇于探索的积极性。 2.在学习麦克斯韦、赫兹对电磁波研究的贡献中,体会理论研究和实验探索对物理学发展的重要性。 3.对“科学技术是一把双刃剑”,电磁波在被广泛应用,对人类作出巨大贡献的同时也存在着副作用——会产生电磁污染的现象引起关注。同时也是进行辩证法教育,让学生学会全面观察和看待问题。 感谢下载载

教学过程 一、复习预习 学习预习本节课的知识点并引导学生回答下列问题 引导学生观察,提问:雷鸣闪电时,可以从开着的收音机里听到“喀、喀”的响声,这是因为什么呢? 感谢下载载

精品 二、知识讲解 课程引入: 电磁波的两面性:电磁污染与科技革命 英国曾有2400万只“家养”麻雀。这些麻雀都在房屋阁楼处做窝,每天在各家花园内嬉戏,成为英国一道风景线。然而,近年来,英国麻雀数量突然急剧减少。最近,英国科学家和动物学家指出,电磁波是造成麻雀失踪的罪魁祸首。研究表明,电磁波影响麻雀的方向感。麻雀依靠地球磁场来辨别方向,而电磁波会干扰麻雀找路的能力,从而使其迷失方向。 近20年来,国外学者越来越多地注意到低频非离子化电磁场的致癌作用。长期受到电磁辐射,会造成正常脑的支持细胞——胶质细胞发生DNA分子链的电离损害,导致DNA碱基分子链的断裂,引起细胞的癌变。据美国科罗拉多州大学研究人员调查,电磁污染较严重的丹佛地区儿童死于白血病者是 感谢下载载

实验二-电磁波在介质中的传播规律

实验二-电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期: 2015.11.21

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向 同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω== (13) 由式(8)可知 εμ1 =v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

电动力学复习总结第四章电磁波的传播答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案:1>>ωε σ, 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率=n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截 止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c +=μεπ ω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:201 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σ ερρ-= 二、 选择题 1、 电磁波波动方程222 22222110,0E B E B c t c t ???-=?-=??,只有在下列那种情况下成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2 π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

第六讲 工程介质中电磁波的传播理论

第六讲工程介质中电磁波的传播理论电磁波是交变电场与磁场相互激发在空间传播的波动。工程介质中电磁波的传播依然满足麦克斯韦方程。为清除地理解雷达检测理论基础,需要对介质中的电磁场、电磁波的传播、波速、衰减、反射与折射的理论有一个基本的了解。 6.1电磁场与电磁波传播方程 岩土、混凝土、钢筋、铁板等为常见的工程介质,前两者电导较小,后两者为良导体。在这些介质中电磁波传播的麦克斯韦方程为:▽×E=-μH t’ ▽×H=εE t’+σE ▽·E=0 ▽·H=0 通常介质的介电常数ε、磁导率μ都是电磁波频率的函数。式中E为电场强度矢量,H为磁场强度矢量,σ为介质的电导率。不失一般性,满足上述麦克斯韦方程的、沿X方向传播的频率为ω的平面电磁波,其电场强度与磁场强度的表达式为: E(x,t)=E o e-αx+i(βx-ωt) H(x,t)=H o e-αx+i(βx-ωt) 6.2电场、磁场与波矢量关系 电磁波是横波,电场强度E、磁场强度H和波矢量K三者互相垂直,组成右手螺旋关系。右手螺旋关系含义如下,四个手指并拢伸直指向电场方向,然后四指回握90° 指向磁场方向,大拇平伸则指向波的传播方向K。电磁波的电厂、磁场、与波矢量的关系如下土所示。在波的传播过程中其空间方向是固定不变的,即使是发生了反射与折射,也只是传播方向K发生变化,电场与磁场的方向依然不变。在空气中电场与磁场是同向位的,两者同时达到极大和极小值,电场强度与磁场强度的比值刚好等于电磁波速。在工程介质中因为有传导电流能量损失,电场与磁场的相位再不同步,磁场落后与电场一个相位,电导率越高,落后的相位越大。 6.3 介质中的电磁波速与能量衰减特性

相关文档
最新文档