塑胶制品如何去除内应力

塑胶制品如何去除内应力
塑胶制品如何去除内应力

塑胶制品如何去除内应力?

塑胶制品如何去除内应力?

1 引言

注塑制品一个普遍存在的缺点是有内应力。内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。此外,掌握注塑制品内应力的消除方法和测试方法也很有必要

2 内应力的种类

高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。另外,外力使制件产生强迫高弹形变也会在其中形成内应力。根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。对注塑制件力学性能影响最大的是取向应力和体积温度应力。

2.1取向应力

高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。

2.2体积温度应力

体积温度应力是制件冷却时不均匀收缩引起的。因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。这可以通过提高模具温度、降低加工温度来达到。

加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。

带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。

这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。

2.3与制件体积不平衡有关的应力

高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。实验测定表明,注塑制件中这种形式的内应力一般很小。

2.4 与制件顶出变形有关的内应力

这种内应力主要与开模条件和模具顶出机构的设计有关。正确选择开模条件使开模

前的模腔压力接近于零,根据制件的结构和形状设计合理的顶出机构,使制件顶出时不致变形,是可以将这种形式的内应力减少到不会影响制件力学性能的限度以内的。

3影响注塑制品内应力的因素分析

注塑制品的造型设计不合理、模具设计不合理、成型工艺条件不正确、注射机选用不当等都会使制品内存在比较大的内应力。影响制品内应力的因素很多,也很复杂。主要影响因素见下图所示

3.1造型设计

3.1.1圆角

塑料制品除了使用上要求采用尖角外,各表面相交处应尽可能采用圆弧过渡。由于制品形状和截面的变化,使注塑过程中熔料在尖角处的流态发生急剧变化而产生大的应力,而且残留在尖角处。在有载荷或受冲击振动时会发生破裂,甚至在脱模过程中即由于模塑内应力而开裂,特别是制品的内圆角。一般,即使采用R 为0.5mm的圆角就能使塑件强度大为增加。一般情况下,理想的内圆角半径应有壁厚的1/4以上。外圆角半径可取壁厚的1.5倍。

采用圆弧过渡既可以减少应力集中,还可大大改善塑料的充模特性,避免在转角处产生冲击形成波纹或充不满模腔。

塑件设计成圆角,使模具型腔对应部位也呈圆角,这样增加了模具的坚固性,塑件的外圆角对应着型腔的内圆角,它使模具在淬火或使用时不至于因应力集中而开裂,提高了模具的使用寿命。但是在塑件的某些部位如分型面、型芯与型腔配合处等不便做成圆角而只能采用尖角。

除相交表面的尖角外,尖锐的螺纹牙也是严重的应力集中源,采用倒圆角的螺纹可减少应力集中,提高螺纹强度。

3.1.2制品壁厚

制品壁厚是结构设计时所需要考虑的重要因素。不合理的壁厚会给制品带来很多缺陷。增加壁厚既可改善树脂的充模特性,又可降低取向应力,减少变形,提高制品强度。但同时收缩加大,保压和冷却时间加长,生产效率降低,消耗材料多。较大的收缩应力还将造成制品表面产生凹陷或内部出现缩孔与气泡,既影响外观又降低了强度。增加壁厚的同时也增加了制品的表面积,表面积与体积之比越大,表面冷却越快,取向应力和体积温度应力都随之增大。如果制品壁太薄,会降低强度,脱模时易破裂,还有碍于树脂的充模流动,造成填充不足或出现明显的熔合纹,严重影响制品质量。每种塑料根据充模能力都有一个最小壁厚。确定壁厚时在满足强度要求的前提下,壁厚尽量取薄些,可节省材料,减轻制品重量,降低成本,但不能小于最小壁厚。ABS常用的标准壁厚为1.2~3.5mm。壁厚设计还应注意均匀一致,否则将会由于收缩应力引起制品的翘曲变形。同一

制品中,若必须存在壁厚相差较大的情况时,连接处应逐渐过渡,避免截面的突变。

3.1.3金属嵌件

由于金属嵌件冷却时尺寸变化与塑料的热收缩值相差很大,使嵌件周围产生很大的内应力,而造成塑件的开裂。对某些高刚性的工程塑料更甚,如聚碳酸酯;但对于弹性和冷流动性大的塑料则应力值较低。当有金属嵌件存在时,应尽量避免制件开裂:

(1)如能选用与塑料线膨胀系数相近的金属作嵌件,内应力值可以降低;(2)嵌件周围的塑料应有足够的厚度,否则会由于存在收缩应力而开裂;

(3)嵌件的顶部也应有足够厚的塑料层,否则嵌件顶部塑件表面会出现鼓包或裂纹;

(4)嵌件不应带尖角、锐边,以减少应力集中;

(5)热塑性塑料注射成型时,将金属嵌件预热到接近物料温度,可减少由于金属与塑料热膨胀系数不同而产生的收缩应力;

(6)对于内应力难以自消的塑料,可先在嵌件周围被覆一层高分子弹性体或在成型后进行退火处理来降低内应力;

(7)在塑件成型后再装配或压入嵌件,可调节因嵌入嵌件而造成的内应力值,使制件不致破裂。

3.2 注塑机选用

注射机选用不当,也会产生内应力。那种认为大容量注射机注射小模具中的制品会减少内应力的说法不正确。有时会因为压力过高、喷嘴结构不合适或混料造成较大的内应力。

3.3 模具设计

模具浇注系统和顶出机构设计不当都会使制件产生内应力。

3.3.1浇注系统

模具浇注系统设计不合理如浇口大小不合适、浇道太窄、主流动太长、浇口位置不合理都会造成内应力:

(1)浇口尺寸太大,补料时间就会延长,会增大大分子的冻结取向和冻结应变,造成很大的补料内应力,特别在浇口附近内应力更大。小浇口的适时封闭,能适当地控制补料时间。但浇口尺寸也不宜太小,过小的浇口会造成太大的流动阻力,产生取向应力。

(2)主流道太长、流道太窄、流道的急剧转折都会使流动阻力加大,延长进料时间或需增大注射压力和保压压力,会使制品产生更高的取向应力。

(3)浇口位置的选取除考虑制品外观和熔接缝外,还应尽量减少在流动方向上由于充模和补料而造成的定向作用。

3.3.2顶出机构

顶出机构设计不当,使脱模力不均衡或型芯表面在脱模过程中形成真空或施加过大的脱模力,都会造成塑件产生强迫高弹形变形成内应力,甚至龟裂,严重时发生开裂。龟裂和开裂看上去相似,本质上有区别。龟裂不是空隙状的缺陷,是高分子本身同所加应力成平行方向排列,经过加热又能恢复到无龟裂的状态,所以能用热处

理方法解决。注塑成型后立即热处理效果较好。防止顶出产生内应力需改善脱模条件,如仔细磨光型芯侧面;增加脱模斜度;平衡顶出力;顶杆应布置在脱模阻力最大的部位如型芯凸台附近及能承受较大顶出力的部位,如加强筋、凸缘、塑件端面等部位。

3.4机械加工

注塑制品除为切除大浇口冷凝料而进行机械加工外,当制件尺寸精度和形位公差要求很高而无法通过模具设计与调整工艺条件得到保证,或零件上有难以一次成型出的形状(如小而深的孔或螺纹等)时,成型之后就需要进行机械加工。常用的机械加工工艺有车、铣、刨、钻、锯、铰孔和拱螺纹等。但机械加工会使塑件内部产生内应力,因此加工时应用专用刀具、宜采用较低的切削速度、小切削量和低速度,还应保证充分冷却。对于易产生内应力的制品应进行多次热处理。

3.5注塑成型工艺条件

注塑制品由于成型工艺特点不可避免的存在内应力,但工艺条件控制得当就会使塑件内应力降低到最小程度,能够保证制件的正常使用。相反,如果工艺控制不当,制件就会存在很大的内应力,不仅使制件强度下降,而且在储存和使用过程中出现翘曲变形甚至开裂。需要控制的工艺条件如嵌件预热、模具温度、加工温度、注射速度、注射压力、保压压力、注射时间、保压时间、冷却时间等。温度、压力、时间是塑料成型工艺的主要因素。

3.5.1金属嵌件预热

注射成型时,应将金属嵌件预热到接近物料温度,预热嵌件的目的是减少金属与塑料冷却时收缩值的差距,从而降低由于二者热膨胀系数的不同而在嵌件周围产生的收缩应力。收缩应力是注塑制品内容易形成的内应力的一种,这种内应力的存在,是带金属嵌件的注塑制品出现裂纹和强度下降的重要原因。

3.5.2模具温度

提高模具温度,可以降低因内外收缩不均而产生的体积温度应力和高分子取向应力,也可以降低结晶塑料制品的结晶应力。但模温也不能过高,模温升高使冷却时间延长,降低了生产效率。

3.5.3加工温度

提高加工温度可降低取向应力,但同时会使因收缩不均而产生的体积温度应力增加,同时也使封口压力升高,延长冷却时间才能顺利脱模。

3.5.4注射压力、注射速度和注射时间

增大注射压力使取向应力和结晶塑料的结晶应力增加,同时使封口压力增大,必须延长冷却时间才能顺利脱模,否则会造成脱模应力;注射速度增加也会使取向应力和结晶应力增加,但对冷凝快的塑料还是用高的注射速度充模较为有利,因为冷凝快的塑料慢速注射需要更高的注射压力来维持熔体的流动;注射时间

不宜太长,模腔充满以后就相当于在注射压力下保压了,也会使制件的取向应力增加。

3.5.5保压压力和保压时间

冷却中的熔体在外压作用下产生的总形变中,有相当大一部分是弹性的,故使熔体在高压下冷凝会在制件中产生较大的内应力和高分子取向。压实后立即降压或补料过程中分步降压有利于高分子解取向,所以降低保压压力和缩短保压时间有利于取向应力的降低;延长保压时间仅在一定范围内取向度增大,浇口封闭之后再延长保压时间对取向度的变化就不再影响。

3.5.6冷却时间

当注射压力、保压压力、熔体温度升高,浇口尺寸较大时都会使封口压力升高,这时必须延长冷却时间才能使开模前模腔内的残余压力降到很低或接近于零,否则要将制件顺利地从模具内顶出是很困难的。若强制脱模,制件在顶出时会产生很大的应力,以至制件可能被划伤,严重时会出现破裂。但冷却时间也不宜过长,否则不但生产效率低,而且制件内部压力降到零以后进一步冷却可能在制件内部形成负压,即由于冷却收缩使制件内外层之间产生拉应力。

3.注塑制品内应力的消除方法

在注塑成型或机械加工之后及时对制件进行热处理是降低或消除其内应力,使其内部结构加速达到稳定状态的一个有效措施。对于要求强度高、尺寸稳定性好的制件,往往在加工过程中进行不只一次的热处理。

热处理的方法是:在加热介质中先将温度从室温升到一定温度(这个温度常称为热处理温度或退火温度),使制件在此温度下保持一定的时间,然后缓慢地冷却到室温。影响热处理效果最重要的工艺因素是热处理温度和热处理时间。在理论上热处理温度越高,热处理时间越长,制件的内应力就能在更大程度上被消除,其内部结构就越趋于稳定。但实际使用的温度却不能太高,温度过高容易引起制件在热处理过程中发生翘曲变形。一般认为,热塑性塑料注塑件的热处理温度以稍低于热变形温度(约低5℃~10℃)为宜。热处理时间则主要与塑料的性质与制件壁厚有关,高分子链的刚性越大,制件的壁越厚,需要进行热处理的时间就越长。

正确选用加热介质对热处理效果也很重要。用空气作为加热介质,有操作简便和处理后不需要清洗等优点。ABS塑料在65~75℃空气中处理2~4小时效果良好。但空气热传导效率低,容易引起尼龙类和聚甲醛等塑料氧化变色。高沸点油作为热处理介质有传热快、制件加热均匀等优点,但操作比较麻烦,而且处理后的制件上存留的油斑有时很难除去。吸水性强的尼龙类塑料制件用水或乙酸钾的水溶液(沸点121℃)作热处理

介质比较好。用这种介质既有利于防止制件在热处理过程中氧化变色,又能使其加速达到吸湿平衡。

热处理有时不一定能达到理想的效果,只能作为一种辅助工序,完全依靠热处理防止应力开裂的做法不可靠。必须从影响注塑制品内应力的几个主要因素方面采取有效措施,结合热处理方法才能取得满意效果。

4.應力的危害

4.1開裂:因為應力的存在,在受到外界作用後(如移印時接觸到化學溶劑或者烤漆後端時高溫烘烤),會誘使應力釋放而在應力殘留位置開裂。開裂主要集中在澆口處或過度填充處。

4.2翹曲及變形:因為殘留應力的存在,因此產品在室溫時會有較長時間的內應力釋放或者高溫時出現短時間內殘留應力釋放的過程,同時產品局部存在位置強度差,產品就會在應力殘留位置產生翹曲或者變形問題。

4.3產品尺寸變化:因為應力的存在,在產品放置或後處理的過程中,如果環境達到一定的溫度,產品就會因應力釋放而發生變化。

5.内应力检测方法

通常是把零件防在溶剂中,15s~ 2min等,在拿出来看是否有开裂来判断是否有应力

pc塑胶材料内应力测试方法

P C塑胶材料内应力测试方法表二 塑料电水壶使用一段时间后,水尺(PC料)容易漏水,是因为PC塑胶材料的内应力不够,那又怎样检测呢下面我来介绍一个检测方法: 1、测试辅料: 正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为1:10)、甲苯/ 正丙醇(比例是1: 3)、碳酸丙烯、测试夹具(或者负载)。 2、测试过程: 测试夹具的选择: 测试试剂的选择: 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成. 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP(即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代. 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:, 因为此试剂可让PC材料达到7兆帕的反应力值.

如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。 测试时间: 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. PC材料在其它的试剂沉浸的时间可以参考下表 (表一) 测试试剂浸泡时间(分钟)内应力值(兆帕) 正丙醇15 >15 乙酸乙酯/甲醇, (1:3) 15 >15 甲苯/正丙醇, (1:10)(TnP 1:10) 15 >9 甲苯/ 正丙醇, (1:3)(TnP 1:3) 15 >4 碳酸丙烯 1 >2 材料的选择: 测试样品要求保证在出模后在室温条件下放置1个小时后才能进行内应力测试。测试样品的厚度要求保证在1毫米以上,因为在1毫米以下的材料可能在注塑的过程中就可能产生裂纹。 测试方法: 2℃的测试试剂里面,将测试样品完全沉浸在23在经过试剂所对应的时间浸泡后将样品从试剂中取出并用清水冲洗干净,用裸眼检查所有可能出现的裂纹及破裂程度、并根据图表一来判定内应力范围。 在裸眼检查不明显的情况下可以使用放大镜检查。 3.结果判定: a.如果测试显示裂纹导致过大内应力,即意味着铸模形状不佳,模型设计不符,或者出现加工错误. b.内应力的测试值判定可参考:表一、表二(出现裂纹表示内应力高于表中相应数值,反之小于相应数值)。 注:试剂安全及操作过程中的安全要求: 1.在操作过程中应选择合适的胶带和溶解液,每一个供应商都应该提供试剂的化学信息表,化学试剂数据表中所提到的安全数据是每一个产品必须遵守的。这个安全数据包括标签信息、运输和储存信息、处理资料、试剂的有毒性、试剂的化学性能等 2.在操作的过程中应该遵守“图表三”所示的安全要求和介绍,戴上安全的被许可的安全手套和安全眼罩、安全口罩。 3.手套的材料要保证不能让溶剂的成分扩散到手套的材料中去,产生的烟和气体不能被吸入,工作环境要保证良好的通风性,最好要能装上一个排风扇。 4.测试留下的任何残留溶剂或溶剂废物应正当处置和处理,处理的单位必须是有相应部门授权和许可的,必须具有良好的专业技术。

注塑产品内应力问题

注塑产品应力问题? 塑胶产品在注塑的过程中往往会产生应力,如不加以消除会对后序喷涂产生不良.有几个问题请高手赐教: 1应力是怎么产生的,它与哪些因素有关? 2应力如何检测,有什么直观且方便的方法? 3应力如何消除,有没有方便快捷操作性强的方法? 4应力对喷涂到底还有哪些影响?应力在其它方面还有什么危害?它有没有有利的一面呢? 下面是回答请高手亮招所谓应力,是指单位面积里物体所受的力,它强调的是物体部的受力状况;一般物体在受到外力作用下,其部就会产生抵抗外力的应力;物体在不受外力作用的情况下,部固有的应力叫应力,它是由于物体部各部分发生不均匀的塑性变形而产生的。按照应力作用的围,可将它分为三类:(一)第一类应力(宏观应力),即由于材料各部分变形不均匀而造成的宏观围的应力;(二)第二类应力(微观应力),即物体的各晶粒或亚晶粒(自然界中,绝大多数固体物质都是晶体)之间不均匀的变形而产生的晶粒或亚晶粒间的应力;(三)第三类应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成的应力,它是变形物体(被破坏物体)中最主要的应力。 塑料应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种在应力。应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。当大分子链间的作用力和相互缠结力承受不住这种动能时,应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 几乎所有塑料制品都会不同程度地存在应力,尤其是塑料注射制品的应力更为明显。应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。为此,必须找出应力产生的原因及消除应力的办法,最大程度地降低塑料制品部的应力,并使残余应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。 塑料应力产生的原因 产生应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发应力的产生。依引起应力的原因不同,可将应力分成如下几类。 (1)取向应力 取向应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种应力。取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体部层与层之间受到剪切应力作用,产生沿流动方向的取向。取向的大分子链冻结在塑料制品也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的力。用热处理的方法,可降低或消除塑料制品的取向应力。 塑料制品的取向应力分布为从制品的表层到层越来越小,并呈抛物线变化。

塑胶产品内应力研究报告与消除方法

塑胶产品内应力研究与消除方法一 1.注塑制品一个普遍存在的缺点是有内应力。内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。此外,掌握注塑制品内应力的消除方法和测试方法也很有必要 2内应力的种类 高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。另外,外力使制件产生强迫高弹形变也会在其中形成内应力。根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。对注塑制件力学性能影响最大的是取向应力和体积温度应力。 2.1取向应力 高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的

取向应力。试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。 2.2体积温度应力 体积温度应力是制件冷却时不均匀收缩引起的。因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。这可以通过提高模具温度、降低加工温度来达到。 加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。 带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。 这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。 2.3与制件体积不平衡有关的应力 高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。实验测定表明,注塑制件中这种形式的内应力一般很小。 2.4 与制件顶出变形有关的内应力 这种内应力主要与开模条件和模具顶出机构的设计有关。正确选择开模条件使开模前的模腔压力接近于零,根据制件的结构和形状设计合理的顶出

塑胶制品如何去除内应力

塑胶制品如何去除内应力? 塑胶制品如何去除内应力? 1 引言 注塑制品一个普遍存在的缺点是有内应力。内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。此外,掌握注塑制品内应力的消除方法和测试方法也很有必要 2 内应力的种类 高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。另外,外力使制件产生强迫高弹形变也会在其中形成内应力。根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。对注塑制件力学性能影响最大的是取向应力和体积温度应力。 2.1取向应力 高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。 2.2体积温度应力 体积温度应力是制件冷却时不均匀收缩引起的。因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。这可以通过提高模具温度、降低加工温度来达到。 加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。

内应力测试-塑料件教学提纲

内应力测试-塑料件

精品文档 三:常用塑料: 1. PA、PVC、PMMA、PC、POM、PE、PP、ABS、PS、EVA以及一些混合物。 2. 常用塑料特征、性能: 2.1.PA(尼龙):8026上盖、532支撑体、049D内芯等。 ①原色为乳白、微褐,燃烧缓慢,离火后慢熄,火焰呈上黄下蓝,熔融滴落,起泡,有特殊的羊皮或指甲烧焦气味。 ②较好的物理、机械性能, ③应力测试:正丙烷、乙无开裂、裂纹。 2.2.PVC:聚氯乙烯 ①原色为无色透明,难燃离火即灭,火焰上黄下绿,白烟,燃烧变软有刺激性酸味。紫外线下,使PVC产生浅蓝、紫白的莹光。软的PVC 发蓝或蓝白的荧光。 ②根据增剂的不同分为硬质和软质,硬质PVC采用分子量小的树脂,不含5%的曾剂,机械强度好,耐腐蚀、耐阳光、耐燃烧,软质PVC采用分子量较大的树脂,加入30%-70%增剂制成柔韧性好,抗化学药品性强。 2.3.PMMA:有机玻璃、压克力 ①原色为无色透明、易燃、离火后继续燃烧,火焰上黄下浅蓝,熔融滴落,加热到 120°C可自由弯曲,不自浊,冒出特有的压克力臭,易熔于丙酮、苯。 ②高透明性耐光折射率高,用丙酮、氯仿等溶剂自体粘结,制品成型收缩率0.1-0.8%,料粒的吸湿性可导致制品起泡。 ③应力测试:乙醇或异丙醇,十秒无开裂、裂痕。 2.4.POM:聚甲醛 ①原色为浅黄或白色,慢燃,离火后继续燃烧,火焰上黄下蓝,熔融滴落,强烈鱼腥臭。 ②较强机械性能,缺点不耐酸,强碱和不耐日光紫外线的辐射,长期在大气中暴晒会老化,粘合性差。 ③应力测试:12-18%盐酸溶液浸泡2H,无变形、裂纹。 2.5.PE:聚乙烯 ①原色为半透明——腊色,易燃,火焰上黄下蓝,边熔边滴落,有石腊气味,常温下不熔于溶剂,加热时可溶于丙酮、苯、甲醛。 ②根据加工方法,可分为高密度PE和低密度PE 高密度PE为半透明腊状固体,质地坚韧,不透水性,耐磨性,抗化学药品性较好。缺点:受热后因应力消失而发生尺寸减少,柔韧性、耐剧冷热差。 低密度PE为无色无味无毒的固体,低温仍能保持柔曲特性,抗水性,化学稳定性较强。 ③应力测试:硬脂酸钠或肥皂水,无变形、裂纹、断裂。 2.6.ABS:丙烯腈、丁乙烯和苯乙烯三种单体的三元共聚物 ①原色为乳白或白色,不透明,燃烧缓慢,离火后继续燃烧,火焰呈黄色,黑烟,软化烧焦,溶于丙酮、苯、甲苯。 ②丙烯腈具有拉伸强度、热稳定性、化学稳定性,丁二烯具有韧性、抗冲击能力以及低温性能,苯乙烯具有良好的光泽性、刚性和加工性;调节三者之间比例,可调节高冲击型、中冲击型、通用型、特殊耐热型ABS。缺点:耐热性不够高,易老化,不耐燃不透明。 ③应力测试:95%以上醋酸浸泡30秒,无变形、裂纹、断裂。 2.7.PP:聚丙烯 ①原色为半透明腊色,易燃,离火燃烧,火焰上黄下蓝,有少量黑烟,熔融滴落,发出石油气味。 ②密度0.9m/cm3,是密度最小的塑料之一,熔点164-170°C,抗化学性强(除浓HCL、浓硫酸),耐燃性差,对紫外线敏感,某些氯化烃,芳烃和高沸点脂肪烃使其软化、溶胀。 2.8.EVA:乙烯、醋酸乙烯共聚物 ①原色为无色透明,类似于橡胶热塑性树脂,韧性,挠曲性,耐应力开裂和粘合性好。 ②EVA树脂醋酸乙烯含量15%、AC发泡剂(偶氧二甲酰胺)、DCP交联剂(过氧化二异苯),若想形成微气空泡沫,发泡剂须在交联后才能放气,也就是交联剂分解温度低于发泡剂分解温度。 2.9.PC:聚碳酸脂 ①原色透明无色,慢燃离火后能慢燃,火焰呈黄色,黑烟碳束,熔融起泡,发出特殊花果气味。 ②突出抗冲击强度,抗变性,较高耐热性,寒性。缺点:耐疲劳强度低。 PMMA采用异丙醇或正庚烷/甲苯(40/60体积) 时间 3min 收集于网络,如有侵权请联系管理员删除

塑胶内应力

1.1 内应力测试 将试件在25℃下于冰醋酸中浸3min,视试件表面“发白”程度判断内应力大小,内应力越大,“发白”现象越严重。这种方法能大致说明内应力的状况。 1.2 镀层剥离强度测定 用剥离法测定剥离强度:在试片上切出10mm宽的条,撬起端头30~40mm,在垂直于镀层表面的方向(90°±5°)上用拉力机进行剥离。 1.3 高低温冲击法检验镀层结合力 该方法由西德塑料电镀工作者协会提出,方法简单易行,重现性较好。具体操作过程是:在80℃±5℃的高温热水浴中保温1h,取出后在不超过30s的时间内放入5℃±5℃的低温水浴中浸30s,再转入高温热水浴中,经过3个循环周期,如镀层无起泡、脱皮、发皱等缺陷即视为合格。 2.1 选材可用于电镀的塑料很多,但各种材料的加工性能、机械性能、材料成本、电镀成本、电镀的难易、尺寸精度等方面有很大差别。ABS塑料具有优良的综合性能,用途十分广泛,且易于成形,表面易于浸蚀而获得较高的镀层结合力,所以目前在电镀中用得最多。 此外,通过红外光谱检测发现,化学粗化过的塑料表面存在活性基团如—COOH,—CHO,—OH,—SO3H等极性基团,这些极性基团能与金属镀层产生化学结合力,从而提高了镀层的结合强度。ABS塑料中丁二烯含量越高,镀层的结合力越大。电镀型ABS塑料中丁二烯含量达22%~24%。试验表明,电镀型ABS树脂301M的镀层结合力比非电镀型ABS树脂PA-757的镀层结合力高1倍以上。 2.2 塑料件结构对电镀的影响 试验件(旋钮)原结构直角、锐边较多,在作高低温冲击试验时发现零件起泡部位主要集中在靠近直角、锐边处及浇口周围。在测试中发现这些部位都有内应力,这对镀层结合力有不良影响。将直角、锐边改为圆弧过渡后作电镀试验,镀层与基体结合良好。航空工艺技术另一方面,直角、锐边处在电镀时易引起尖端电流密度过大,致使镀层疏松而结合不佳,甚至烧焦或击穿化学预镀层。 2.3 塑料模具对塑料件电镀的影响 试验中发现原来的旋钮表面有流痕,电镀后遮盖不住,影响表观质量。同时,由于塑料模具模腔粗糙度不好,使旋钮表面不够光亮,最后也会影响镀层的光亮度。而用于测定剥离强度的镀件(试片)注塑成形后外观质量较好,镀层外表光亮。另一方面,设计塑料模具(如浇注系统和脱模机构)时应注意使待镀件的内应力尽量小。

塑料应力测试方法及判定标准

塑料应力测试方法及判定 标准 This model paper was revised by the Standardization Office on December 10, 2020

三:常用塑料: 1. PA、PVC、PMMA、PC、POM、PE、PP、ABS、PS、EVA以及一些混合物。 2. 常用塑料特征、性能: 2.(尼龙):8026上盖、532支撑体、049D内芯等。 ①原色为乳白、微褐,燃烧缓慢,离火后慢熄,火焰呈上黄下蓝,熔融滴落,起泡,有特殊的羊皮或指甲烧焦气味。 ②较好的物理、机械性能, ③应力测试:正丙烷、乙无开裂、裂纹。 2.:聚氯乙烯 ①原色为无色透明,难燃离火即灭,火焰上黄下绿,白烟,燃烧变软有刺激性酸味。紫外线下,使PVC产生浅蓝、紫白的莹光。软的PVC发蓝或蓝白的荧光。②根据增剂的不同分为硬质和软质,硬质PVC采用分子量小的树脂,不含5%的曾剂,机械强度好,耐腐蚀、耐阳光、耐燃烧,软质PVC采用分子量较大的树脂,加入30%-70%增剂制成柔韧性好,抗化学药品性强。 2.:有机玻璃、压克力①原色为无色透明、易燃、离火后继续燃烧,火焰上黄下浅蓝,熔融滴落,加热到 120°C可自由弯曲,不自浊,冒出特有的压克力臭,易熔于丙酮、苯。②高透明性耐光折射率高,用丙酮、氯仿等溶剂自体粘结,制品成型收缩率,料粒的吸湿性可导致制品起泡。③应力测试:乙醇或异丙醇,十秒无开裂、裂痕。 2.:聚甲醛 ①原色为浅黄或白色,慢燃,离火后继续燃烧,火焰上黄下蓝,熔融滴落,强烈鱼腥臭。 ②较强机械性能,缺点不耐酸,强碱和不耐日光紫外线的辐射,长期在大气中暴晒会老化,粘合性差。 ③应力测试:12-18%盐酸溶液浸泡2H,无变形、裂纹。 2.:聚乙烯①原色为半透明——腊色,易燃,火焰上黄下蓝,边熔边滴落,有石腊气味,常温下不熔于溶剂,加热时可溶于丙酮、苯、甲醛。②根据加工方法,可分为高密度PE和低密度PE 高密度PE为半透明腊状固体,质地坚韧,不透水性,耐磨性,抗化学药品性较好。缺点:受热后因应力消失而发生尺寸减少,柔韧性、耐剧冷热差。低密度PE为无色无味无毒的固体,低温仍能保持柔曲特性,抗水性,化学稳定性较强。③应力测试:硬脂酸钠或肥皂水,无变形、裂纹、断裂。 2.:丙烯腈、丁乙烯和苯乙烯三种单体的三元共聚物①原色为乳白或白色,不透明,燃烧缓慢,离火后继续燃烧,火焰呈黄色,黑烟,软化烧焦,溶于丙酮、苯、甲苯。②丙烯腈具有拉伸强度、热稳定性、化学稳定性,丁二烯具有韧性、抗冲击能力以及低温性能,苯乙烯具有良好的光泽性、刚性和加工性;调节三者之间比例,可调节高冲击型、中冲击型、通用型、特殊耐热型ABS。缺点:耐热性不够高,易老化,不耐燃不透明。③应力测试:95%以上醋酸浸泡30秒,无变形、裂纹、断裂。 2.:聚丙烯①原色为半透明腊色,易燃,离火燃烧,火焰上黄下蓝,有少量黑烟,熔融滴落,发出石油气味。②密度cm3,是密度最小的塑料之一,熔点

注塑产品内应力问题

注塑产品内应力问题? 塑胶产品在注塑的过程中往往会产生内应力,如不加以消除会对后序喷涂产生不良.有几个问题请高手赐教: 1内应力是怎么产生的,它与哪些因素有关? 2内应力如何检测,有什么直观且方便的方法? 3内应力如何消除,有没有方便快捷操作性强的方法? 4内应力对喷涂到底还有哪些影响?内应力在其它方面还有什么危害?它有没有有利的一面呢? 下面是回答请高手亮招所谓应力,是指单位面积里物体所受的力,它强调的是物体内部的受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力的应力;物体在不受外力作用的情况下,内部固有的应力叫内应力,它是由于物体内部各部分发生不均匀的塑性变形而产生的。按照内应力作用的范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成的宏观范围内的内应力;(二)第二类内应力(微观内应力),即物体的各晶粒或亚晶粒(自然界中,绝大多数固体物质都是晶体)之间不均匀的变形而产生的晶粒或亚晶粒间的内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成的内应力,它是变形物体(被破坏物体)中最主要的内应力。 塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。 塑料内应力产生的原因 产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。依引起内应力的原因不同,可将内应力分成如下几类。 (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。用热处理的方法,可降低或消除塑料制品内的取向应力。

pc塑胶材料内应力测试方法精编版

p c塑胶材料内应力测试 方法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

P C塑胶材料内应力测试方法表二 塑料电水壶使用一段时间后,水尺(PC料)容易漏水,是因为PC塑胶材料的内应力不够,那又怎样检测呢下面我来介绍一个检测方法: 1、测试辅料: 正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为 1:10)、甲苯/ 正丙醇(比例是 1:3)、碳酸丙烯、测试夹具(或者负载)。 2、测试过程: 2.1 测试夹具的选择:

2.2 测试试剂的选择: 2.2.2 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成. 2.2.3 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP (即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代. 2.2.4 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:2.5, 因为此试剂可让PC材料达到7兆帕的反应力值. 2.2.5 如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。 2.3 测试时间: 2.3.1 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. 2.3.2 PC材料在其它的试剂沉浸的时间可以参考下表 (表一) 测试试剂浸泡时间(分钟)内应力值(兆帕)

《塑料注塑成型内应力研究》

塑料注塑成型内应力影响分析与消除方法研究 1 引言 注塑制品一个普遍存在的缺点是有内应力。内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。此外,掌握注塑制品内应力的消除方法和测试方法也很有必要。 2内应力的种类 高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。另外,外力使制件产生强迫高弹形变也会在其中形成内应力。根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。对注塑制件力学性能影响最大的是取向应力和体积温度应力。 2.1 取向应力 高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。 2.2 体积温度应力

体积温度应力是制件冷却时不均匀收缩引起的。因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。这可以通过提高模具温度、降低加工温度来达到。加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。2.3 与制件体积不平衡有关的应力 高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。实验测定表明,注塑制件中这种形式的内应力一般很小。 2.4 与制件顶出变形有关的内应力 这种内应力主要与开模条件和模具顶出机构的设计有关。正确选择开模条件使开模前的模腔压力接近于零,根据制件的结构和形状设计合理的顶出机构,使制件顶出时不致变形,是可以将这种形式的内应力减少到不会影响制件力学性能的限度以内的。 3 影响注塑制品内应力的因素分析 注塑制品的造型设计不合理、模具设计不合理、成型工艺条件不正确、注射机选用不当等都会使制品内存在比较大的内应力。影响制品内应力的因素很多,也很复杂。主要影响因素见下图所示。 3.1 造型设 3.1.1 圆角

钢铁材料的许用应力

表1 普通碳钢及优质碳钢构件基本许用应力/MPa 材 料类型材料 标号 截面尺寸 /mm 热处 理 材料性能拉压弯曲扭转剪切 抗拉强度σb 屈服强度σs /MPa ⅠⅡⅢⅠⅡⅢⅠⅡⅢⅠⅡⅢ σlσlσlστnτnτnτττ 普通碳钢Q215 100 热 扎 σb335~410 σs185~215 145 125 90 175 95 90 60 100 90 60 Q235 σb375~460 σs205~235 160 140 100 190 160 120 105 σσ110 100 70 Q275 σb490~610 σs235~275 175 150 110 210 170 130 115 140 105 120 110 80 优质碳钢20 ≤100 正 火 σb410 σs245 175 145 105 210 165 125 115 105 70 120 105 75 25 σb450 σs275 195 160 115 230 175 135 125 115 75 135 120 80 35 σb530 σs315 210 180 125 250 200 150 135 120 80 145 120 85 调质σb550~750 σs320~370 210 185 130 250 205 155 135 125 85 145 120 85 45 正火σb600 σs355 230 200 145 270 220 170 150 135 90 160 140 95 调质σb630~800 σs370~430 250 215 150 300 235 180 160 150 100 175 150 100 50 ≤25 正火σb630 σs375 250 215 150 300 235 180 160 150 100 175 150 100 ≤100 调质σb>700 σs>400 265 235 165 310 260 195 170 155 105 180 160 110

塑料的内应力2015.11.10

塑料的内应力 塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学/热学等性能。 塑料内应力产生的原因 产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。依引起内应力的原因不同,可将内应力分成如下几类。(1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。 取向应力产生的具体过程为: 近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。用热处理的方法,可降低或消除塑料制品内的取向应力。塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。 (2)冷却内应力 冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种内应力。尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,

pc塑胶材料内应力测试方法

表二 塑料电水壶使用一段时间后,水尺(PC料)容易漏水,是因为PC塑胶材料的内应力不够,那又怎样检测呢下面我来介绍一个检测方法: 1、测试辅料: 正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为 1:10)、甲苯/ 正丙醇(比例是 1:3)、碳酸丙烯、测试夹具(或者负载)。 2、测试过程: 测试夹具的选择: 因为TnP混合液存放时间过长,其成分会蒸发,性质会改变,从而导致测试结果不一,所以要选择一个可以存放正丙醇、乙酸乙酯/甲醇、甲苯/ 正丙醇、碳酸丙烯试剂的密封瓶,并且能保证试剂在密封瓶内循环流动。 测试试剂的选择: 选择测试试剂时应满足测试程度的要求,必须符合安全要求. 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成. 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP(即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代. 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:, 因为此试剂可让PC材料达到7兆帕的反应力值. 如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。 测试时间: 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. PC材料在其它的试剂沉浸的时间可以参考下表 (表一) 测试试剂浸泡时间(分钟)内应力值(兆帕) 正丙醇 1 5 >15 乙酸乙酯/甲醇, (1:3) 1 5 >15 甲苯/正丙醇, (1:10) (TnP 1:10) 1 5 >9 甲苯/ 正丙醇, (1:3) (TnP 1:3) 1 5 >4 碳酸丙烯 1 >2 材料的选择: 对于有着色的PC材料或者有色材料上如果有由内应力产生的裂纹也很难觉查的到,所以测试样品要求选择透明的材料进行测试。 测试样品要求保证在出模后在室温条件下放置1个小时后才能进行内应力测试。测试样品的厚度要

塑胶件 内应力

1 内应力产生 在注塑制品中,各处局部应力状态是不同的,制品变形程度将决定于应力分布。如果制品在冷却时。存在温度梯度,则这类应力会发展,所以这类应力又称为“成型应力”。 注塑制品的内应力包两种:一种是注塑制品成型应力,另一种是温度应力。当熔体进入温度较低的模具时,靠近模腔壁的熔体讯速地冷却而固化,于是分子链段被“冻结”。由于凝固的聚合物层,导热性很差,在制品厚度方向上产生较大的温度梯度。制品心部凝固相当缓慢,以致于当浇口封闭时,制品中心的熔体单元还未凝固,这时注塑机又无法对冷却收缩进行补料。这样制品内部收缩作用与硬皮层作用方向是相反的;心部处于静态拉伸而表层则处于静态压缩。 在熔体充模流动时,除了有体积收缩效应引起的应力外。还有因流道,浇口出口的膨胀效应而引起的应力;前一种效应引起的应力与熔体流动方向有关,后者由于出口膨胀效应将引起在垂直于流动方向应力作用。 2 影响愉应力的工艺因素 (1)向应力的影响在速冷条件下,取向会导致聚合物内应力的形成。由于聚合物熔体的粘度高,内应力不能很快松驰,影响制品的物理性能和尺寸稳定性。 各参数对取向应力的影响 a熔体温度,熔体温度高,粘度低,剪切应力降低取向度减小;另一方面由于熔体温度高会使应力松驰加快,促使解取向能力加强。

可是在不改变注塑机压力的情况下,模腔压力会增大,强剪切作用又导致取向应力的提高。 b在喷嘴封闭以前,延长保压时间,会导致取向应力增加。 c提高注射压力或保压压力,会增大取向应力, d模具温度高可保证制品缓慢冷却,起到解取向作用。 e增加制品厚度使取向应力降低,因为厚壁制品冷却时慢,粘度提高慢,应力松驰过程的时间长,所以取向应力小。 (2)对温度应力的影响 如上所述由于在充模时熔体和型壁之间温度梯度很大,先凝固的外层熔体要助止后凝固的内层熔体的收缩,结果在外层产生压应力(收缩应力),内层产生拉应力(取向应力)。 如果充模后又在保压压力的作用下持续较长时间,聚合物熔体又补入模腔中,使模腔压力提高,此压力会改变由于温度不均而产生的内应力。但在保压时间短,模腔压力又较低的情况下,制品内部仍会保持原来冷却时的应力状态。 如果在制品冷却初期模腔压力不足时,制品的外层会因凝固收缩而形成凹陷;如果在制品已形成冷硬层的后期模腔压力不足时,制品的内层会因收缩而分离,或形成空穴;如果在浇口封闭前维持模腔压力,有利于提高制品密度,消除冷却温度应力,但是在浇口附近会产生较大的应力集中。 由此看来热塑性聚合物在成型时,模内压力越大保压时间越长,有助于温度所产生的收缩应力的减小反之会使压缩应力增大。

塑料内应力检测方法和内应力消除方法的

塑料内应力检测方法和内应力消除方法的 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

塑料内应力检测方法和内应力消除方法的资料 最近公司产品客户投诉有不明原因的开裂现象,个人怀疑是内应力集中所致。以下资料中遗憾的是没有PP和PVC及PE塑料注射成形零件由于结构设计,模具设计和工艺的局限性,在注塑和冷却过程中总会同时伴有压力和拉力的产生,而较高的残余应力(表面拉力)将会导致零件过早失效。为了有效规避零部件产生这种失效,更合理的设计和工艺是必需的。同时,快速而有效的检测在研发和生产过程中可以帮助我们及时发现缺陷,并可避免问题的扩散。目前评估塑料注射成形零件表面及附近区域残余应力的方法之一是溶剂沉浸测试法。沉浸后,高应力集中区域会有相应的裂纹产生,以此我们就可以快速有效地对设计和工艺进行评估和改进。以下部分是主要树脂生产商GE和Bayer推荐的适合于各自主要产品的溶剂测试法。我们需要在供应商品质控制流程中加入该检测结果。GEP Lexan/Cycoloy系列塑料Lexan 系列(PC):常用于手机镜片,导光板,机壳。Cycoloy系列(PC+ABS):常用于手机机壳。对于用Lexan和Cycoloy系列塑料成形的零件,内应力的检查都可以采用以下方法:1.醋酸沉浸法:(1)将零件完全浸入24摄氏度的冰醋酸中30秒;(2)取出后立即清洗,后晾干检查表面;(3)仔细观察外观,若有细小致密的裂纹,说明此处有应力存在,裂纹越多,应力越大;(4)重复上述操作,在冰醋酸中浸2分钟,再检查零件,若有深入塑料的裂纹,说明此处有很高的内应力,裂纹越严重,内应力越大。2.甲乙酮 + 丙酮沉浸法:将零件完全浸入21摄氏度的1:1的甲乙酮 + 丙酮的混合液中,取出后立即甩干,依上法检查,有应力的零件应在60-75摄氏度下加热2-4小时以清除应力,也可在25%的丙酮中浸

塑料的内应力

塑料分子内应力与加工成型(一)理论解释: 塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。 塑料内应力产生的原因 产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。依引起内应力的原因不同,可将内应力分成如下几类。 (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。用热处理的方法,可降低或消除塑料制品内的取向应力。 塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。 (2)冷却内应力 冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种内应力。尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态。 塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变化.。 另外,带金属嵌件的塑料制品,由于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力。除上述两种主要内应力外,还有以下几种内应力:对于结晶塑料制品而言,其制品内部各部位的结晶结构和结晶度不同也会产生内应力。另外还有构型内应.力及脱模内应力等,只是其内应力听占比重都很小。 (二)网友解释: 塑料属于大分子,正如大分子这个名字,分子量很大,分子量大的后果比较多,但是一个比较突出的问题就是大分子在加工的时候容易取向,因为有了取向,然后就有了解取向,然后又有了内应力,有了内应力呢,就有可能在后续使用中开裂,要解决开裂,又要涉及塑料回火处理,回火处理出现致解取向,所以我觉得取向、解取向、内应力、应力开裂、回火应该是一个比较热的题目,所以就收点学费,免得写了半天,版主们也不给我加分,不加分我就看不了别人的帖子,废话少说,先看看他们的关系: 大分子链——取向——内应力——应力开裂——回火——解取向 取向定义 我们就不去谈取向度,多轴取向这些抽象概念了,先说说什么叫取向:线性高分子就如同毛线,当其充分伸展时,长度与直径比非常大(L/D),这种结构上的不对称性使它们在某些

肖训华:塑胶件内应力产生的原因及PCABS内应力开裂微观分析

肖训华:塑胶件内应力产生的原因及PC/ABS内应力开裂微观分析 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应 力的存在不仅使塑料制品在储存和使用过程中出现应力开裂和翘曲变形,也影响塑料制品的力 学性能、光学性能、电学性能及外观质量等。 应力开裂的必要条件是试样或零件内存在应力,并存在某种应力集中因素如缺口、表面划伤等。那么塑件应力从何而来呢? 塑胶件内应力产生的原因 依引起内应力的原因不同,可将内应力分成如下几类: (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻 结而产生的一种内应力。取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆 高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。塑料制品 的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。 (2)冷却内应力 冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产的一种内应力。尤其对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会 限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态。塑料制品冷却内应力的 分布为从制品的表层到内层越来越大,并也呈抛物线变化。另外,带金属嵌件的塑料制品,由 于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力。 (3)环境应力 环境应力开裂是聚烯烃类塑料的特有现象,它是指当制品存在应力时,与某些活性介质接触,会出现脆性裂纹,最终可能导致制品破坏。这些活性物质可以是洗涤剂、皂类、水、油、酸、碱、盐及对材料并无显著溶胀作用的有机溶剂。原料混有其它杂质或掺杂不适当的或过量的溶 剂或其它添加剂时,在某些应力集的位置就会导致裂纹。 有些塑料如ABS等,在受潮状况下加热会与水汽发生催化裂化反应,使制件发生大的应变从而 开裂。 (4)其它 对于结晶塑料制品而言,其制品部各部位的结晶结构和结晶度不同也会产生内应力。另外还有构型内应,力及脱模内应力等,只是其内应力听占比重都很小。 PC/ABS内应力开裂微观分析 分子链刚性越大,熔体粘度越高,聚合物分子链活动性差,因而对于发生的可逆高弹形变恢复 性差,易产生残余内应力。例如一些分子链中含有苯环的聚合物,如PC、PPO、PPS 等,其相应制品的内应力偏大。 PC材料容易内应力开裂是它本身分子结构决定,那就是聚碳酸酯分子结构中有苯环,所以 取向比较困难。在成型后,被取向的链节有恢复自然状态的趋势,但是由于分子链节已被冻结 和分子链之间作用力,从而可能造成制品存在应力,这就是大家常说的应力开裂现象。尤其是 回收的PC,由于回收PC的相对分子质量下降,相对分子质量分布变宽,少量存在的水分、颜料、杂质、溶剂等极易引发开裂现象。

相关文档
最新文档