(完整版)用空间向量解立体几何问题方法归纳

(完整版)用空间向量解立体几何问题方法归纳
(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法

平行垂直问题基础知识

(1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0

例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面

ABCD , 的中点, PA =AB =1, BC =2.

(1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC.

[证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立

A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 ,

uuur uuur uuur

1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),

uuur

∥AB ,即 EF ∥AB.

又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB.

uuur uuur uuur uuur

(2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC.

又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC ,

直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4)

1 uuur 1

uuur F 0 , 1,

2 ,EF = -2, 0, 0 ,PB =

(1,0, uuur

uuur

E ,

F 分别是 PC ,

PD

间直角坐标系如图所示,则

DC =(1,0,0), AB =(1,0,0).

uuur 1uuur uuur

(1)因为 EF =- 2AB ,所以 EF

所以平面PAD⊥平面PDC.

使用空间向量方法证明线面平行时, 既可以证明直线的方向向量和平面内一条直线的方向向 量平行,然后根据线面平行的判定定理得到线面平行, 也可以证明直线的方向向量与平面的法向 量垂直;证明面面垂直既可以证明线线垂直, 然后使用判定定理进行判定, 也可以证明两个平面 的法向量垂直 .

例 2、在直三棱柱 ABC-A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点 E 在线段 BB 1上,

且 EB 1=1,D ,F ,G 分别为 CC 1,C 1B 1,C 1A 1的中点. 求证: (1)B 1D ⊥平面 ABD ;

(2)平面 EGF ∥平面 ABD.

证明: (1)以B 为坐标原点, BA 、BC 、BB 1所在的直线分别为 x 轴、 y 轴、z 轴建立空间直角

坐标系,如图所示,则 B(0,0,0), D(0,2,2),B 1(0,0,4),设 BA =a ,则 A(a,0,0),

uuur uuur uuuur 所以BA =(a,0,0),BD =(0,2,2), B 1D =(0,2,-2),

uuuur uuur uuuur uuur

B 1D ·BA =0, B 1D ·BD =0+4-4=0,即 B 1D ⊥BA ,B 1D ⊥BD.

又 BA ∩BD =B ,因此 B 1D ⊥平面 ABD.

a uuur a

(2)由(1)知, E(0,0,3),G 2,1,4 ,F(0,1,4),则 EG = 2,1,1 , uuuur uuur uuuur uuur

B 1D ·EG =0+2-2=0, B 1D ·EF =0+2-2=0,即 B 1D ⊥EG ,B 1D ⊥EF.

又 EG ∩EF =E ,因此 B 1D ⊥平面 EGF. 结合 (1)可知平面 EGF ∥平面 ABD. 利用空间向量求空间角基础知识

(1) 向量法求异面直线所成的角:若异面直线 a ,b 的方向向量分别为 a ,b ,异面直线所成的

角为

uuur

EF =(0,1,1),

|a ·b|. |a||b|.

θ,则cos θ=|cos〈a,b〉|=

(2) 向量法求线面所成的角:求出平面的法向量 n ,直线的方向向量 a ,设线面所成的角为 θ,

|n ·a|

sin θ=|cos 〈n ,a 〉|=|n||a|. (3) 向量法求二面角:求出二

面角

θ为锐角,则 cos θ=|cos 〈n 1,n 2〉|=||n n 11|·|n n 22|

|; θ为钝角,则 cos θ=-|cos 〈 n 1,n 2〉|=- ||n n 11|·|n n 22||. 例 1、如图,在直三棱柱 A 1B 1C 1-ABC 中, AB ⊥AC ,AB =AC =

2,A 1A = 4, 点D 是BC 的中点.

(1) 求异面直线 A 1B 与 C 1D 所成角的余弦值; (2) 求平面 ADC 1与平面 ABA 1 所成二面角的正弦值. uuur

(2)设平面 ADC 1 的法向量为 n 1=(x ,y ,z),因为 AD =

(1,1,0), uuuur

n 1·AC 1 =0,即 x +y = 0 且 y +2z =0,取 z =1,得 x = 2,y =- 2,所以, n 1= (2,-

2,1)是平面 ADC 1 的一个法向量.取平面 ABA 1 的一个法向量为 n 2=(0,1,0).设平面 ADC 1 与平面 ABA 1 所

面角的大小为 θ.

n 1·n 2

2 2 5

由|cos θ|=

|n 1||n 2| =

1

=3

,得 sin θ=

3 .

5

因此,平面 ADC 1 与平面 ABA 1所成二面角的正弦值为 3 .

α-l -β的两个半平面 α与 β的法向量 n 1, n 2,

若二面角 α-l - β所成的角

若二面角 α-l - β所成的角

[解] (1)以 A 为坐标原点,建立如图所示的空间直角坐标

系 uuuur C(0,2,0), D (1,1,0),A 1(0,0,4), A-xyz ,则 A(0,0,0),

B(2,0,0), uuuur

C

1(0,2,4),所以 A 1B =(2,0,-4),C 1D (1,-1, -4).

uuuur uuuur 因为 cos

〈 A 1B , C 1D 〉

uuuur uuuur A 1B ·C 1D uuuur uuuur = =

| A 1B ||C 1D | 20× 18

18

3 10 10 所以异面直线 A 1B 与 C 1D 所成角的余弦值为

31010

.

uuu

ur AC

uuur = (0,2,4),所以 n 1·AD =

例2、如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.

(1) 证明:AB⊥A1C;

(2) 若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.

[解] (1)证明:取 AB 的中点 O ,连接 OC ,OA 1,A 1B.

因为 CA =CB ,所以 OC ⊥AB.

由于 AB =AA 1,∠BAA 1=60°,故 △AA 1B 为等边三角形,所以 OA 1⊥AB. 因为 OC ∩OA 1=O ,所以 AB ⊥平面 OA 1C. 又 A 1C? 平面 OA 1C ,故 AB ⊥A 1C.

(2)由(1)知 OC ⊥AB ,OA 1⊥AB.又平面 ABC ⊥平面 AA 1B 1B ,交线为 AB , 所以 OC ⊥平面 AA 1B 1B ,故 OA ,OA 1,OC 两两相互垂直.

uuur uuur

以 O 为坐标原点, OA 的方向为 x 轴的正方向, |OA |为单位长,建立如图所示的空间直角

标系 O-xyz. 由题设知 A (1,0,0),A 1(0, 3, 0),C (0,0, 3),B (-1,0,0). uuur uuuur uuuur

则BC =(1,0, 3), BB 1 = AA 1 =(-1, 3,0),

设 n =(x ,y , z)是平面 BB 1C 1C 的法向量,

uuur

n ·BC =0,

x + 3z = 0, 则 uuuur 即

可取 n =( 3,1,- 1).

n ·BB 1 =0.

- x + 3y =0.

uuuur

uuuur A 1C =

- 3 , 3) .

uuuur

故 cos n , A 1C

n ·A 1C uuuur =

|n|| A 1C |

10 5

所以 A 1C 与平面 BB 1C 1C 所成角的正弦值为 10

5

(1) 运用空间向量坐标运算求空间角的一般步骤:

①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.

(2) 求空间角应注意:

①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.

②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求.

例3、如图,在四棱锥S-ABCD 中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD 上一点,AE=ED=3,SE⊥AD. (1)证明:平面

SBE⊥平面SEC;

(2)若SE=1,求直线CE 与平面SBC所成角的正弦值.

解:(1)证明:∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE? 平面SAD,

SE⊥ AD,∴SE⊥平面ABCD. ∵BE? 平面ABCD,∴SE⊥BE. ∵AB⊥ AD,

AB∥CD,

CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°. ∴∠BEC=90°,

即BE⊥ CE. 又SE∩ CE=E,∴BE⊥平面SEC. ∵BE? 平面SBE,

∴平面SBE⊥平面SEC.

(2)由(1)知,直线ES,EB,EC两两垂直.如图,以E为原点,EB为x轴,EC为y轴,

ES uuur

为z 轴,建立空间直角坐标系.则E(0,0,0),C(0,2 3,0),S(0,0,1),B(2,0,0),所以CE =(0,-uuur uur

2 3,0),CB =(2,- 2 3,0),CS=(0,-2 3,1).

设平面SBC 的法向量为n =(x,y,z),

uuur

n·CB =0,2x-2 3y=0,

则uur 即令y=1,得x=3,z=2 3,

n·CS =0. -2 3y+z=0.

则平面SBC的一个法向量为n =( 3,1,2 3).

uuur

设直线CE与平面SBC所成角的大小为θ,则sin θ=| n··C uu E ur |=14,

|n| |·CE |

1

故直线CE与平面SBC所成角的正弦值为4.

例4、如图是多面体ABC-A1B1C1 和它的三视图.

=0,

(1)线段 CC 1 上是否存在一点 E ,使 BE ⊥平面 A 1CC 1?若不存在,请说明理由,若存在,

请 找出并证明;

(2)求平面 C 1A 1C 与平面 A 1CA 夹角的余弦值.

解: (1)由题意知 AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则 A(0,0,0),

uuuur A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则 CC 1 =(-1,1,2),

uuuur uuur

A 1C =(0,-2,-2).设 E(x ,y ,z),则CE =(x ,y +2,z),

uuuur uuur uuuur

EC 1 =(-1-x ,- 1-y,2-z ).设 CE =λEC 1 (λ>0),

uuuur

A 1C 1 =(-1,- 1,0), x =- λ- λ,x

则 y + 2=- λ- λ,y - λ -2-λ 则E 1+

λ, 12

+λ,

1+λ

z =2λ-λ,z uuur 2+λ

BE = 1+λ, -2-λ 1+λ

, 2λ 1+λ

uuu r

BE 由 uuur uuuur A 1C

1

uuuur ·A 1C

=0, 2+λ 2+λ 1+λ+

1+λ

=0,

- 2-λ 2λ

1+λ

+1

2+

λλ

=0, 解得 λ=2,

uuur uuuur

所以线段CC1 上存在一点

E,CE =2EC1 ,使BE⊥平面A1CC1.

=0,

uuuur m ·A 1C 1 = 0, (2)设平面 C 1A 1C 的法向量为 m =(x ,y ,z),则

由 uuuur

m ·A 1C = 0, 取 x =1,则 y =- 1, z =1.故 m =(1,-1,1),而平面 A 1CA 的一个法向量为 n =(1,0,0),

则 cos 〈m ,n 〉=|m m ||n n |= 13= 33,故平面 C 1A 1C 与平面 A 1CA 夹角的余弦值为 33. 利用空间向量解决探索性问题

例 1、如图 1,正△ ABC 的边长为 4,CD 是 AB 边上的高, E ,F 分别是 AC 和 BC 边的中点, 现将△ ABC 沿 CD 翻折成直二面角 A-DC-B(如图 2).

(1)试判断直线 AB 与平面 DEF 的位置关系,并说明理由; (2)求二面角 E-DF-C 的余弦值;

(3) 在线段 BC 上是否存在一点 P ,使AP ⊥DE ?如果存在,求出 B B C P 的值;如果不存在,请

说 明理由.

[解] (1)在△ABC 中,由 E ,F 分别是 AC ,BC 中点,得 EF ∥AB.又 AB?平面 DEF ,EF?

平 面 DEF ,∴AB ∥平面 DEF.

(2)以点 D 为坐标原点,以直线 DB ,DC ,DA 分别为 x 轴、y 轴、 z 轴,建

立空间直角坐标系,则 A(0,0,2), B(2,0,0),C(0,2 3,0),E(0, 3,1),F(1,

uuur uuur uuur

3,0), DF =(1, 3,0), DE =(0, 3,1), DA =(0,0,2).

uuur

平面 CDF 的法向量为 DA =(0,0,2).设平面 EDF 的法向量为 n =(x , y ,z),

-x -y =0, 得

- 2y - 2z =

uuur

DF ·n =0,

则 uuur

DE ·n =0, x + 3y = 0, 即 取 n =(3,- 3, 3), 3y +z =0,

uuur cos 〈 DA , n 〉

uuur

·

=| D u D u A

A ur ·||n n|= 721,所以二面角 E-DF-C 的余弦值为

721

.

uuur uuur uuur 2 3

(3)存在.设 P(s ,t,0),有 AP =(s ,t ,- 2),则 AP ·DE = 3t -2=0,∴t = 3 , uuur uuur uuur uuur

又 BP =(s - 2,t,0), PC =(-s,2 3-t,0),∵BP ∥PC ,∴(s -2)(2 3-t)=-

st ,

2 3 4 uuur 1uuur ∴ 3s +t =2 3. 把 t = 23 3代入上式得 s = 34,∴

BP =

13BC

∴在线段BC 上存在点 P ,使 AP ⊥DE. 此时, B B C P =

31.

1 空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推 理,只需通过坐标运算进行判断 .

2 解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为 点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于 运用这一方法 . 例 2、.如图所示,在直三棱柱 ABC-A 1B1C 1中,∠ACB =90°,AA 1=BC =2AC =2.

(1)若 D 为 AA 1 中点,求证:平面 B 1CD ⊥平面 B 1C 1D ; (2)在 AA 1 上是否存在一点 D ,使得二面角 B 1-CD-C 1 的大小为 60°? 解: (1)证明:如图所示,以点 C 为原点,CA ,CB ,CC 1所在直线分别为 x ,y ,z 轴建立空

间直角坐标系.则 C(0,0,0),A(1,0,0), B 1(0,2,2),C 1(0,0,2),D(1,0,1),

空间向量在处理空间问题时具有很大的优越性, 能把“非运算”问题“运算”化, 即通过直线的

方向向量和平面的法向量解决立体几何问题.

解决的关键环节之一就是建立空间直角坐标系, 因

而建立空间直角坐标系问题成为近几年试题新的命题点.

、经典例题领悟好

例 1、如图,四棱锥 P-ABCD 中, PA ⊥底面 ABCD ,BC =CD =2,AC =4,

π

∠ACB =∠ACD =3,F 为 PC 的中点, AF ⊥PB.

(1)求 PA 的长;

(2)求二面角 B-AF-D 的正弦值. (1)学审题 ——审条件之审视图形

由条件知 AC ⊥BD ―建―系

→DB ,AC 分别为 x ,y 轴―→写出 A ,B ,C ,D 坐标―P ―A ―⊥―面―A ―B ―C ―D →

uuur uuur 设P 坐标P

―F

―=

→CF 可得 F 坐标A ―F

―⊥→PB

AF ·PB =

uuuur 即C 1B 1 uuuur uuur =(0,2,0), DC 1 =(-1,0,1),CD =(1,0,1). uuuur 由 C 1B 1 uuur uuuur uuur

CD =(0,2,0) (1,0·,1)=0+0+0=0,得C 1B 1 ⊥CD ,即

C 1B 1⊥CD. uuuur 由 DC 1 uuur uuuur uuur

CD =(-1,0,1)(1,0·,1)=-1+0+1=0,得 DC 1 ⊥CD ,即 DC 1⊥CD. 又 DC 1∩C 1B 1=C 1,∴CD ⊥平面 B 1C 1D.又 CD? 平面 B 1CD ,∴平面 B 1CD ⊥平面 B 1C 1D.

(2)存在.当 AD = 时,二面角 B 1-CD-C 1 的大小为 60°.理由如下: uuur uuur 设 AD =a ,则 D 点坐标为 (1,0,a), CD =(1,0,a),CB 1 =(0,2,2), 设平面 B 1CD 的法向量为 m =(x ,y , z),

uuur m ·CB 1 = 0

2y +2z =0,

则 uuur ?

令 z =-1,得 m =(a,1,- 1).

m ·CD =0 x +az = 0, uuur uuur

|m ·CB |

又∵CB =(0,2,0)为平面 C 1CD 的一个法向量,则 cos 60 =° uuur |m| |·CB |

a 2+ 2

1

=2

2

解得 a = 2(负值舍去 ),故 AD = 2= 2 AA 1.∴在AA 1 上存在一点 D 满足题

意.

空间直角坐标系建立的创新问

题 (2) 学审题

uuur

由 (1) ―→ AD

uuu

r AF

uuur AB 的

0―→得 P 坐标并求 PA 长.

向量n

―1,――n2

―分―别―为―平―面

――F ―A ―D 、

――平―面

―F ―A ―B

―的→

法向量

n 1·u A u D ur =0且n 1·u A u F ur

=0―→求得n 1·n 2―→求得夹 角余弦.

[解] (1)如图,连接 BD 交AC 于O ,因为 BC =CD ,即△BCD 为等腰三角形,又 AC 平

分∠ uuur uuur uuur

BCD ,故 AC ⊥BD.以O 为坐标原点, OB ,OC , AP 的方向分别为 x 轴,y 轴, z 轴的正方向,

ππ

建立空间直角坐标系 O-xyz ,则 OC =CDcos 3= 1.而 AC =4,得 AO =AC -OC =3.又 OD =

CDsin 3

= 3,故 A (0,- 3,0),B ( 3,0,0),C (0,1,0),D (- 3,0,0).

z uuur z

因PA ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F0,-1,2.又AF = 0,2,

2,

uuur

z 2

PB =0,即 6-2=0,z =2 3(舍去- 2 3), uuur

所以 |PA |=2 3.

uuur uuur (2)由(1)知AD =(- 3,3,0), AB

uuur uuur

PB =( 3,3,- z ),AF ⊥PB ,故 uuur

=( 3, 3,0), AF =(0,2, 3).设平面 FAD 的法

n 1=(x 1,y 1,z 1),平面 FAB 的法向量为 n 2=(x 2,y 2,z 2), uuur

由 n 1·AD = 0, uuur - 3x 1+ 3y 1= 0, AF = 0,得

2y 1+ 3z 1= 0,

因此可取 n 1=(3, 3,- 2).

uuur

由 n 2·AB = 0, uuur 3x 2+3y 2= 0,

AF =0,得

故可取 n 2=(3,- 3,2).

从而法向量 n 1,n 2 的夹角的余弦值为 cos 〈n 1, n 2〉= n 1·n 2 1

|n 1||·n 2|=8.

故二面角B-AF-D 的正弦值为387.

建立空间直角坐标系的基本思想是寻找其中的线线垂直关系 本题利用 AC ⊥BD ,若图中存 在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系 .在没有明显的垂直关系 时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系, 注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称 .

例 2、如图,在空间几何体中,平面 ACD ⊥平面 ABC ,AB =BC = CA =DA = DC =BE =

2.BE 与平面 ABC 所成的角为 60°,且点 E 在平面 ABC 内的射影落在∠ ABC 的平分线上.

(1)求证: DE ∥平面 ABC ; (2)求二面角 E-BC-A 的余弦值.

解:证明: (1)易知△ABC ,△ACD 都是边长为 2的等边三角形,

取 AC 的中点 O ,连接 BO ,DO ,则 BO ⊥AC ,DO ⊥AC. ∵平面 ACD ⊥平面 ABC , ∴DO ⊥平面 ABC.

作 EF ⊥平面 ABC ,则 EF ∥DO. 根据题意,点 F 落在 BO 上,

∴∠EBF =60 °, 易求得 EF =DO = 3,∴四边形DEFO 是平行四边形, DE ∥OF. ∵DE?平面 ABC ,OF? 平面 ABC ,∴DE ∥平面 ABC.

(2)建立如图所示的空间直角坐标系 O-xyz ,可求得平面 ABC 的一个法向量为 n 1=

(0,0,1). uuur uuur

可得C (-1,0,0),B (0, 3,0),E (0, 3-1, 3),则CB =(1, 3,0), BE =(0,-1, 3)

y ,z ) ·(0,- 1, 3)=0,可取 n 2=(-3, 3,

1).

设平面 BCE 的法向量为 n 2=

(x , uuur y ,z ),则可得 n 2·CB =0, uuur

n 2·BE =0,

故 cos 〈n 1,n 2 〉

n 1·n 1 13

|n 1||·n 2|= 13 .

又由图知, 所求二面角的平面角是锐角,

即(x ,y ,z ) ·(1, 3,0)=0,(x ,

故二面角 E-BC-A 的余弦值为 1133.

专题训练

1.如图所示,在多面体 ABCD -A 1B 1C 1D 1中,上、下两个底面 A 1B 1C 1D 1和 ABCD 互相平行, 且都是正方形, DD 1⊥底面 ABCD ,AB ∥A 1B 1,AB = 2A 1B 1=2DD 1=2a. (1)求异面直线 AB 1 与 DD 1所成角的余弦值; (2)已知 F 是 AD 的中点,求证: FB 1⊥平面 BCC 1B 1. 解:以 D 为原点, DA , DC ,DD 1所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角 坐标系,则 A (2a,0,0),B (2a,2a,0), C (0,2a,0),D 1(0,0,a ),F (a,0,0), uuuur uuuur uuuur uuuur (1)∵AB 1=(-a ,a ,a ),DD 1=(0,0,a ),∴cos 〈 AB 1 , DD 1 〉 B 1(a ,a ,a ),C 1(0,a ,a ). uuuur uuuur AB 1 ·DD 1 3 = uuuur uuuur = ,

|AB 1 | ·|DD 1 | 3

3 所以异面直线 AB 1 与 DD 1 所成角的余弦值为

3 .

uuuur uuur uuur

(2)证明:∵BB 1=(-a ,-a ,a ),BC =(-2a,0,0),FB 1=(0, uuur

FB 1 uuur FB 1 uuuur BB 1 =0, uuur ∴FB 1⊥BB 1, FB 1⊥BC. ·BC = 0.

a ,a), ∵BB 1∩ BC = B ,∴FB 1⊥平面

BCC 1B 1.

2.如图,在三棱柱 ABC-A 1B 1C 1中,AA 1C 1C 是边长为 4的正方形,平面ABC ⊥平面 AA 1C 1C ,

AB = 3, BC =5.

(1)求证: AA 1⊥平面 ABC ; (2)求二面角 A 1-BC 1-B 1 的余弦

值;

BD

(3)证明:在线段 BC 1上存在点 D ,使得 AD ⊥A 1B ,并求 BC1的

值.

解: (1)证明:因为四边形 AA 1C 1C 为正方形,所以 AA 1⊥AC.

因为平面 ABC ⊥平面 AA 1C 1C ,且 AA 1 垂直于这两个平面的交线 AC ,所以 AA 1⊥平面

ABC.

(2)由(1)知 AA 1⊥AC , AA 1⊥AB. 由题知 AB =3,BC =5,AC =4,所以 AB ⊥AC.

如图,以 A 为原点建立空间直角坐标系 A-xyz ,则 B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),

uuuur A 1B =

uuuur

- 4), A 1C 1 =(4,0,0).设平面 A 1BC 1 的法向量为 n =(x ,y ,z),

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 (1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0 例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面 ABCD , 的中点, PA =AB =1, BC =2. (1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC. [证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立 空 A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 , uuur uuur uuur 1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0), uuur ∥AB ,即 EF ∥AB. 又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB. uuur uuur uuur uuur (2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC. 又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC , 直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4) 1 uuur 1 uuur F 0 , 1, 2 ,EF = -2, 0, 0 ,PB = (1,0, uuur uuur E , F 分别是 PC , PD 间直角坐标系如图所示,则 DC =(1,0,0), AB =(1,0,0). uuur 1uuur uuur (1)因为 EF =- 2AB ,所以 EF

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

用向量方法解立体几何的的题目

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin | ||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内

面角l αβ--的平面角α=arccos |||| a b a b 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a 、 b 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设 向量,求n (n a ⊥,n b ⊥),则 异面直线a 、b 的距离

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

利用空间向量解立体几何完整

利用空间向量解立体几何(完整版)

————————————————————————————————作者:————————————————————————————————日期:

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+-u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 002 2 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α?a ⊥u ?a ·u =0?a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α?a ∥u ?a =k u ?a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β?u ∥v ?u =k v ?a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β?u ⊥v ?u ·v =0?a 3a 4+b 3b 4+c 3c 4=0 例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC . [证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空 间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ? ????1 2,1,12, F ? ????0,1,12,EF =? ?? ?? -12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0). (1)因为EF =-1 2AB ,所以EF ∥AB ,即EF ∥AB . 又AB ?平面P AB ,EF ?平面P AB ,所以EF ∥平面P AB . (2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ?平面P AD ,AD ?平面P AD ,所以DC ⊥平面P AD .因为DC ?平面PDC , 所以平面P AD ⊥平面PDC . 使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直. 例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上, 且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .

利用空间向量解立体几何(完整版)

向量法解立体几何 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离:

方法:在直线上取一点(),Q x y , 则向量PQ 在法向量(),n A B =上的射影PQ n n ? = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.

立体几何中的向量方法

立体几何中的向量方法 适用学科高中数学适用年级高中二年级 适用区域通用课时时长(分钟)90 知识点用空间向量处理平行垂直问题;用空间向量处理夹角问题. 教学目标 1. 理解直线的方向向量与平面的法向量; 2. 能用向量语言表述线线、线面、面面的垂直、平行关系; 3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理). 4. 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法的作用.教学重点用向量方法解决立体几何中的有关问题 教学难点用向量方法解决线线、线面、面面的夹角的计算问题

教学过程 一、课堂导入 空间平行垂直问题 1.两条直线平行与垂直; 2.直线与平面平行与垂直; 3.两个平面平行与垂直;空间夹角问题 1.两直线所成角; 2.直线和平面所成角; 3.二面角的概念; 空间距离问题

二、复习预习 (1)空间向量的直角坐标运算律:设231(,,)a a a a =,231(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=. (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标. (3)模长公式:若231(,,)a a a a =, 则 222 123 ||a a a a a a =?=++. (4)夹角公式: 112233 2 2 2 22 2 123 123 cos |||| a b a b a b a b a b a b a a a b b b ++??= = ?++++. (5)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2212212212 )()()(z z y y x x AB AB -+-+-== .

用空间向量解立体几何问题方法归纳(学生版)

用空间向量解立体几何题型与方法 一.平行垂直问题基础知识 直线l的方向向量为a=(a1,b1,c1).平面α,β的法向量u=(a3,b3,c3),v=(a4,b4,c4) (1)线面平行:l∥α?a⊥u?a·u=0?a1a3+b1b3+c1c3=0 (2)线面垂直:l⊥α?a∥u?a=k u?a1=ka3,b1=kb3,c1=kc3 (3)面面平行:α∥β?u∥v?u=k v?a3=ka4,b3=kb4,c3=kc4 (4)面面垂直:α⊥β?u⊥v?u·v=0?a3a4+b3b4+c3c4=0 例1、如图所示,在底面是矩形的四棱锥P-ABCD中,P A⊥底面ABCD,E,F分别是PC,PD的中点,P A=AB=1,BC=2. (1)求证:EF∥平面P AB; (2)求证:平面P AD⊥平面PDC. 使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面

的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直. 例2、在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点. 求证:(1)B1D⊥平面ABD; (2)平面EGF∥平面ABD. 二.利用空间向量求空间角基础知识 (1)向量法求异面直线所成的角:若异面直线a,b的方向向量分别为a,b,异面直线所 成的角为θ,则cos θ=|cos〈a,b〉|=|a·b| |a||b|. (2)向量法求线面所成的角:求出平面的法向量n,直线的方向向量a,设线面所成的角 为θ,则sin θ=|cos〈n,a〉|=|n·a| |n||a|. (3)向量法求二面角:求出二面角α-l-β的两个半平面α与β的法向量n1,n2, 若二面角α-l-β所成的角θ为锐角,则cos θ=|cos〈n1,n2〉|=|n1·n2| |n1||n2|; 若二面角α-l-β所成的角θ为钝角,则cos θ=-|cos〈n1,n2〉|=-|n1·n2| |n1||n2|. 例1、如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点. (1)求异面直线A1B与C1D所成角的余弦值; (2)求平面ADC1与平面ABA1所成二面角的正弦值.

相关文档
最新文档