干粉灭火系统设计参数

干粉灭火系统设计参数
干粉灭火系统设计参数

干粉灭火系统设计参数

干粉灭火系统是依靠驱动气体(惰性气体)驱动干粉的,干粉固体所占体积与驱动气体相比小得多,宏观上类似于气体灭火系统,因此,可采用二氧化碳灭火系统设计数据。防护区围护结构具有一

定耐火极限和强度是保证灭火的基本条件。

一、一般规定

采用全淹没灭火系统的防护区,应符合下列规定:

1)喷放干粉时不能自动关闭的防护区开口,其总面积不应大

于该防护区总内表面积的15%,且开口不应设在底面。

2)防护区的围护结构及门窗的耐火极限不应小于0.50h,吊顶的耐火极限不应小于0.25h;围护结构及门窗的允许压力不宜小

于1200Pa。

采用局部应用灭火系统的保护对象,应符合下列规定:

1)保护对象周围的空气流动速度不应大于2m/s(二氧化碳为3)。必要时,应采取挡风措施。

2)在喷头和保护对象之间,喷头喷射角范围内不应有遮挡物。

3)当保护对象为可燃液体时,液面至容器缘口的距离不得小

于150mm。

当防护区或保护对象有可燃气体、易燃、可燃液体供应源时,启动干粉灭火系统之前或同时,必须切断气体、液体的供应源。

可燃气体、易燃、可燃液体和可熔化固体火灾宜采用碳酸氢

钠干粉灭火剂;可燃固体表面火灾应采用磷酸铵盐干粉灭火剂。

组合分配系统的灭火剂储存量不应小于所需储存量最多的

一个防护区或保护对象的储存量。

组合分配系统保护的防护区与保护对象之和不得超过8个。当防护区与保护对象之和超过5个时,或者在喷放后48h内不能恢复

到正常工作状态时,灭火剂应有备用量。备用量不应小于系统设计

的储存量。

备用干粉储存容器应与系统管网相连,并能与主用干粉储存

容器切换使用。

二、全淹没灭火系统

全淹没灭火系统的干粉喷射时间不应大于30s。

全淹没灭火系统喷头布置,应使防护区内灭火剂分布均匀。

防护区应设泄压口,并宜设在外墙上,其高度应大于防护区

净高的2/3。

三、局部应用灭火系统

室内局部应用灭火系统的干粉喷射时间不应小于30s;室外或有复燃危险的室内局部应用灭火系统的干粉喷射时间不应小于

60s。

四、预制灭火装置

预制灭火装置应符合下列规定:

1)灭火剂储存量不得大于150kg。

2)管道长度不得大于20m。

3)工作压力不得大于 2.5MPa。

一个防护区或保护对象宜用一套预制灭火装置保护。

一个防护区或保护对象所用预制灭火装置最多不得超过4套,并应同时启动,其动作响应时间差不得大于2s。

火灾自动报警系统方案设计

火灾自动报警系统方案 ●本系统采用控制中心型智能消防报警系统,具有火灾报警、联动控制等功能。系统包括以下内 容:手动报警按钮、感烟探测器、感温探测器、警铃和水流指示器等报警装置,系统同时监视 消火栓按钮、报警阀、压力开关、水流指示器及信号阀等的动作信号。 ●为了便于控制和管理,所有消防信号将显示于总控制屏上,以便一旦发生火灾时,可迅速报告 消防局。 ●消防总控制室内有以下设备:消防系统主机(工作站)、火灾视屏显示屏(LED)、火灾自动报警 系统总控制屏、消防联动控制盘、消防专用电话主机、应急电源配电盘和UPS电源、消防系统 运行记录打印机等。消防控制室可监听所有消防电源设备的状态。另外,消防总控制室内设置 一部直拨消防单位的外线电话,并同时提供与消防电话插孔匹配的手提电话。 (1)火灾报警系统保护目标 ●快速火灾探测 ●准确定位火灾地点 ●及时发出火灾报警信号 ●警示相关人员以实现: ●快速疏散建筑物内人群 ●通知相关部门采取救援措施 ●指示相关消防设备动作以实现: ●自动启动消防泵、喷淋泵等水系统灭火设备 ●联动火灾隔断手段如关闭防火卷帘门和防火阀等 ●开启排烟风机、正压风机等防排烟设备 ●开启应急广播、应急照明和疏散指示系统 (2)系统设计原则 ●系统应符合中国有关法律法规,符合消防管理条例和标准。 ●遵照安全第一、预防为主的原则,火灾自动报警系统应严格保证设备可靠性和系统可靠性,避 免误报。 ●系统应具有先进性和适用性:系统的技术性能和质量指标均达到国际先进水平,且在安装调试、 软件编程和操作使用各方面均简便易行,并适合建筑特点,达到最佳的性能价格比。 ●在系统设计时应明确与建筑设备监控系统、安防系统之间的接口界面,且系统的各项技术规范 均符合相应要求。 ●在设计火灾自动报警系统时应预留该系统与综合信息共享管理系统之间信息数据交换接口,系 统的各项技术规范均符合相应要求。 ●在系统设计时应尽量优化设备配置,考虑了整个建筑全系统的统筹配置,避免设备的重复购置 和管线的混乱局面。 在系统设计时应保留足够的冗余度:探测点与控制点的容量上及回路卡的设置上均应保留不少于20%的扩展余地。报警系统施工主要程序:

超细干粉自动灭火系统在电气火灾中的应用

国泰科技超细干粉自动灭火系统在电气火灾中的应用 随着人们对哈龙替代物开发研究的不断深入,各类新型产品不断面世,在我国目前应用较多的替代产品主要有七氟丙烷、气溶胶、烟络尽、CO2、超细干粉等,其中国泰科技超细干粉作为一种新型的冷气溶胶灭火剂,以其安全、环保、高效、节俭的特点,越来越多受到广泛的关注,应用范围也在不断扩大。 1国泰科技超细干粉灭火装置的机理 1.1灭火剂的概念及特性 国泰科技超细干粉是一种新型的冷气溶胶灭火剂,为粒径小于10μm的无机盐。由于其比表面积大,有利于扩散、分布、吸热、,使得灭火效率大大增强,实验表明,其灭火效率是哈龙的4倍,是国际公认的哈龙替代品。 超细干粉灭火剂的特性主要有: (1)国泰科技超细干粉灭火剂具备气体灭火剂的动力性质,有利于灭火剂扩散、分布,可以达到全淹没灭火的目的; (2) 国泰科技超细干粉灭火剂粒子被粉碎以后分散度增高,总面积增大,极易与周围介质相互作用,灭火效能大幅度提高; (3) 国泰科技超细干粉本身及其灭火后的残留物性质稳定,不会污染设备,且易于清理。 (4) 国泰科技超细干粉对有焰燃烧有强抑制作用;有焰燃烧是一种链式反应。燃料分子在燃烧的高温下或其形成的能量作用下被活化,在氧的存在下产生自由基或活性基因,并靠这些具有高能量的自由基传播反应,维持燃烧的持续进行。超细干粉与火焰混合时,灭火组分迅速捕获燃烧自由基,使自由基被消耗的速度大于生产的速度,燃烧自由基很快耗尽,链式反应历程即被终止,火焰迅速熄灭。 (5)国泰科技超细干粉对表面燃烧强窒息作用;超细干粉对扑灭有焰燃烧有很好的速率和效率,而且对一般固体物质的表面燃烧(阴燃)有很好的熄灭作用。当超细干粉晶体粉体与灼烧的燃烧物表面接触时,发生一系列化学反应,在固体表面的高温作用下被熔化并形成一个玻璃状覆盖层将固体表面与周围空气隔开,使燃烧窒息。 (6) 国泰科技超细干粉对热辐射的遮隔和冷却作用;使用超细干粉灭火时,浓云般的粉沫与火焰相混合,分解吸热反应,可吸收火焰的部分热量,这些分解反应产生的一些不活性气体如:二氧化碳、水蒸气等,对燃烧区的氧浓度具有稀释作用,使火的燃烧反应减弱。

自动喷水灭火系统设计应注意的问题(通用版)

自动喷水灭火系统设计应注意的问题(通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0490

自动喷水灭火系统设计应注意的问题(通 用版) 自动喷水灭火系统具有自动探火报警和自动喷水控制灭火的优良性能,是当今国际上应用范围最广、用量很多,且造价低廉的自动灭火系统。在性质重要或火灾危险性较大、人员密集而不易疏散、外部增援灭火与救生较困难的建筑物或场所内宜设置自动喷水灭火系统。 1喷头布置 喷头布置是否合理、正确,将决定喷头能否及时动作,能否按规定的强度喷水,这直接关系到喷淋系统的成败。 喷头布置包括平面布置和垂直布置两个方面,总的原则是“喷头应布置在顶板或吊顶下易于接触到火灾热气流并有利于均匀布水的位置”,应防止各种障碍物对喷水形成阻挡而削弱喷淋系统的灭火能

力。 平面布置要求设置场所喷头洒水不留漏喷的空白点,也不出现过多的重复覆盖面积。实际工程设计中根据建筑平面,可灵活采用正方形、矩形或平行四边形,对于喷头在配水支管上的最大间距及配水支管最大间距按不同的喷水强度分别做出规定(见表1)。 由于喷头的布置受其他因素的影响较大,实际设计中喷头常常不能按一个固定的距离来布置,另外工程设计需要给二次装修留有余地。根据笔者的实际设计经验及对《喷淋规范》第7.1.2条文说明的理解和推算,喷头间距不宜按规范规定的最大距离设置,这样做不易达到规范要求的喷水强度。 竖向布置要求“直立型、下垂型标准喷头,其溅水盘与顶板的距离不应小于75mm,且不应大于150mm”,距离过小不易安装维护,且洒水易受影响;距离过大则升温较慢,甚至不能接触到热烟气流,使喷头不能及时开放。 《喷淋规范》第7.1.7条规定“货架内喷头上方如有孔洞、缝隙,应在喷头的上方设置集热挡水板”,但在实际工程设计中还有很

火灾自动报警系统的设计及其重要性

火灾自动报警系统的设计及其重要性 火灾自动报警系统探测火灾隐患,肩负安全防范重任,是智能建筑中建筑设备自动化系统(CBS)的重要组成部分。智能建筑中的火灾自动报警系统设计首先必须符合GB50116-98《火灾自动报警系统设计规范》的要求,同时也要适应智能建筑的特点,合理选配产品,做到安全适用、技术先进、经济合理。 火灾自动报警系统一般分三种形式设计:区域火灾自动报警系统,集中火灾自动报警系统和控制中心报警系统。就智能建筑的基本特点,控制中心报警系统是最适用的方式。 智能建筑中中火灾自动报警系统的设计要点是:根据被保护对象发生火灾时燃烧的特点确定火灾类型;根据所需防护面积部位;按照火灾探测器的总数和其他报警装置(如手报)数量确定火灾报警控制器的总容量;按划分的报警区域设置区域报警控制器;根据消防设备确定联动控制方式;按防火灭火要求确定报警和联动的逻辑关系;最后还要考虑火灾自动报警系统与智能建筑“3AS”(建设设备自动化系统、通信自动化系统、办公自动化系统)的适应性。 1 火灾探测器的设计选配 火灾探测器是火灾自动报警系统对象分为感烟火灾探测器、感温火灾探测器、感光火灾烟温复合式火灾探测器以及气体火灾探测器,按其测控范围又可分为点型火灾探测器和线型火灾探测器两大类。点型火灾探测器只能对警戒范围中某一点周围的温度、烟等参数进行控制,如点型离子感、点型紫光火焰火灾探测器、点型感温火灾探测器等,线型火灾探测

器则可以对警戒范围中某一线路周围烟雾、温度进行探测,如红外光束线型火灾探测器,激光线型火灾探测器,缆式线型感温火灾探测器等.

智能建筑中应以感烟火灾探测器选用为主,个别不宜选用感烟火灾探测器的场所,应该选用感温火灾探测器。 1.2 探测区域探测器设置要点 标准规定:火灾探测区域一般以独立的房间划分探测区域内的每个房间内至少应设置一只探测器。在敞开或封闭的楼梯间、消防电梯前室、走道、坡道、管道井、闷顶、夹层等场所都应单独划分的探测区域,设置相应探测器、内部空间开阔且门口有灯光显示装置的大面积房间可划分一个的探测区域,但其最大面积不能超过1000m2。探测器的设置一般按保护面积确定,每只探测器保护面积和保护半径确定,要考虑房间高度、屋顶坡度、探测器自身灵敏度三个主要因素的影响,但在有梁的顶棚上设置探测器时必须考虑到梁突出顶棚影响 另外,在设置火灾探测器时,还要考虑智能建筑内部走道宽度、至端墙的距离、至墙壁梁边距离、空调通风口距离以及房间隔情况等的影响。 1.3 探测器总数确定 首先确定一个探测区域所需设置的探测器数量,其计算公式为: N=S÷KA 式中:N —探测器数量(只),取整数;

超细干粉灭火系统调试

超细干粉灭火系统技术详解 超细干粉灭火系统的调试工作是保证灭火系统正常工作的重要步骤,宜在系统施工完毕后进行。这主要是考虑到灭火系统安装施工有时会涉及到防护区地坂下、吊顶上或其它隐蔽工程的中间验收问题,这些隐蔽工程在中间验收前就要进行调节器试。这样一方面便于灭火系统的整体调试,另一方面可及时发现和纠正灭火系统安装施工中可能存在的质量问题。才能保证灭火系统正常工作,避免意外情况的发生 灭火系统调试工作的重要条件是调试所需要的设计技术文件及其它相关资料应完整正确。调试人员才能熟悉灭火系统及其组件的结构和特性,确认所采用的设备及安装质量是否符合设计要求,并及时发现存在的问题,同时灭火系统调试工作也是一项较为复杂的技术工作。并且要承担一定的技术责任。因此调试负责人应具有一定的消防专业理论基础和实践经验。熟悉灭火系统的设计、安装、调试工作,熟悉灭火系统的主要组件的性能及使用方法,以避免意外情况的发生。 灭火系统的安装调试单位与火灾自动报警系统控制系统的安装调试单位可能不是一家单位,即使是同一家单位也可能不是同一专业的人员,因此就要求按预先规定调试方案既要明确职责、做到各负其责,又要相互配合,这样才有利于灭火系统调试工作的顺利进行。 灭火系统调试前应对已安装完毕的灭火系统进行一次全面、彻底的质量检查。这既是灭火系统进行调试的重要条件,同是又是避免因安装施工中存在的问题导致调试时出现不必要的损失。系统调试前应对灭火系统进行如下检查: 1:检查灭火系统各组件的型号、规格、数量等是否符合设计技术文件的要求。 2:检查灭火系统各组件的安装是否符合设计技术文件的要求。 3:检查中若发现质量问题,应及时按规定的程序予以委善处理。 灭火调试完毕,应填写调试报告,(见如下附表:超细干粉灭火系统安装调试报告)系统的调试是灭火系统工程中一项非常重要的环节,调试人员只有如实记录调试情况,才能为灭火系统的验收提供真实的依据,确保灭火系统的质量。保证灭火系统正常工作,以及后续工作的顺利完成。 附表:超细干粉灭火系统安装调试报告 工程名程 建设单位 设计单位 施工单位 调试单位

消防系统设计方案

消防系统改造设计方案 一、设计范围 火灾自动报警系统、自动喷水灭火系统、防排烟系统、气体灭火系统。 二、火灾自动报警系统设计说明 1、本次设计为改造项目,原则不改变原有报警系统回路以及系统设置,根据装修格局的变动对现有报警设备进行调整。如涉及增加房间应根据现有布局增设相应报警设备。所有报警系统线路均引自原消防控制室,根据现有设备点位调整,如原报警主机容量不足时应增设主机或回路。 2、按照规范要求设置感烟探测器。 3、在走道、大厅等公共区域设置手动报警按钮(带电话插孔),不能大于25米。 4、在实验室设置气体灭火专用烟感、温感、气体启停按钮、气体释放灯等设备,在实验室外区域设置气体报警主机,并应与消防火灾自动报警主机联网。 5、所有报警线路均应穿金属管敷设。报警系统的供电线路、消防联动控制线路应采用耐火铜芯电线电缆,报警总线、消防应急广播和消防专用电话等传输线路应采用阻燃或阻燃耐火电线电缆。 三、自动喷水灭火系统 1、根据装修布局调整喷淋头及管道位置。 四、防排烟系统

1、建筑内长度大于20m的疏散走道应增设机械排烟系统。 五、气体灭火系统 1、本次设计根据现场情况将采用无管网式全淹没七氟丙烷气体自动灭火系统,即在规定的时间内,向保护区喷射一定浓度的七氟丙烷灭火剂,并使其均匀地充满整个保护区,此时能将其区域里的任一部位发生的火灾扑灭; 2、七氟丙烷灭火系统有三种控制方式: 自动方式为: 防护区内的烟感、温感同时报警,经消防控制报警主机确认火情后,声光报警和延时,控制系统发出启动电信号,送给对应的无管网装置,喷洒七氟丙烷气体灭火。 手动方式为: 在防护区外设有紧急启停按钮供紧急时使用。 机械启动为: 当自动启动、手动启动均失效时,可打开柜门实施机械应急操作启动灭火系统。 六、设计依据 1、甲方提供的原有消防图纸、最终版改造平面图。 2、国家现行的有关建筑设计主要规范及规程: 《建筑设计防火规范》 GB50016-2014(2018版) 《消防给水及消火栓系统技术规范》GB50974-2014 《火灾自动报警系统设计规范》 GB-50116-2013 《建筑防烟排烟系统技术标准》GB 51251-2017 《建筑灭火器配置设计规范》GB50140-2005 《民用建筑电气设计规范》JGJ16-2008

消防报警系统设计方案

博物馆消防火灾报警系统工程 施工组织设计方案 1.编制说明、 本设计依据建筑设计研究院有限公司电施设计图纸进行编制。 2.工期 工期目标: 消防火灾报警系统工程工期为40天。 七氟丙烷气体灭火系统工程施工工期为30天。 3.质量目标 本工程质量目标: 消防工程施工质量将严格按有关设计及施工验收规和工程评定标准进行施工,合格率达到时100%,确保火灾自动报警系统质量优良。 4.火灾报警系统设备安装工艺要求 4.1火灾自动报警系统设备安装 (1)消防布线的总体要求: 根据消防弱电施工的规,并结合本工程的实际情况,对消防电气的施工布置如下:布线:火灾自动报警系统的布线,应符合现行标准《电气装置工程施工及验收规》的规定和《火灾自动报警系统设计规》(GBJ116-88)的要求。管线包括各层公共部分及其它层平面报警回路线、工作电源线、控制线等线管的穿线,应采用铜芯绝缘导线或铜芯电缆,当额定工作电压不超过50V时,选用导线的电压等级不应低于250V,额定工作电压超过50V时,导线电压等级

不应低于500V。穿线过程中应按照以下工艺标准及要点进行。 (2)接线箱安装: 穿线完毕后,要对每回路导线用500V的兆欧表测量绝缘电阻,满足不了产品或规GB50166--92要求的(20MΩ),应仔细检查并替换。 要求:平稳,底部距地1.5M。安装前应在距盒底100MM处开一个口,并且开口处无倒刺,然后牢固固定在墙上。 (3)火灾报警探测器的安装 A.火灾探测器安装位置,应符合下列规定: 探测器至墙壁梁边的水平距离,不应小于0.5m: 探测周围0.5m,不应有遮挡物: 探测器至空调送口边的水平距离,不应小于0.5m;至多孔送风顶棚孔口的水平距离,不应小于0.5m; 宽度小于3m的风走道顶棚上设置探测器时,宜居中布置。感温探测器的安装间距,不应超过10;感烟探测器的安装间距,不应超过15。探测器距端墙的距离,不应大于探测器安装间距的一半。 B.探测器底座安装 探测器的底座应固定向牢靠,其导线连接必须可靠压接或焊接。当采用焊接时,不得使用带腐蚀性的助焊剂。 探测器底座的外接导线,应留有不小于15cm的量,入端应有明显标志。 探测器底座的穿结孔宜封堵,安装完毕后的探测器底座应采取保护措施。 探测器在即将调试时方可安装,在安装前应妥善保管,并应采取防尘、防潮、防腐蚀措施。

超细干粉灭火系统设计

《超细干粉灭火系统设计、施工及验收规范》DB37/T1317-2009 超细干粉灭火剂为一种性能良好,应用广泛的新型灭火剂。超细干粉灭火剂目前有以磷酸铵盐为灭火组分的ABC超细干粉灭火剂或以聚合材料为灭火组分的复合型ABC超细干粉灭火剂。该类灭火剂由于90%的粒径≤20μm,比表面积大,在火场反应速度快,因而灭火效率高。普通磷酸铵盐超细干粉灭火剂灭火效能≤0.15kg/m3,复合型超细干粉灭火剂灭火效能≤0.06kg/m3。灭火剂既可全淹没应用灭火,又可局部应用灭火,广泛应用于各种场所扑救A、B、C、E、F类火灾。特种超细干粉灭火剂可用于扑救D类火灾。 超细干粉灭火系统,采用了近几年成熟的扑救火灾的控制释放技术,采用电控启动、定温启动、电控手动启动等多种启动方式,用于相对封闭的空间全淹没应用灭火,或开放场所局部保护应用灭火,具有安装、维修方便,应用灵活,灭火效能高等一系列优点。 鉴于超细干粉灭火剂及灭火系统近年来应用广泛,为规范产品的生产,公安部颁布了GA578―2005《超细干粉灭火剂》、GA602―2006《干粉灭火装置》产品行业标准。由于目前我国尚未颁布超细干粉灭火系统设计应用的行业标准及国家标准,为规范超细干粉灭火系统的设计及施工过程,提供必要的设计、施工、验收依据,山东省颁布了DB37/T1317《超细干粉灭火系统设计、施工及验收规范》地方标准(以下简称《规范》)。该《规范》依据GB50116《火灾自动报警系统设计规范》、GB50166《火灾自动报警系统施工及验收规范》、GB50347《干粉灭火系统设计规范》、GA578《超细干粉灭火剂》、GA602《干粉灭火装置》等相关国家标准和行业标准,并参考了英国、德国、日本等国家的相关技术规范编写而成。在总结已有科研成果和超细干粉灭火系统多年来应用工程实践的基础上,对《规范》所涉及的主要技术参数进行实体灭火实验,确定了超细干粉灭火系统的适用场所、保护对象、基本设计方法和系统的安装与验收要求。该《规范》共分十一章,主要内容包括:总则、术语和符号、系统设计、管网计算、系统组件、控制与操作、安全要求、系统安装、系统调试、系统验收、维护管理、附录及条文说明。《规范》规定的主要技术参数均通过实体灭火实验,基本设计方法和系统的安装及验收要求科学合理,可操作性强,为国内第一部完整的超细干粉灭火系统设计、施工及验收规范。 1、《规范》内容完整,包含了目前国内在用的超细干粉灭火系统基本类型。 超细干粉灭火剂及灭火系统问世以来,以其优良的性能在国内迅速普及,为适应超细干粉灭火系统应用需要,几年来国内颁布了一些地方标准(规范、规程)。这些地方标准大多只对燃气型非贮压式干粉(或超细干粉)灭火装置设计及安装作了规范,没有对贮压式超细干粉灭火装置的设计、安装作规范。其中地方标准DB42/294―2004《超细干粉无管网灭火系统设计、施工及验收标准》,只规范了贮压式超细干粉无管网灭火系统的设计、施工及验收,未对非贮压式灭火装置的设计、安装作出规范。

消防给水及消火栓系统技术规范word版

1 总则 1.0.1 为了合理设计消防给水及消火栓系统,保障施工质量,规范验收和维护管理,减少火灾危害,保护人身和财产安全,制定本规范。 1.0.2 本规范适用于新建、扩建、改建的工业、民用、市政等建设工程的消防给水及消火栓系统的设计、施工、验收和维护管理。 1.0.3 消防给水及消火栓系统的设计、施工、验收和维护管理应遵循国家的有关方针政策,结合工程特点,采取有效的技术措施,做到安全可靠、技术先进、经济适用、保护环境。 1.0.4 工程中采用的消防给水及消火栓系统的组件和设备等应为符合国家现行有关标准和准入制度要求的产品。 1.0.5 消防给水及消火栓系统的设计、施工、验收和维护管理,除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 消防水源fire water 向水灭火设施、车载或手抬等移动消防水泵、固定消防水泵等提供消防用水的水源,包括市政给水、消防水池、高位消防水池和天然水源等。 2.1.2 高压消防给水系统constant high pressure fire protection water supply system 能始终保持满足水灭火设施所需的工作压力和流量,火灾时无须消防水泵直接加压的供水系统。

2.1.3 临时高压消防给水系统temporary high pressure fire protection water supply system 平时不能满足水灭火设施所需的工作压力和流量,火灾时能自动启动消防水泵以满足水灭火设施所需的工作压力和流量的供水系统。 2.1.4 低压消防给水系统low pressure fire protection water supply system 能满足车载或手抬移动消防水泵等取水所需的工作压力和流量的供水系统。 2.1.5 消防水池fire reservoir 人工建造的供固定或移动消防水泵吸水的储水设施。 2.1.6 高位消防水池gravity fire reservoir 设置在高处直接向水灭火设施重力供水的储水设施。 2.1.7 高位消防水箱elevated/gravity fire tank 设置在高处直接向水灭火设施重力供应初期火灾消防用水量的储水设施。 2.1.8 消火栓系统hydrant systems/standpipe and hose systems 由供水设施、消火栓、配水管网和阀门等组成的系统。 2.1.9 湿式消火栓系统wet hydrant system/wet standpipe system 平时配水管网内充满水的消火栓系统。 2.1.10 干式消火栓系统dry hydrant system/dry standpipe system

自动喷水灭火系统的设计步骤

自动喷水灭火系统的设计步骤 一设计依据: 建筑图和相关设计规范及市政给水资料 二.设计步骤: 1.判断建筑物性质和火灾等级(轻危;中危;严危级). 2.>选择设计参数:喷水强度,作用面积,最小水压等. 3.确定喷头形式(垂直式;下垂式;装饰式;边墙式)和保护面积 4.在建筑图上布置喷头.包括喷头的形状(正方形;矩形;菱形)和间距(根据火灾等级确定). 5.在建筑图上布置立管,连接管和管网的布置(中分式;侧分式;环状式). 6.确定作用面积内的喷头数 n=A/Ac 确定作用面积的形状(正方形;矩形;多边形). 7.绘制系统图→根据系统图绘制计算简图(确定最不利点;确定计算管线、:最不利点→支管→横管→立管→报警阀→喷淋泵→吸水口). 8.水力计算: ①确定第一个喷头的压力(P1=10m)确定第一个喷头的流量:Q=qA或Q=K√10p ②计算第一个喷头到第二个喷头的水头损失:∑h=iL L=l1+l2 ( i:水力坡降;l1:管段长度;l2:附件及管件的长度<见表2-22>) ③确定第二个喷头压力P2=P1+∑h 1+2 确定第二个喷头的流量Q2=K√10p2 ④重复上述计算-算到第n个喷头( n个喷头流量=设计流量)其中Q不再增加,∑h-H 计算到水泵的吸水口处.。注意:确定第i支管的流量Qi=Q1√Hi/H1 (H1、Hi分别为第1和第i支管处水压。)至∑Q=系统设计流量止。 ⑤确定系统的总水压.H=△Z+∑h+P1 Q=1/60∑qi

⑥确定不计算管段的管径-按最小管径负担的喷头数(见表2-19). ⑦校核:H>120m;调整管径. 9.选择喷淋泵QP≥QX; HP≥HX. 选用多级泵,使泵N小;η大;HS大。 10.㈠确定高位水箱的容积,容积=10min消防水量;㈡确定高位水箱的高度(高度:最不 利点喷头出水口到水箱的出水口的高差.[高层建筑≥7m;超高层建筑≥15m].若不满足则要增设增压设备.〈增压设备的Q≤1L/S;H=保证最不利点喷头的出水水压〉)保证最不利点喷头的出水水压). 11.选择加压,稳压设备. 12.确定消防水池的容积.水池容积=火灾持续时间内的室内,室外消防水量=T*(Q1+Q2). 注:T=1h 13.进行水泵房工艺设计(①确定水泵的基础;②水泵基础的平面布置;③绘制水泵管路系统图;④材料表,控制(设计)说明. 14.将计算结果写到图纸上(管径,标高,间距). 15.编写设计说明,统计材料表. 16.整理设计计算说明书.包括:设计依据.参数来源;设计方案、计算书;成果评价等.

超细干粉灭火装置系统施工的方法

超细干粉灭火装置系统施工的方法

超细干粉灭火装置系统施工的方法 一、范围 本工艺标准适用于本工程的室内超细干粉灭火装置系统的安装。 二、施工准备 1.主要材料 1.1悬挂式灭火装置组成 灭火装置的组成 悬挂式超细干粉灭火装置主要由灭火剂贮罐、超细干粉灭火剂、喷头、感温元件、引发器、压力指示器等组成。见图一 1.2悬挂式灭火装置的启动方式 电引发启动: a当防护区采用火灾报警控制系统时,灭火装置可采用电引发启动方式启动。 b电引发启动装置的组成。

火剂灭火,讯号反馈器向控制器反馈灭火剂已释放信号。 e.2电气手动灭火 将灭火控制器控制方式设置于“手动”位置时,系统处于电气手动控制状态。防护区发生火灾时,按下灭火控制器或手动控制盘上的启动按钮,即可按规定程序启动灭火系统灭火。e.3紧急停止灭火系统自动启动或手动启动后,在设定的延迟时间内按下紧急停止按钮,灭火装置可停止启动。 ⑵集热罩和反馈信号 带集热罩的悬挂式灭火装置是在灭火剂储罐外面加装一个方形外壳,底部成凹形可以集中保护区上升的热量,有利于灭火装置快速启动,罩内装有反馈信号器,一般一个保护区设置一至二具带反馈信号的灭火装置,向报警主机反馈真实的释放信号;也可以全部采用带集热罩的装置。 带集热罩的悬挂式超细干粉灭火装置主要由灭火剂贮罐、集热罩、喷头、启动器、压力指示器、讯号反馈器及接线端子等组成。见图二

⑶电线保护管,应符合设计规范,弯曲处不应有折皱、凹陷裂缝,且弯扁程度不应大于管外径的10%。 2.主要机具 砂轮锯,台钻,电锤,手砂轮,手电钻,电焊机等机械。钢锯,扳手,射钉枪,倒链,电气焊等工具。 3.作业条件 ⑴施工图纸及有关技术文件应齐全,现场水、电、气应满足连续施工要求,系统设备材料能保证正常施工。 ⑵超细干粉灭火装置的标高应测定并标明。预留、预埋已随结构施

浅析消防水喷雾灭火系统中喷头的设计安装

浅析消防水喷雾灭火系统中喷头的设计安装 摘要:在建筑消防系统中,水喷雾灭火系统由于其安全性高、用水量少、稳定性强,被广泛应用于各类建筑之中,而在该系统中,喷头是一个重要组成部分,关系到整个系统的消防质量,所以文章从安装方面对喷雾灭火系统中喷头的实际应用进行分析。 关键词:消防;喷雾灭火系统;喷头 通过文章的实践总结,喷雾灭火系统喷头的设计安装一般分为以下几个步骤:确定保护对象,选定设计参数。根据保护对象的特性,选定喷头喷雾角度。在选定喷头喷雾角度的情况下,结合现场具体情况,根据安装高度与安装角度的关系,确定安装高度和角度。利用“面积包络法”计算喷头间距。根据电缆隧道的长度和喷头间距,计算喷头的需用数量。根据保护面积、设计参数,计算设计消防水量。根据消防用水量和喷头数量计算喷头流量,查厂家样本确定喷头的型号。流量及喷雾强度的复核计算。文章主要以一电缆隧道为例,对水喷雾灭火系统喷头的设计和安装进行分析和讨论。 1工程概况 保护对象为某一电缆隧道,长102 m,单侧布7层电缆桥架,桥架宽为0.6 m,隧道宽1.7 m,高2.4 m,电缆桥高2.2 m,喷头距电缆桥架距离为0.9 m,见图1。根据水喷雾规范3.1.2条确定设计参数:保护强度W=13L/(min·m2),持续喷雾时间t=0.4 h。 2喷头的设计安装 2.1喷头喷雾角度的确定 从图1可知,电缆桥架的高度H和喷头距电缆桥架的距离S决定了水雾喷头的喷雾角度q。如S固定,H越大,则应选取大喷雾角度的喷头,反之选取小喷雾角度的喷头;同样,如果H固定,S越大,则喷头雾锥半径大,可以选用小角度的喷头,反之应选取大角度的水雾喷头。H、S可根据工程的实际情况确定,同时也确定了水雾喷头的喷雾角度。本工程H=2.2m,S=0.9m,选用q=120°。 2.2喷头安装高度的确定 从图1可知,喷头的安装高度h决定了其安装角度 α(喷头轴线与水平方向的夹角)。当喷头安装的位置低,即h值大时,实现全包络电缆桥架时喷头需要相对水平的安装位置,即α小;反之α大。喷头的安装高度一方面不能影响到电缆隧道中检修人员的通行,并能保证必要的检修维护空间;另一方面要保证保护对象的最远处在喷头的有效射程内。因此,喷头安装高度的最

自动喷水灭火系统设计规范范文

自动喷水灭火系统 设计规范

中华人民共和国国家标准 自动喷水灭火系统设计规范 GBJ84—85 主编部门:中华人民共和国公安部 批准部门:中华人民共和国国家计划委员会 施行日期:1986年7月1日 目录 第一章总则 第二章建筑物、构筑物危险等级和自动喷水灭火系统设计数据的基本规定第三章消防给水 第一节一般规定 第二节消防水池和消防水箱 第四章喷头布置 第一节一般规定 第二节仓库的喷头布置 第三节舞台、闷顶等部位的喷头布置 第四节边墙型喷头布置 第五章系统组件 第一节喷头 第二节阀门与检验、报警装置

第三节监测装置 第四节管道 第六章系统类型 第一节湿式喷水灭火系统 第二节干式喷水灭火系统 第三节预作用喷水灭火系统 第四节雨淋喷水灭火系统 第五节水幕系统 第七章水力计算 第一节设计流量和管道水力计算 第二节减压孔板和节流管 附录一名词解释 附录二建筑物、构筑物危险等级举例 附录三本规范用词说明 第一章总则 第1.0.1条为了保卫社会主义建设和公民生命财产的安全,贯彻“预防为主,防消结合”的方针,合理设计自动喷水灭火系统,减少火灾危害,特制定本规范。 第1.0.2条自动喷水灭火系统设计,应根据建筑物、构筑物的功能,火灾危险性以及当地气候条件等特点,合理选择喷水灭火系统类型,做到保障

安全、经济合理、技术先进。 第1.0.3条本规范适用于建筑物、构筑物中设置的自动喷水灭火系统。 本规范不适用于火药、炸药、弹药、火工品工厂等有特殊要求的建筑物、构筑物中设置的自动喷水灭火系统。 第1.0.4条自动喷水灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关设计标准和规范的要求。 第二章建筑物、构筑物危险等级和自动喷水 灭火系统设计数据的基本规定 第2.0.1条设有自动喷水灭火系统的建筑物、构筑物,其危险等级应根据火灾危险性大小、可燃物数量、单位时间内放出热量、火灾蔓延速度以及扑救难易程度等因素,划分以下三级: 一、严重危险级:火灾危险性大,可燃物多、发热量大、燃烧猛烈和蔓延迅速的建筑物、构筑物; 二、中危险级:火灾危险性较大,可燃物较多、发热量中等、火灾初期不会引起迅速燃烧的建筑物、构筑物; 三、轻危险级:火灾危险性较小,可燃物量少、发热量较小的建筑物、构筑物。 注:危险等级举例见附录二。 第2.0.2条各危险等级的建筑物、构筑物其自动喷水灭火系统的设计喷水强度、作用面积和喷头工作压力等应符合下列规定: 湿式喷水灭火系统、干式喷水灭火系统和预作用喷水灭火系统设计的基本

超细干粉灭火系统的特点及应用前景分析

超细干粉灭火系统的特点及应用前景分析 摘要:简介了超细干粉灭火剂的种类、特点、性能及其灭火原理,重点探讨了超细干粉灭火系统的性能、优势及前景,并分析了超细干粉灭火系统的应用前景。 关键词:超细干粉灭火剂;干粉灭火系统;灭火效能 剂最早是20世纪30年代由美国Ansul公司开发出的以碳酸氢钠为基料的干粉灭火剂,而干粉灭火系统的研究与应用历史也较早,据日本的消防资料介绍,日本1969年已将干粉灭火设备用于汽车库和储油罐保护;我国在1970年已将干粉灭火设备用于淬火油槽(池)和室内变压器保护;1975年,前苏联的消防资料介绍已将干粉灭火设备用于大型醇类储罐保护。1974年~1975年,天津消防科研所与吉林化学工业公司化肥厂等单位联合进行了储油罐干粉自动灭火系统的试验研究,并进行了中型航空煤油罐中间灭火试验。后来,天津消防科研所又研制了两种D类干粉灭火剂,以氯化钠为主要原料的D类干粉灭火剂和以碳酸氢钠为主要原料的BCD类干粉灭火剂,但是,没就这两种D类干粉灭火剂进行D类干粉灭火系统工程应用研究;并且,因成本等原因也没再推广应用。 总之,工程应用较成熟的干粉灭火系统是BC类和ABC类干粉灭火系统,D类干粉灭火系统技术上不够成熟,国内之前基本是进口意大利等国家的产品;超细干粉灭火技术是2001年由武汉绿色消防器材有限公司国内首家送检合格的一种新型干粉灭火剂,一直以来,国内企业都停止在无管网灭火装置(含短管网柜式灭火装置)上,近两年起才有超细干粉生产企业在研发超细干粉灭火系统,其中有武汉绿色消防器材有限公司于今年五月份首次按《干粉灭火系统零部件通用技术条件》(16668-2010)送检合格贮气瓶型和贮压型两个系列的超细干粉灭火系统,为国内超细干粉灭火系统的研发、检验提供了有益的实践及试验数据,本文就相关技术作一些简单介绍。 一、超细干粉灭火剂 灭火组分是干粉灭火剂的核心,能够起到灭火作用的物质主要有:KCO、KHCO、NaCl等,目前国产的普通干粉灭火剂主要有:磷酸铵盐、碳酸氢钠干粉灭火剂。每种灭火粒子都存在一上限临界,粒径小于临界粒径的粒子全部起灭火作用,大于临界粒径的粒子灭火效能急剧降低,但其动量大,通过空气对小粒子产生空气动力学拉力,迫使小粒子紧随其后,扑向火焰中心,而不是未到火焰就被热气流吹走,降低灭火效率,常用干粉灭火剂粒度在10~75μm之间,这种粒子弥散性较差,比表面积相对较小。因此,定量干粉所具有的总比表面积小,单个粒子质量较大,沉降速度较快,受热时分解速度慢,导致其捕捉自由基的能力较小,故灭火能力受到限制,一定程度上限制了干粉灭火剂使用范围。干粉灭火剂粒子粒径与其灭火效能直接相关联,灭火组分临界粒径愈大,灭火效果愈好。所以,制备在着火空间可以均匀分散、悬浮的超细灭火粉体,保证灭火组分粒子活性,降低单位空间灭火剂使用量是提高干粉灭火剂灭火效能的很有效手段。超细干粉灭火剂正是基于这个理论开发出的新产品,它成功地把干粉灭火技术拓展到大空间全淹没自动灭火方面。 1.1ABC超细干粉灭火剂 据文献记载:英国KIDD公司在七十年代采用喷雾干燥技术研制出粒径<5μm的碳酸氢钾超细高效干粉灭火剂,经全淹没式灭火实验表明:灭火效能是一般灭火剂的10倍;由于所需设备和工艺要求复杂,至今未能推广应用。国内武汉绿色消防器材有限公司于1997年开始超细干粉研究,采用气流粉碎技术制备出一种能整体防潮,不须硅化处理即能保证粉体流动性好、不吸潮、不结块、灭火效率高的ABC 超细干粉灭火剂,干粉平均粒径<5μm,90%粒径<10μm,最小灭火浓度仅为65g/m3,无毒无害、对物体无腐蚀、对人体呼吸道无刺激、高绝缘性;率先把超细干粉灭火理论转化为产品并实现了批量生产。

DB37T13172019《超细干粉灭火系统设计施工及验收规范》共13页word资料

DB37/T1317-2009《超细干粉灭火系统设计、施工及验收规范》 超细干粉灭火剂为一种性能良好,应用广泛的新型灭火剂。超细干粉灭火剂目前有以磷酸铵盐为灭火组分的ABC超细干粉灭火剂或以聚合材料为灭火组分的复合型ABC超细干粉灭火剂。该类灭火剂由于90%的粒径≤20μm,比表面积大,在火场反应速度快,因而灭火效率高。普通磷酸铵盐超细干粉灭火剂灭火效能≤0.15kg/m3,复合型超细干粉灭火剂灭火效能 ≤0.06kg/m3。灭火剂既可全淹没应用灭火,又可局部应用灭火,广泛应用于各种场所扑救A、B、C、E、F类火灾。特种超细干粉灭火剂可用于扑救D类火灾。 超细干粉灭火系统,采用了近几年成熟的扑救火灾的控制释放技术,采用电控启动、定温启动、电控手动启动等多种启动方式,用于相对封闭的空间全淹没应用灭火,或开放场所局部保护应用灭火,具有安装、维修方便,应用灵活,灭火效能高等一系列优点。 鉴于超细干粉灭火剂及灭火系统近年来应用广泛,为规范产品的生产,公安部颁布了GA578—2019《超细干粉灭火剂》、GA602—2019《干粉灭火装置》产品行业标准。由于目前我国尚未颁布超细干粉灭火系统设计应用的行业标准及国家标准,为规范超细干粉灭火系统的设计及施工过程,提供必要的设计、施工、验收依据,山东省颁布了DB37/T1317《超细干粉灭火系统设计、施工及验收规范》地方标准(以下简称《规范》)。该《规范》依据GB50116《火灾自动报警系统设计规范》、GB50166《火灾自动报警系统施工及验收规范》、GB50347《干粉灭火系统设计规范》、GA578《超细干粉灭火剂》、GA602《干粉灭火装置》等相关国家标准和行业标准,并参考了英国、德国、日本等国家的相关技术规范编写而成。在总结已有科研成果和超细干粉灭火系统多年来应用工程实践的基础上,对《规范》所涉及的主要技术参数进行实体灭火实验,确定了超细干粉灭火系统的适用场所、保护对象、基本设计方法和系统的安装与验收要求。该《规范》共分十一章,主要内容包括:总则、术语和符号、系统设计、管网计算、系统组件、控制与操作、安全要求、系统安装、系统调试、系统验收、维护管理、附录及条文说明。《规范》规定的主要技术参数均通过实体灭火实验,基本设计方法和系统的安装及验收要求科学合理,可操作性强,为国内第一部完整的超细干粉灭火系统设计、施工及验收规范。 1、《规范》内容完整,包含了目前国内在用的超细干粉灭火系统基本类型。 超细干粉灭火剂及灭火系统问世以来,以其优良的性能在国内迅速普及,为适应超细干粉灭火系统应用需要,几年来国内颁布了一些地方标准(规范、规程)。这些地方标准大多只对燃气型非贮压式干粉(或超细干粉)灭火装置设计及安装作了规范,没有对贮压式超细干粉灭火装置的设计、安装作规范。其中地方标准DB42/294—2019《超细干粉无管网灭火系统设计、施工及验收标准》,只规范了贮压式超细干粉无管网灭火系统的设计、施工及验收,未对非贮压式灭火装置的设计、安装作出规范。 新颁布的DB37/T1317《超细干粉灭火系统设计、施工及验收规范》吸取了以往所颁布的地方标准的优点,弥补其中不足和缺陷,充实和完善了超细干粉灭火系统设计、施工及验收内容。

气体消防灭火系统方案

气体消防灭火系统 6.1. 方案简述 (1) 6.2. 前提条件 (1) 6.3. 系统方案设计 (2) 6.4 七氟丙烷气体灭火系统介绍 (2) 6.5 火灾自动报警系统介绍 (7) 6.1. 方案简述 *****机房工程主要是由主机房、操作间及配电机房组成。机房设计吊顶高度2.8米,活动地板高度0.3米,机房设计净高2.5米。 本次消防自控系统工程由两部分组成: 主机房:采用七氟丙烷无管网单元独立自动灭火系统方式,机房消防自控系统分为一个相互独立的保护区; 操作间:配置手持式干粉灭火装置和二氧化碳灭火器。 配电机房:采用七氟丙烷无管网单元独立自动灭火系统方式,机房消防自控系统分为一个相互独立的保护区; 七氟丙烷组合分配灭火系统特点: 灭火力强,灭火时间短,能灭A、B、C型火灾; 灭火后无污染、腐蚀作用,不导电没有残留物,对臭氧层无破坏; 低浓度灭火,液态储存,药剂占地面积小; 毒性低,可以应用于有人值守场所; 系统具有扩展性。 6.2. 前提条件 消防报警控制器安装在本层过道

大楼消防电源已具备 6.3. 系统方案设计 本系统设计采用七氟丙烷柜式气体灭火系统。 目前气体消防主流产品有:CO 2 自动灭火系统、卤代烷1301自动灭火系统、INERGEN(烟烙尽)、七氟丙烷气体灭火系统。 CO 2是一种适用于计算机机房的灭火剂,但CO 2 一般只能适用于那些无人值守 或较少时间有人在内的机房。 卤代烷1301有一定毒性,但其对大气臭氧层有破坏作用,成为一种被逐渐淘汰的产品。 INERGEN(烟烙尽)是一种比较新的气体灭火剂,但由于目前主要依靠国外技术,投资量大,维护费用高,还未普及推广使用。 七氟丙烷气体则完全摒弃了CO2、卤代烷1301、INERGEN的缺点,毒性低,价格较便宜,已经为当今计算机机房首推的气体灭火剂。 根据以上四种灭火系统的比较并结合计算机房特有的情况特点和防火等级,参考业主的消防需求,我们设计采用目前国际上最先进的气体灭火系统——七氟丙烷气体灭火系统。 6.3.1 消防系统保护区的设置 因本次工程设计的灭火工作区域被操作间隔开,我们设置 2个相互独立的气体保护区。 七氟丙烷柜式气体灭火系统可以组成两种形式的灭火系统,即组合分配式系统(有管网系统)与单元独立系统(无管网系统)。本消防工程存在多个需要保护的区域,因此采用七氟丙烷无管网单元独立式柜式气体灭火系统。 6.3.2 消防系统组成 本工程消防系统以七氟丙烷气体自动灭火消防为主。本层机房区的气体消防系统是由七氟丙烷气体灭火系统和火灾自动报警系统两部分组成,构成一个完整的七氟丙烷自动灭火系统。 6.4 七氟丙烷气体灭火系统介绍 本方案中单元独立式系统中共有两个保护区,火灾气体喷嘴布置形式: 机房保护区的火灾喷嘴安装在天花板向室内的一侧。当一个区域发生火灾时通过该区的释放阀,继而打开系统七氟丙烷的供该区的储瓶,并向该区释放七氟丙烷进行灭火,而其他区域的储瓶则被其单向阀阻止而不打开。 本层保护区的设计灭火浓度为8%,通过智能灭火控制器的逻辑编程,来实

自动喷水灭火系统设计方案

自动喷水灭火系统的设计、安装、调试、检测与验收 一、基本设计数据的确定 建筑物的火灾危险等级划分确定后,就要确定该类建筑物喷水灭火系统的基本设计数据。基本设计数据通常包括喷水强度、作用面积、喷头动作数、每只喷头保护面积、最不利点处喷头压力以及理论供水量等。 喷水强度是喷水灭火系统设计最重要的控制数据,不同火灾危险等级的建筑物,喷水强度也不同。我国《自动喷水灭火系统设计规范》规定轻火灾危险级的建筑物的喷水强度为3L/min.m2;中火灾危险级建筑物喷水强度为6L/rain.m2;严重火灾危险级建筑物喷水强度为10—15L/rain.m2。 作用面积,即喷水灭火系统允许喷水最大面积,在这个面积内,喷水强度、喷水的均匀性能得到保证。作用面积的大不主要是根据建筑物燃烧特性(包括建筑物内贮存的可燃物)、可燃物多少及燃烧时间等因素来制定的。我国喷水灭火系统设计规范中轻级、中级、严重级分别为180m2、200m2、300m2。 喷头动作数和作用面积是紧密相关的,选定了喷头,确定了作用面积,也就知道喷头最大动作数了。 最不利点处喷头压力一般情况为0.IMPa,最低不得小于

0.05MPa,这主要是根据喷头特性和喷水强度要求决定的。在设计时,决定了最不利点处喷头压力,就要按这一压力下每只喷头的保护面积(符合喷水强度)计算全部作用面积内应配置的喷头数。为了保证作用面积内每个喷头的流量、压力限定在一定的允许偏差范围内,管网管径要有所变动,必要时还要力口设节流管、减压孑L板或比例减压阀,以防在规定时间内的给水量,在限定时间还未到就喷完。 理论用水量和设计用水量。理论用水量,即喷水强度乘作用面积再乘灭火时间,这个乘出来的数值是理论值。实际上,每个喷头的喷水量不可能完全一样,因为有个偏差范围,再加上其他水量损失因素,所以理论用水量必须乘一个系数,一般取1.15—1.3,即设计用水量应为理论用水量乘1.15—1.3倍。 二、选定给水源 自动喷水灭火系统的水源可分为有限水源和无限水源,有限水源一般指限定了的水源,无限水源则是不限定的水源。 (一)有限水源 有限水源指压力水箱、高位水箱等定量水源。一般用于轻火灾危险级建筑物,允许设置的喷头数不超过1000个,每一保护区的喷头数不超过100个。 (二)无限水源 无限水源指城市自来水管网、容量足够喷水灭火系统一次灭火用水量的高位水箱和水池、消防泵给水装置(包括城市自来水管网、加压送水设备、中间水箱)。

相关文档
最新文档