函数发生器的设计

函数发生器的设计
函数发生器的设计

函数发生器的设计

目录

一、设计任务与要求

二、方案与论证

1.正弦波产生电路:

1. 1RC桥式正弦波振荡电路:

2.正弦波变换为方波的电路:

2.1 电压比较器电路:

3.方波变换为三角波的电路:

3.1 积分运算电路:

三、仿真

四、元器件清单

五、调式与性能分析:

一、 设计任务与要求:

掌握方波——三角波——正弦波函数发生器的设计方法与测试技术。了解集成运算放大器与晶体管差分放大器组成的函数发生器的工作原理与设计方法。学会安装与调试由分离器件与集成电路组成的多级电子电路小系统。

设计并制作一个简易函数发生器,要求如下: 1. 输出波形:正弦波、方波、三角波等 2. 频率范围:1Hz~10Hz, 10Hz~100Hz

3. 输出电压:方波Vp-p<=24V , 三角波Vp-p<=8V , 正弦波Vp-p>1V .

二、方案与论证

方案总体分为三部分,先设计一个正弦波发生电路,再将正弦波信号经迟滞比较器转化为方波,再将方波经积分运算转变为三角波。

正弦波 方波 三角波

1. 正弦波产生电路:

RC 桥式振荡电路原理图如下:

RC 桥式振荡电路

迟滞比较器

积分电路

3

2

6

7

415

U1

UA741

C

C R R RF

R1

0R1

由选频网络和放大电路两部分组成。选频网络兼作放大电路的正反馈,反馈系数Fv = Vf / V o ,当f =1 / (2πRC) 时,幅频响应的幅值为最大Fmax = 1/3 ,相频响应的相位角为零。也就是说,只有当f =1 / (2πRC) 时,输出电压的幅值最大,为输入电压的1/3,且输出电压与输入电压同相。

噪声中有f =1 / (2πRC) 这个频率,直流电源提供能源,选频网络的正反馈使输出频率越来越大,最后受电路中非线性元件的限制,振荡幅度自动稳定下来。适当调整负反馈的强弱,使Av

起振时略大于3,稳幅时Av = 3。如果Av 远大于3,则会出现严重的非线性失真。

2.正弦波变换为方波的电路:

使用双门限反相输入迟滞比较器,电路原理图如下:

3

2

6

7

415

U2

UA741

D3

D4

R4

R6

门限电压是随着输出电压V o 的变化而改变的。V o 用双向稳压管(或两个单稳压管反向串联)稳压,V = R1*Vref / (R1+R2) + R1*V o / (R1+R2) ,当输入电压vi >V+ ,则输出电源最大电压(即742的供电电压),门限电压变为下门限;直到vi

可以改变输入电压接同相输入端还是反相输入端改变跳变方向,但一定要构成正反馈。

输出电压幅值大小可以通过滑动变阻器调节,另一端要

接地。

3.方波变换为三角波的电路:

使用积分电路,电路原理图如下:

3

2

6

7

415

U1

UA741

C1

R1

R2

三、仿真与分析

1. RC 桥式正弦波振荡电路:

正弦波振荡电路的典型特征是无交流输入信号,却在输出端产生了正弦波输出信号。经过选频兼正反馈网络,把某一频率信号筛选出来(而其他信号被抑制),再送回放大电路的输入端,整个电路的回路增益应略大于1,这样不断的循环放大,得到失真的输出信号,最后经稳幅环节可输出一个频率固定、幅值稳定的正弦波信号。

R1、C1、R2、C2组成的串并联选频兼正反馈网络以及RW 和RF组成的电压串联负反馈稳幅环节。

利用二极管正向伏安特性的非线性实现自动稳幅。电压小于二极管的导通电压时,二极管电阻较大,负反馈系数比较小;随着振幅逐渐增大,二极管导体电阻逐渐减小,负反

馈增强,限制振幅增大;稳幅环节中电阻选择4.4k ,仿真效果比较好。

2.电压比较器电路:

门限电压是随着输出电压V o的变化而改变的。V o用两个单稳压管反向串联稳压为+5.1V和-5.1V,V += R1*Vref / (R1+R2) + R1*V o / (R1+R2) =0+2.2*5.1/(2.2+2.2) = 2.55V ,仿真输出为2.51V (图中3.16V是因为接了后面电路, 当输入电压vi >2.55V ,理想条件下输出电源15V,仿真电路中,直到vi

可以改变输入电压接同相输入端还是反相输入端改变跳变方向,但一定要构成正反馈。

输出电压幅值大小可以通过滑动变阻器调节,另一端要接地。

3.积分运算电路:原理图如下

3

2

6

7

4

15

U3

UA741

C3

0.33u

R4

5M R6

510K

R7

510K

元件参数的确定:

UA741,电容C3,电阻R10组成基本的积分电路; 通过R3和变阻器RV5起限流作用;

要求R10=R6=1/10R11来防止积分偏移和饱和截止;

主要是确定积分时间C1R1的值,或者说是确定闭环增益线与0dB 线交点的频率f0(零交叉点频率)。当时间常数较大,如超过10ms 时,电容C1的值就会达到数微法,由于微法级的标称值电容选择面较窄,故宜用改变电阻R1的方法来调整时间常数。但如所需时间常数较小

时,就应选择R1为数千欧~数十千欧,再往小的方向选择C1的值来调整时间常数。因为R1的值如果太小,容易受到前级信号源输出阻抗的影响。根据以上的理由,图①和图②积分电路的参数如下:积分时间常数0.2s(零交叉频率0.8Hz),输入阻抗200kΩ,输出阻抗小于1Ω

原理:从图得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)∫icdt=(1/RC)∫Uidt 这就是输出Uo正比于输入Ui 的积分(∫Uidt)RC电路的积分条件:RC≥Tk

4.仿真结果如下图,满足要求。

四.元件清单

数量备注元件序列型号元件参数

3

U1~ U3 放大器

ua741

D3~D4 二极管

2

10BQ040

C1~C3 电解电容0.33uF 3

R1 电阻2K 1

R3 电阻1K 1

R2 电阻10K 1

R4 电阻20K 1

R5,R7 电阻 1.6K 2

R8 电阻 1.1K 1

R9 电阻51K 1

R6,R10 电阻100 2

R11 电阻1M 1

200K 2

RV1,RV2 滑动变阻

RV4 滑动变阻

2K 1

RV5 滑动变阻1K 1

五、调式与性能分析:

实际调试时,一次成功,波形都满足要求,只是方波的上沿和下沿的右端都有点向下倾斜。

函数发生器的设计

函数发生器的设计

目录 一、设计任务与要求 二、方案与论证 1.正弦波产生电路: 1. 1RC桥式正弦波振荡电路: 2.正弦波变换为方波的电路: 2.1 电压比较器电路: 3.方波变换为三角波的电路: 3.1 积分运算电路: 三、仿真 四、元器件清单 五、调式与性能分析:

一、 设计任务与要求: 掌握方波——三角波——正弦波函数发生器的设计方法与测试技术。了解集成运算放大器与晶体管差分放大器组成的函数发生器的工作原理与设计方法。学会安装与调试由分离器件与集成电路组成的多级电子电路小系统。 设计并制作一个简易函数发生器,要求如下: 1. 输出波形:正弦波、方波、三角波等 2. 频率范围:1Hz~10Hz, 10Hz~100Hz 3. 输出电压:方波Vp-p<=24V , 三角波Vp-p<=8V , 正弦波Vp-p>1V . 二、方案与论证 方案总体分为三部分,先设计一个正弦波发生电路,再将正弦波信号经迟滞比较器转化为方波,再将方波经积分运算转变为三角波。 正弦波 方波 三角波 1. 正弦波产生电路: RC 桥式振荡电路原理图如下: RC 桥式振荡电路 迟滞比较器 积分电路

3 2 6 7 415 U1 UA741 C C R R RF R1 0R1 由选频网络和放大电路两部分组成。选频网络兼作放大电路的正反馈,反馈系数Fv = Vf / V o ,当f =1 / (2πRC) 时,幅频响应的幅值为最大Fmax = 1/3 ,相频响应的相位角为零。也就是说,只有当f =1 / (2πRC) 时,输出电压的幅值最大,为输入电压的1/3,且输出电压与输入电压同相。 噪声中有f =1 / (2πRC) 这个频率,直流电源提供能源,选频网络的正反馈使输出频率越来越大,最后受电路中非线性元件的限制,振荡幅度自动稳定下来。适当调整负反馈的强弱,使Av

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

基于51单片机的函数信号发生器的设计

龙源期刊网 https://www.360docs.net/doc/0111060077.html, 基于51单片机的函数信号发生器的设计 作者:朱兆旭 来源:《数字技术与应用》2017年第02期 摘要:本文所设计的系统是采用AT89C51单片机和D/A转换器件DAC0832产生所需不 同信号的低频信号源,AT89C51 单片机作为主体,采用D/A转换电路、运放电路、按键和LCD液晶显示电路等,按下按键控制生成方波、三角波、正弦波,同时用LCD显示相应的波形,输出波形的周期可以用程序改变,具有线路简单、结构紧凑、性能优越等特点。 关键词:51单片机;模数转换器;信号发生器 中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2017)02-0011-01 1 前言 波形发生器,是一种作为测试用的信号源,是当下很多电子设计要用到的仪器。现如今是科学技术和设备高速智能化发展的科技信息社会,集成电路发展迅猛,集成电路能简单地生成各式各样的波形发生器,将其他信号波形发生器于用集成电路实现的信号波形发生器进行对比,波形质量、幅度和频率稳定性等性能指标,集成电路实现的信号波形发生器都胜过一筹,随着单片机应用技术的不断成长和完善,导致传统控制与检测技术更加快捷方便。 2 系统设计思路 文章基于单片机信号发生器设计,产生正弦波、方波、三角波,连接示波器,将生成的波形显示在示波器上。按照对作品的设计研究,编写程序,来实现各种波形的频率和幅值数值与要求相匹配,然后把该程序导入到程序存储器里面。 当程序运行时,一旦收到外界发出的指令,要求设备输出相应的波形时,设备会调用对应波形发生程序以及中断服务子程序,D/A转换器和运放器随之处理信号,然后设备的端口输出该信号。其中,KEY0为复位键,KEY1的作用是选择频率的步进值,KEY2的作用是增加频 率或增加频率的步进值,KEY3的作用是减小频率或减小频率的步进值,KEY4的作用是选择三种波形。103为可调电阻,用于幅值的调节。自锁开关起到电源开关的作用。启动电源,程序运行的时候,选择正弦波,红色LED灯亮起;选择方波,黄色LED灯亮起;选择三角波,绿色LED灯亮起。函数信号发生器频率最高可达到100Hz,最低可达到10Hz,步进值0.1- 10Hz,幅值最高可到3.5V。系统框图如图1所示。 3 软件设计

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

北京邮电大学课设 基于MSP430的简单信号发生器的设计

基于MSP430的信号发生器 设计报告 学院:电子工程学院 班级:2013211212 组员:唐卓浩(2012211069) 王旭东(2013211134) 李务雨(2013211138) 指导老师:尹露

一、摘要 信号发生器是电子实验室的基本设备之一,目前各类学校广泛使用的是标准产品,虽然功能齐全、性能指标较高,但是价格较贵,且许多功能用不上。本设计介绍一款基于MSP430G2553 单片机的信号发生器。该信号发生器虽然功能及性能指标赶不上标准信号发生器,但能满足一般的实验要求,且结构简单,成本较低。本次需要完成的任务是以MSP430 LaunchPad 的单片机为控制核心、DAC 模块作为转换与按键电路作为输入构成的一种电子产品。MSP430 LaunchPad 单片机为控制核心,能实时的进行控制;按键输入调整输出状态,DAC0832将单片机输出的数字信号转化为模拟量,经运放放大后,在示波器上输出。在本次程序设计中充分利用了单片机内部资源,涉及到了中断系统、函数调用等。 关键字:信号发生器 MSP430单片机数模转换 二、设计要求 以msp430单片机为核心,通过一个DA (数字模拟)转换芯片,将单片机输出的方波、三角波、正弦波(数字信号)转换为模拟信号输出。提供芯片:msp430G2553、DAC0832、REF102、LM384、OP07。参考框图如下: Lauchpad MSP430 电位器 按键1 DA 转换DAC0832 放大输出LM384 按键N 按键2 AD …… 图1 硬件功能框图 1、基本要求 (1) 供电电压 VDD= 5V~12V ;(√) (2) 信号频率:5~500Hz(可调);(√) (3) 输出信号电压可调范围:≥0.5*VDD ,直流偏移可调:≥0.5*VDD ;(√) (4) 完成输出信号切换;(√) (5) 方波占空比:平滑可调20%~80%;(√) (6) 通带内正弦波峰峰值稳定度误差:≤±10%(负载1K )。(√)

函数信号发生器的使用方法规定

函数信号发生器的使用方法规定 1、目的:为操作人员作操作指导。 2、范围:适用于函数信号发生器操作人员。 3、操作步骤: 3.1注意事项 仪器在只使用“电压输出端”时应将“输出衰减”开关置于“0dB”~“80dB”内的位置,以免功率指示电压表指示过大而损坏。 3.2使用方法 3.2.1开机:在未开机前应首先检查仪器外接电源是否为交流220V±10%,50Hz±5%, 并检查电源插头上的地线脚应与在地接触良好,以防机壳带电。面板上的电源开关 应放在“关”位置,“电平调节”旋钮置中间,输出衰减旋钮置“0dB”,频段开关设 置在你所需要的频段。 3.2.2频率选择:首先将频段开关设置在你所期望的频率范围内,然后调节频率调谐旋钮 和频率微调旋钮,至数码管上指示你所需要的频率为止。 3.2.3波形选择:波形开关在“~”位置,可在电压输出端获得全频段的电压正弦信号,在 功率输出端可获得20Hz~100kHz的功率输出;波形开关在“”位置,在电压输 出端可获得全频段的电压方波信号。输出衰减在功率输出端8Ω档同样可以获得 20Hz~100kHz的方波功率输出。 3.2.4输出电压调整:电压输出端的输出电压可通过“电平调节”旋钮连续可调。 3.2.5功率输出调整:功率输出端的输出同由“电平调节”旋钮控制调节,并可通过“输 出衰减”进行80 dB的衰减。“输出衰减”控制开关上有8Ω和600Ω二档匹配档, 用以匹配低阻和较高负载以获取最大输出功率。 3.2.6功率的平衡输出:本仪器600Ω功率输出档可进行平衡输出,方法是可将面板上中间 红色接线柱和黑色接线柱之间的接地片取下,接在两个红色接线柱上即可,但本仪器连接的其它仪器也应不接在“地”电位。

函数发生器设计和仿真实现

课程设计 课程名称模拟电子技术基础课程设计题目函数发生器 学院 专业 班级 姓名 指导教师 2015 年01 月20 日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 函数发生器的设计和仿真实现 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件。 要求完成的主要任务: (1)设计任务 根据要求,完成对方波-三角波-正弦波发生器的仿真设计、仿真、装配与调试,并自制直流稳压电源 (2)设计要求 ①正弦波Upp≈3V,幅度连续可调;三角波Upp≈5V,幅度连续可调;方波Upp≈14V,幅度连续可调。 频率范围:三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz; 频率控制方式:改变RC时间常数; 正弦波输出电量:电流; ②选择电路方案,完成对确定方案电路的设计。 ③利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并仿真实现系统功能。 ④安装调试并按规范要求格式完成课程设计报告书。 ⑤选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、 2015 年 1月13日集中,作课设具体实施计划与课程设计报告格式的要求说明,查阅相关资料,学习电路的工作原理。。 2、 2015 年 1月14日至2015年1月16日,方案选择和电路设计。 3、 2015 年 1月 17日至2015年1月18日,电路调试和设计说明书撰写。 4、 2015 年 1月 20日上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

简易函数信号发生器

课程设计任务书 (一)设计目的 1、掌握信号发生器的设计方法和测试技术。 2、了解单片函数发生器IC8038的工作原理和应用。 3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。 (二)设计技术指标与要求 1、设计要求 (1)电路能输出正弦波、方波和三角波等三种波形; (2)输出信号的频率要求可调; (3)拟定测试方案和设计步骤; (4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (5)在面包板上或万能板或PCB板上安装电路; (6)测量输出信号的幅度和频率; (7)撰写设计报告。 2、技术指标 频率范围:100Hz~1KHz 1KHz~10KHz; 输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。 (三)设计提示 1、方案提示: (1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。 (2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。 2、设计用仪器设备: 示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,智能电工实验台。 3、设计用主要器件: (1)双运放NE5532(或747)1只(或741 2只)、差分管3DG100 4个、电阻电容若干; (2)IC8038、数字电位器、电阻电容若干。 4、参考书: 《电子线路设计·实验·测试》谢自美主编华中科技大学出版社 《模拟电子技术基础》康华光主编高等教育出版社 《模拟电子技术》胡宴如主编高等教育出版社 (四)设计报告要求 1、选定设计方案; 2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值; 3、列出测试数据表格; 4、调试总结,并写出设计报告。 (五)设计总结与思考 1、总结信号发生器的设计和测试方法;

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

简易函数信号发生器的设计

单片机课程设计报告书 课题名称 简易函数信号发生器的设计 姓 名 ** 学 号 ** 院、系、部 ** 专 业 电子信息科学与技术 指导教师 ** 2011年12月12日 ※※※※※※※※※ ※ ※ ※※ ※ ※ ※※※※※※※※※ **级学生单片机 课程设计

目录 一、绪言 (1) 二、系统方案论证 (1) 2.1设计要求 (1) 2.2 简易函数信号发生器方案论证 (1) 2.3 单片机的控制方案论证 (1) 2.4 键盘选择方案论证 (2) 三、系统设计 (2) 3.1 硬件电路设计 (2) 3.2 程序流程图 (4) 3.3 C语言程序设计 (5) 四、简易函数信号发生器的仿真 (8) 4.1 系统仿真 (8) 4.2工作原理分析 (10) 结束语 (11) 参考文献 (11) 修改通篇页面设置里面的左右边距

一绪言 函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚至任意波形。函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。因此设计使用的AT89S52单片机构成的发生器,可以产生正弦波和方波。 二系统方案论证 2.1设计要求 1、设计一个基于AT89S52单片机的信号发生器; 2、能够输出方波和正弦波(正弦波是双极性的),要求可用按键选择; 3、可选电压值为1V、2V、3V、4V、5V五个档位; 4、可选频率值为:10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1KHz七个档位; 5、能够通过显示模块显示输出波形的主要参数。 2.2 简易函数信号发生器方案论证 方案一:用分立元件组成函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试。 方案二:可以由晶体管,运放 IC等通用器件制作,更多的则是用专用的函数信号发生器IC产生。早期的函数信号发生器IC,如L8083、BA205等,他们的功能少,精度不高,频率上限只有300KHz,频率和占空比不能独立调节,二者相互影响。 方案三:利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并且达到很高的频率。但成本很高。 方案四:采用 AT89S52单片机和DAC0832芯片,直接连接按键和显示。该种方案主要对AT89S52单片机的各个I/0口充分利用,不再多用其他的芯片,从而减小了系统的成本,也对按照系统便携式低频信号发生器的要求所完成,占用空间小,使用空间小,使用芯片少,低功耗。 综合考虑,方案四各项性能和指标都优于其他各种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片和器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。 2.3 单片机的控制方案论证 方案一:采用可编程逻辑期间CPLD 作为控制器。CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版 6 设计总结 7仪器仪表明细清单 8 参考文献

1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。 2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波U P-P≤24V,三角波U P-P =8V,正弦波U P-P >1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。

2.函数发生器总方案及原理框图 图1-1 整体原理框图 2.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路的基本结构是比例放大器,对不同区段内比例系数的切换,是通过二级管网络来实现的。如输出信号的正半周内由D1~D3控制切换,负半周由D4~D6控制切换。电阻Rb1~Rb3与Ra1~Ra3分别组成分压器,控制着各二极管的动作电平。

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

函数信号发生器的设计与制作

Xuchang Electric V ocational College 毕业论文(设计) 题目:函数信号发生器的设计与制作 系部:电气工程系_ 班级:12电气自动化技术 姓名:张广超 指导老师:郝琳 完成日期:2014/5/20

毕业论文内容摘要

目录 1引言 (3) 1.1研究背景与意义 (3) 1.2研究思路与主要内容 (3) 2 方案选择 (4) 2.1方案一 (4) 2.2方案二 (4) 3基本原理 (5) 4稳压电源 (6) 4.1直流稳压电源设计思路 (6) 4.2直流稳压电源原理 (6) 4.3集成三端稳压器 (7) 5系统工作原理与分析 (8) 5.1ICL8038芯片性能特点简介 (8) 5.2ICL8038的应用 (8) 5.3ICL8038原理简介 (8) 5.4电路分析 (9) 5.5ICL8038内部原理 (10) 5.6工作原理 (11) 5.7正弦函数信号的失真度调节 (11) 5.8ICL8038的典型应用 (12) 5.9输出驱动部分 (12) 结论 (14) 致谢 (15) 参考文献 (16) 附录 (17)

1引言 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。 1.1研究背景与意义 函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如 ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的[1]。 1.2研究思路与主要内容 本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术实验使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。波形发生部分:主要由单片集成函数信号发生器ICL8038构成。通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。输出驱动部分:主要由运放LF353构成。由于ICL8038的输出信号幅度较小,需要放大输出信号。ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。

简易函数信号发生器的设计

简易函数信号发生器的设计 一、 电路功能 能同时输出方波、三角波和正弦波三种波形。 二、 技术指标 信号发生器能产生方波、三角波和正弦波三种周期性波形输出信号频率范围在100Hz —10KHz 可调,输出信号的峰峰值可调,方波的峰峰值约为8V ,三角波的峰峰值约为5V ,正弦波的峰峰值约为6V 。 三、 电路原理框图 (电路原理框图) 四、 元器件的介绍 1、 集成运算放器LM324 每块运放集成电路内含有四个相同的运算放大器,它们电源共用,彼此独立工作,管脚排列如图一所示。 图一(集成运算放大器LM324)

2、发光二极管LED 本次设计所用的发光二极管有绿色和红色两种圆头发光二极管,发光二极管的管脚有长短,长的为正极,短的为负极。 3、二极管 二极管具有单向导电性,如图3所示。如图中所示,二极管的一端是银色的,此端口为负极。 图二(二极管) 4、PNP和NPN PNP和NPN分别有三个管脚,分别有基极b,集电极c和发射极e,他们的分布店铺是如图四所示。 图三(三极管) 五、电路中元件参数的计算与取值,元器件清单 1、方波、三角波电路 2、

电路图如图四所示是产生方波和三角波的电路原理图。如图所示,A U 1构成有源积分器, A U 2构成迟滞比较器。 A U 2中,根据“虚短虚开”得 当n v =p v =0时,01v 的值为门限电压 当01V 单独作用时,p v = 01122 V R R R + (1) 当02V 单独作用时,p v = 022 11 V R R R + (2) ∴ 022 11 01212V R R R V R R R +++ = 0 (3) ∴此时01v 为门限电压T V T V ∴=01V = 022 1 V R R - (4) 又02V = z V ± = ±4V ∴ +T V = Z V R R 21 (5) -T V = z V R R 2 1 - (6) ∴ 当01v 达到+T V 时,三角波反转;当01v 达到-T V 时,三角波再次反转 ∴ +T V 和-T V 分别代表三角波的峰-峰值 ∴ 峰-峰值 m m v 01 = +T V --T V = z V R R 2 1 2,又称回差电压 又由原理图可知,方波的峰-峰值为z V 2 图四(方波三角波产生电路) 300 -4V +4V 2 0R

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

相关文档
最新文档