二次函数压轴题四边形面积

二次函数压轴题四边形面积
二次函数压轴题四边形面积

四边形面积最值

除了关于三角形的各种面积问题之外,四边形问题也是中考题中常见的一种问法,鉴于四边形一般是普普通通的四边形,因此问题一般也是普普通通的问题,本文分享一点关于四边形面积的题目.

思考:如何求一个普通的四边形的面积?

解法也很普通,连对角线分割为两个三角形即可求得面积,至于三角形面积参考铅垂法.

就是这么的简单粗暴,甚至还有一点无聊~

搞定了四边形的面积,就可以看看四边形面积的最值了,还是来看点例子吧:

已知抛物线24y ax bx =+-经过点(2,0)A 、(4,0)B -,与y 轴交于点C . (1)求这条抛物线的解析式;

(2)如图,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标.

【分析】 (1)2

142

y x x =

+-; (2)此处四边形ABPC 并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角

形求面积.

若连接AP ,则△ABP 和△APC 均为动三角形,非最佳选择;

若连接BC ,可得定△ABC 和动△BPC ,只要△BPC 面积最大,四边形ABPC 的面积便最大.

考虑A (2,0)、B (-4,0)、C (0,-4),故1

64122

ABC

S

=??=, 接下来求△BPC 的面积,设P 点坐标为21,42m m m ??

+- ???

连接BC ,则直线BC 的解析式为:y =-x -4

过点P 作PQ ⊥x 轴交BC 于点Q ,则Q 点坐标为(m ,-m -4), 故221144222PQ m m m m m ??

=---+-=-- ???

当m =-2时,PQ 取到最大值2,此时△BPC 面积最大,四边形ABPC 面积最大. 此时P 点坐标为(-2,-4).

已知抛物线23

4 2

y ax x

=++的对称轴是直线3

x=,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.

(1)求抛物线的解析式和A,B两点的坐标;

(2)如图,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;

【分析】

(1)抛物线:213

442

y x x =-++

点A 坐标为(-2,0),点B 坐标为(8,0).

(2)显然将四边形PBOC 拆为△BOC 和△PBC ,点C 坐标为(0,4),

故1

84162

BOC

S

=??=, 设P 点坐标为213,442m m m ??

-++ ???,

根据B 、C 坐标可得BC 的解析式为1

42

y x =-+

过点P 作PQ ⊥x 轴交BC 于点Q ,则Q 点坐标为1,42m m ??

-+ ???

故2213114424224PQ m m m m m ??

=-++--+=-+ ???

当m =4时,PQ 取到最大值4,

1

84162

BPC

S

=??=, 故四边形PBOC 的最大面积为32,此时P 点坐标为(4,6).

这个题目四边形已拆好,只要负责计算就可以了,而计算的内容,与三角形无异.

【2019日照中考】

如图1,在平面直角坐标系中,直线55

y x

=-+与x轴,y轴分别交于A,C两点,抛物线2

y x bx c

=++经过A,C两点,与x轴的另一交点为B.

(1)求抛物线解析式及B点坐标;

(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;

(3)如图2,若P点是半径为2的B上一动点,连接PC、PA,当点P运动到某一位置

时,

1

2

PC PA

+的值最小,请求出这个最小值,并说明理由.

图1

图2

【分析】

(1)由题意得:A (1,0)、C (0,5),代入可解抛物线解析式为:265y x x =-+,点B 坐标

为(5,0).

(2)显然四边形AMBC 可拆为△ABC 和△AMB ,

11

451022

ABC

S

AB OC =

?=??=, 显然,当M 点在抛物线顶点时,△AMB 面积最大,

此时M 点坐标为(3,-4),

1

4482

AMB

S

=??=, 故四边形AMBC 面积最大值为10+8=18,此时M 点坐标为(3,-4).

(3)这才是本题重点啊!这个重点掩藏得很不认真.

显然是个“阿氏圆”问题,构造1

2PA 即可,参考阿氏圆解决方法,

取点D (4,0),连接PD ,任意时刻,均有1

2

PD PA =,问题易解.

【2019相城区一模】

如图,抛物线234(0)y ax ax a a =--<与x 轴交于A ,B 两点,直线11

22

y x =

+经过点A ,与抛物线的另一个交点为点C ,点C 的横坐标为3,线段PQ 在线段AB 上移动,1PQ =,分别过点P 、Q 作x 轴的垂线,交抛物线于E 、F ,交直线于D ,G . (1)求抛物线的解析式;

(2)在线段PQ 的移动过程中,以D 、E 、F 、G 为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.

【分析】

(1)由题意得C 点坐标为(3,2),代入抛物线解析式得:1

2

a =-,

抛物线解析式为:213

222

y x x =-++.

(2)注意题目的描述:线段PQ 在线段AB 上移动,故四边形可能在C 点左侧,可能在C

点右侧,可能横跨C 点.

显然四边形面积的最大值存在于第一种情况.

当四边形在点C 左侧时,设D 11,22m m ??+ ???,则G 点坐标为111,22m m +?

?++ ??

?,E 点坐

标为213,222m m m ??-++ ???,F 点坐标为2111,322m m m ??

+-++ ???,

故22131

1132222222DE m m m m m ??=-++-+=-++ ???,

221111132222

22m FG m m m +????

=-++-+=-+ ? ?????,

27

2

FG DE m m +=-++, 当12m =

时,FG +DE 取到最大值为154

, 此时四边形面积为115151248??=.故最大面积为158.

写在最后:特四找公式,普四化为三.

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

二次函数压轴题四边形面积

四边形面积最值 除了关于三角形的各种面积问题之外,四边形问题也是中考题中常见的一种问法,鉴于四边形一般是普普通通的四边形,因此问题一般也是普普通通的问题,本文分享一点关于四边形面积的题目. 思考:如何求一个普通的四边形的面积? 解法也很普通,连对角线分割为两个三角形即可求得面积,至于三角形面积参考铅垂法. 就是这么的简单粗暴,甚至还有一点无聊~ 搞定了四边形的面积,就可以看看四边形面积的最值了,还是来看点例子吧:

已知抛物线24y ax bx =+-经过点(2,0)A 、(4,0)B -,与y 轴交于点C . (1)求这条抛物线的解析式; (2)如图,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标. 【分析】 (1)2 142 y x x = +-; (2)此处四边形ABPC 并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角 形求面积. 若连接AP ,则△ABP 和△APC 均为动三角形,非最佳选择; 若连接BC ,可得定△ABC 和动△BPC ,只要△BPC 面积最大,四边形ABPC 的面积便最大. 考虑A (2,0)、B (-4,0)、C (0,-4),故1 64122 ABC S =??=, 接下来求△BPC 的面积,设P 点坐标为21,42m m m ?? +- ??? , 连接BC ,则直线BC 的解析式为:y =-x -4 过点P 作PQ ⊥x 轴交BC 于点Q ,则Q 点坐标为(m ,-m -4), 故221144222PQ m m m m m ?? =---+-=-- ??? , 当m =-2时,PQ 取到最大值2,此时△BPC 面积最大,四边形ABPC 面积最大. 此时P 点坐标为(-2,-4).

中考数学二次函数压轴题(含答案)

2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0

二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB = 8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交 图2

于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大并求出最大面积. 3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由. C E D G A x y O B F

二次函数压轴题(含答案)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

中考二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x轴于点A (3,0),交 y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S△PAB = 8 9 S △C AB,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段O A绕原点O顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△B OC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 图2

2.(2010绵阳)如图,抛物线y = a x2 + bx + 4与x 轴的两个交点分别为A (-4,0)、 B(2,0),与y 轴交于点C,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线EF 上求一点H,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积. 3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A,交y 轴于点B,抛物线y=ax 2 +b x+c经过A、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE 的面积等于四边形APC E的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由 . C E D G A x y O B F

二次函数压轴题解题技巧

图1 图 2 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2 -2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2 +bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

二次函数压轴题分类精选---取值范围

1.已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO= (1)求二次函数的解析式; (2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标; (3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写出x1,x2的值;若不存在,说明理由. 【分析】(1)首先根据tan∠ACO=,求出OA的值,即可判断出A点的坐标;然后把A点的坐标代入y=x2+bx﹣4,求出b的值,即可判断出二次函数的解析式.(2)首先根据Q为抛物线对称轴上的一点,设点Q的坐标为(﹣,n);然后根据∠OQC=∠CQP、∠CQP=∠OCQ,可得∠OQC=∠OCQ,所以OQ=OC,据此求出n 的值,进而判断出Q点坐标即可. (3)根据题意,分3种情况:①当x1≤x2≤﹣时;②当x1≤﹣≤x2时;③当﹣ <x1≤x2时;然后根据二次函数的最值的求法,求出满足题意的实数x1、x2(x1<x2),使得当x1≤x≤x2时,y的取值范围为≤y≤即可. 【解答】解:(1)如图1,连接AC,

, ∵二次函数y=x2+bx﹣4的图象与y轴的交点为C,∴C点的坐标为(0,﹣4), ∵tan∠ACO=, ∴, 又∵OC=4, ∴OA=1, ∴A点的坐标为(1,0), 把A(1,0)代入y=x2+bx﹣4, 可得0=1+b﹣4, 解得b=3, ∴二次函数的解析式是:y=x2+3x﹣4. (2)如图2,

, ∵y=x2+3x﹣4, ∴抛物线的对称轴是:x=﹣, ∵Q为抛物线对称轴上的一点, ∴设点Q的坐标为(﹣,n), ∵抛物线的对称轴平行于y轴, ∴∠CQP=∠OCQ, 又∵∠OQC=∠CQP, ∴∠OQC=∠OCQ, ∴OQ=OC, ∴, ∴, 解得n=±, ∴Q点坐标是(﹣,)或(﹣,﹣). (3)①当x1≤x2≤﹣时,二次函数y=x2+3x﹣4单调递减,∵y的取值范围为≤y≤,

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

二次函数压轴题专题一面积问题

二次函数压轴题专题一 面积问题 【例1】如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.

2.如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线EF上求一点H,使△CDH (3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时, △EFK的面积最大?并求出最大面积. 3.如图,已知:直线3 + - =x y交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、 B、C(1,0)三点. (1)求抛物线的解析式; (2)若点D的坐标为(-1,0),在直线3 + - =x y上有一点P,使ΔABO与ΔADP相似, 求出点P的坐标; (3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等 于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由. C E D G A x y O B F

二次函数压轴题——角的存在性

一.解答题(共5小题) 例1.(2013?河南)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作 PE⊥x轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由. (3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标. 例2.(2012?惠山区校级模拟)如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0, ﹣3)两点,与x轴交于另一点B. (1)求此抛物线的解析式; (2)已知点D(m,﹣m﹣1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标. (3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.

例3.(2014?湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线 y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点 A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD. (1)若点A的坐标是(﹣4,4). ①求b,c的值; ②试判断四边形AOBD的形状,并说明理由; (2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由. 练习1.(2013?十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于 C点,抛物线的顶点为D点,点A的坐标为(﹣1,0). (1)求D点的坐标; (2)如图1,连接AC,BD并延长交于点E,求∠E的度数; (3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.

中考数学二次函数压轴题精编(含答案)

(2010湖北咸宁)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点, 与反比例函数k y x =的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .( 把你认为正确结论的序号都填上) (2010江苏徐州)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函 数y= x m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x m <0的解集(直接写出答案). 1. (2009遂宁)把二次函数34 12+--=x x y 用配方法化成()k h x a y +-=2 的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 2. (2009嘉兴)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ ) 3. (2009烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函 数a b c y x ++= 在同一坐标系内的图象大致为( ) 4. (2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( ) O y x 1 -1A x y O 1 -1 B x y O 1 -1 C x y O 1 -1 D 1- 1 O x y (第11题图) y x O y x O B . C . y x O A . y x O D . A B O x y (第21题) 2 1 2 3 -3 -1 -2 1 3 -3 -1 -2 y x D C A B O F E (第16题)

全国中考二次函数压轴题集锦

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A

中考数学中二次函数压轴题四边形

关于二次函数的压轴题 四、抛物线与四边形 例题 1. 如图,抛物线经过A (-1,0),B (5,0),C (0,-52 )三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形若存在,求点N 的坐标;若不存在,请说明理由. ! 2. 如图,已知二次函数图像的顶点坐标为(2,0),直线1+=x y 与二次函数的图像交于A 、B 两点,其中点A 在y 轴上. (1)二次函数的解析式为y = ; (2)证明点(,21)m m --不在(1)中所求的二次函数的图像上; (3)若C 为线段AB 的中点,过C 点作x CE ⊥轴于E 点,CE 与二次函数的图像交于D 点. ① y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则K 点的坐标是 ; ②二次函数的图像上是否存在点P ,使得ABD POE S S ??=2若存在,求出P 点坐标;若不存在,请 说明理由. y x O " B C

练习: 1. 如图,抛物线14 17 452++- =x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式; (2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围; (3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形对于所求的t 值,平行四边形BCMN 是否菱形请说明理由. ( 2. 如图所示,在平面直角坐标系x O y 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半 轴和x 轴的正半轴上,抛物线2y ax bx c =++经过点A 、B 和D (4,2 3 -). (1)求抛物线的表达式. (2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动,设S=2PQ (2cm ). ①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ! ②当S 取5 4 时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形如 O x , M N B P C

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

二次函数压轴题总结精华

二次函数常见压轴 y=x2-2x-3(以下几种分类的函数解析式就是这个) 和最小,差最大在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标 在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标 y B O C D A x 求面积最大连接AC,在第四象限找一点P,使得?ACP面积最大,求出P坐标 y 讨论直角三角连接AC,在对称轴上找一点P,使得?ACP为直角三角形,求出P坐标 或者在抛物线上求点△P,使ACP是以AC为直角边的直角三角形. B O C y D A x 讨论等腰三角连接AC,在对称轴上找一点P,使得?ACP B O A x 为等腰三角形,求出P坐标 C y D 讨论平行四边形1、点E在抛物线的对称轴上,点F 在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标B O A x C D

的 和最小差最大 如图所示,在平面直角坐标系 xOy 中,正方形 OABC 的边长为 2cm ,点 A 、C 分别在 y 轴的负半轴和 x 轴的正半 轴上,抛物线 y =ax 2+b x +c 经过点 A 、B 和 D (4, 2 3 ) . (1)求抛物线的解析式. (2)如果点 P 由点 A 出发沿 AB 边以 2cm /s 的速度向点 B 运动,同 时点 Q 由点 B 出发沿 BC 边以 1cm /s 的速度向点 C 运动 ,当其中一点到达终点时,另一点也随之停止运动. 设 S =PQ 2(cm 2) ①试求出 S 与运动时间 t 之间的函数关系式,并写出 t 的取值范围; ②当 S 取 5 4 时,在抛物线上是否存在点 R ,使得以 P 、B 、 (第 22 题) Q 、R 为顶点的四边形是平行四边形? 如果存在,求出 R 点的坐标; 如果不存在,请说明理由. (3)在抛物线的对称轴上求点 M ,使得 M 到 D 、A 的距离之差最大,求出点 M 的坐标. 如图 13,抛物线 y=ax 2+bx +c(a≠0) 顶点为(1,4),交 x 轴于 A 、B ,交 y 轴于 D ,其中 B 点的坐标为(3,0) (1)求抛物线的解析式 (2)如图 14,过点 A 的直线与抛物线交于点 E ,交 y 轴于点 F ,其中 E 点的横坐标为 2,若直线 PQ 为抛物线 的对称轴,点 G 为 PQ 上一动点,则 x 轴上是否存在一点 H ,使 D 、G 、F 、H 四点围成的四边形周长最小.若存 在,求出这个最小值及 G 、H 的坐标;若不存在,请说明理由. (3)如图 15,抛物线上是否存在一点 T ,过点 T 作 x 的垂线,垂足为 M ,过点 M 作直线 M N ∥BD ,交线段 AD 于点 N ,连接 △M D ,使 DNM ∽△BMD ,若存在,求出点 T 的坐标;若不存在,说明理由.

数学二次函数中考压轴题(平行四边形)解析精选

二次函数中考压轴题(平行四边形)解析精选 【例一】(2013?嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴. (1)当m=2时,求点B的坐标; (2)求DE的长? (3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形? 考点:二次函数综合题. 专题:数形结合. 分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标; (2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4; (3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式; ②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答. 解答: 解:(1)当m=2时,y=(x﹣2)2+1, 把x=0代入y=(x﹣2)2+1,得:y=2, ∴点B的坐标为(0,2). (2)延长EA,交y轴于点F, ∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE, ∴△AFC≌△AED, ∴AF=AE, ∵点A(m,﹣m2+m),点B(0,m), ∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2, ∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,

相关文档
最新文档