考研数学(二)题库(高等数学)-第五章 多元函数微分学【圣才出品】

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

考研数学高数习题集及其答案

1 函数、极限、连续 一. 填空题 1. 已知,__________)(,1)]([,sin )(2=-==x x x f x x f ??则 定义域为___________. 解. 21)(sin )]([x x x f -==??, )1arcsin()(2x x -=? 1112≤-≤-x , 2||,202≤≤≤x x 2.设?∞-∞ →=?? ? ??+a t ax x dt te x x 1lim , 则a = ________. 解. 可得?∞ -=a t a dt te e =a a t t e ae a e te -=∞ --) (, 所以 a = 2. 3. ?? ? ??+++++++++∞→n n n n n n n n n 2222211lim =________. 解. n n n n n n n n n n +++++++++2 2221 ≤x x , 则f[f(x)] _______. 解. f[f(x)] = 1. 5. )3(lim n n n n n --+∞ →=_______. 解. n n n n n n n n n n n n n n n n n n -++-++--+=--+∞ →∞ →3) 3)(3(lim )3(lim =233lim =-+++-+∞ →n n n n n n n n n

考研《高等数学》考研真题考点归纳

考研《高等数学》考研真题考点归纳高等数学考点归纳与典型题(含考研真题)详解 第1章函数、极限与连续性 1.1考点归纳 一、函数 (一)函数的概念 ,其中x称为自变量,y称为因变量,D称为定义域. (二)函数的几种特性 1.有界性 2.单调性 设函数f(x)的定义域为D,区间ID. (1)单调递增当时,. (2)单调递减当时,. 3.奇偶性

(1)偶函数:f(-x)=f(x),其图像关于y轴对称; (2)奇函数:f(-x)=-f(x),其图像关于原点对称. 4.周期性 (1)定义:(T为正数). (2)最小正周期:函数所有周期中最小的周期称为最小正周期. (三)函数的分类 1.复合函数与分段函数 (1)复合函数 函数,称为由函数u=g(x)与函数y=f(u)构成的复合函数. 注:函数g的值域必须包含于函数f的定义域. (2)分段函数 2.反函数与隐函数 (1)反函数 ①定义 设函数f:D→f(D)是单射,则它存在逆映射,称此映射为函数f的反函数.②性质

a.当f在D上是单调递增函数,在f(D)上也是单调递增函数; b.当f在D上是单调递减函数,在f(D)上也是单调递减函数; c.f的图像和的图像关于直线y=x对称. (2)隐函数 如果变量x,y满足一个方程F(x,y)=0,在一定条件下,当x取区间I任一值时,相应地总有满足该方程的唯一的y存在,则称方程F(x,y)=0在区间I确定了一个隐函数. (四)函数的运算 (五)初等函数 1.初等函数的定义 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称作初等函数. 2.基本初等函数 (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

考研高数同济七版必做课后 习题

考研高数同济七版必做课后习题 习题1-1:2,5,6,13; 习题1-2:2,3,6,7,8; 习题1-3:1,2,3,4,7,12; 习题1-4:1,5,6; 习题1-5:1,2,3,4,5; 习题1-6:1:(5),(6),2,4; 习题1-7:1,2,3,4,5:(2),(3),(4); 习题1-8:2,3,4,5,6; 习题1-9:1,2,3,4,5; 总复习题一:1,2,3,5,9,10,11,12,13。 习题2-1:5,6,7,8,9,11,13,16,17,18,19,20; 习题2-2:2,3,6,7,8,9,10,11,13,14; 习题2-3:1,2,3,4,10,12; 习题2-4:1,2,3,4,5(数一、二),6(数一、二),7(数一、二),8(数一、二); 习题2-5:3,4; 总复习题二:1,2,3,6,7,8,9,10,11,12(数一、二),13(数一、二),14。 习题3-1:5,6,7,8,9,10,11,12,15; 习题3-2:1,2,3,4; 习题3-3:6,10; 习题3-4:1,3:(3),(4),(6),(8),4,5,7,8,9,10,11; 习题3-5:1,3,4,5,6,9; 习题3-6:2,3,5; 习题3-7(数一,二):1,2,3,4,5; 总复习题三:1-15,16(数一,二),18,19,20。

习题4-1:1,2,3; 习题4-2:1,2; 习题4-3:1-24; 习题4-4:1-24; 习题4-5:1-25; 总复习题四:1,2,3,4。 习题5-1:2,3,4,7,11,12,13; 习题5-2:1,2(数一、二),3,4,5,6,7,8,9,10,11,12,13,14; 习题5-3:1-7; 习题5-4:1,4; 总复习题五:1-14。 习题6-2:2,5,12,13,14,15,23(数一、二),24(数一、二),25(数一、二); 习题6-3(数一、二):1,3,7,8,11; 总复习题六:1,2(2),4,5,7,8,10-13(数一、二)。 习题7-1:1,2,4; 习题7-2:1,2; 习题7-3:1,2; 习题7-4:1,2,6,7; 习题7-5(数一、二):1,2; 习题7-6:4; 习题7-7:1,2; 习题7-8:1,2; 总复习题七:1,2,3,4,5。

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

高等数学考研真题

一、判断共10题(共计10分) 第1题(1.0分)题号:1488 函数即可以嵌套定义,又可以嵌套调用. 答案:N 第2题(1.0分)题号:1256 unsigned 和void 在C 中都是保留字. 答案:Y 第3题(1.0分)题号:1280 表达式++i 表示对变量i 自加1. 答案:Y 第4题(1.0分)题号:1282 C 语言源程序的基本结构单位是main 函数. 答案:N 第5题(1.0分)题号:1276 字符常量的长度肯定为1. 答案:Y 第6题(1.0分)题号:1469 char a[]={'a','b','c'};char b[]={"abc"};数组a 和数组b 占用的内存空间大小不一样. 答案:Y 第7题(1.0分)题号:1249 若有int i=10,j=2; 则执行完i*=j+8;后i 的值为28. 答案:N 第8题(1.0分)题号:33 int i,*p=&i;是正确的C 说明。 答案:Y 第9题(1.0分)题号:1250 While 循环语句的循环体至少执行一次. 答案:N 第10题(1.0分)题号:1510 有数组定义int a[2][2]={{1},{2,3}};则a[0][1] 的值为0. 答案:Y 二、单项选择共30题(共计30分) 第1题(1.0分)题号:456 执行下面程序后,输出结果是()。main() { a=45,b=27,c=0; c=max(a,b); printf("%d\n",c); } int max(x,y) int x,y; { int z; if(x>y) z=x; else z=y; return(z); } A:45 B:27 C:18 D:72 答案:A 第2题(1.0分)题号:437 下列数组说明中,正确的是()。 A:int array[][4]; B:int array[][]; C:int array[][][5]; D:int array[3][]; 答案:A 第3题(1.0分)题号:2396 下面有关for 循环的正确描述是() A:for 循环只能用于循环次数已经确定的情况 B:for 循环是先执行循环体语句,后判断表达式 C:在for 循环中,不能用break 语句跳出循环体 D:for 循环的循环体语句中,可以包含多条语句,但必须用花括号括起来 答案:D 第4题(1.0分)题号:2817 以下程序的输出结果是(). main() {int i,j,k,a=3,b=2; i=(--a==b++)?--a:++b; j=a++;k=b; printf("i=%d,j=%d,k=%d\n",i,j,k); } A:i=2,j=1,k=3 B:i=1,j=1,k=2 C:i=4,j=2,k=4 D:i=1,j=1,k=3 答案:D 第5题(1.0分)题号:2866 若有下列定义,则对a 数组元素地址的正

考研高数模拟试题

模拟测试题(七) 考生注意:(1)本试卷共三大题,23小题,满分150分. (2)本试卷考试时间为180分钟. 一、选择题(本题共8小题,每题4分,共32分) (1)函数sin y x x =+及其表示的曲线 ( ). (A ) 没有极值点,有无限个拐点 ; (B ) 有无限个极值点和无限个拐点 ; (C ) 有无限个极值点,没有拐点 ; (D ) 既无极值点,也无拐点 . (2) 设222 22(0(,)0,0x y x y f x y x y ?++≠?=??+=? 则在(0,0)点处, (,)f x y ( ). (A ) 连续但二偏导数不都存在 ; (B ) 二阶偏导数存在但不连续; (C ) 连续且二偏导数存在但不可微 ; (D ) 可微 . (3)(一、三)设级数 n n a ∞ =∑收敛,则下列三个级数① 2 1 ,n n a ∞ =∑②41 ,n n a ∞ =∑③61 n n a ∞ =∑中( ) (A ) ①、②、③均收敛 ; (B ) 仅②、③收敛 ; (C ) 仅③收敛 ; (D ) ①、②、③均未必收敛 . (3)(二) 设21,0 ()||,(),,0 x x f x x g x x x -≥?==?

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( ) 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题: . ,.2. 2.0,1.0,1,2.1= == =?-=?=?===dz e z dz z y x y x x y z x y 则设全微分值 时的全增量当函数 二、选择题(单选): 1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的: (A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。 答:( )

高等数学考研复习题及答案

高等数学考研复习题及答案 一、填空题 1.设2 )(x x a a x f -+=,则函数的图形关于 对称。 2.若?? ?<≤+<<-=2 010 2sin 2 x x x x y ,则=)2 (π y . 3. 极限lim sin sin x x x x →=0 21 。 4.已知22 lim 222=--++→x x b ax x x ,则=a _____, =b _____。 5.已知0→x 时,1)1(3 12 -+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ?=+,其中?可微,则 y z ??= 。 7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则 =??) 1,0(x u 。 8.设??,),()(1 f y x y xy f x z ++= 具有二阶连续导数,则=???y x z 2 。 9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。 10.设||)1(sin ),(22xy x y x y x f -+=则_____________)0,1('=y f . 11.=?xdx x 2sin 2 . 12.之间所围图形的面积为上曲线在区间x y x y sin ,cos ],0[==π . 13.若2 1d e 0=?∞ +-x kx ,则_________=k 。

14.设D:122≤+y x ,则由估值不等式得 ??≤++≤D dxdy y x )14(22 15.设D 由22,2,1,2y x y x y y ====围成(0x ≥),则(),D f x y d σ??在直角 坐标系下的两种积分次序为_______________和_______________. 16.设D 为01,01y x x ≤≤-≤≤ ,则D f dxdy ??的极坐标形式的二 次积分为____. 17.设级数 ∑∞ =+1 21 n p n 收敛,则常数p 的最大取值范围 是 . 18.=+-+-?1 0 6 42)! 3!2!11(dx x x x x . 19. 方程 0112 2 =-+ -y dy x dx 的通解为 20.微分方程025204=+'-''y y 的通解为 . 21.当n=_________时,方程n y x q y x p y )()('=+ 为一阶线性微分方程。 22. 若44?阶矩阵A 的行列式为*||3,A A =是A 的伴随矩阵,则 *||A =__________. 23.设A n n ?与B m m ?均可逆,则C =00?? ??? A B 也可逆,且1 C -= . 24.设?? ?? ??=3213A ,且X E AX 3=-,则X = . 25.矩阵?? ?? ? ?????--330204212的秩为 . 26. 向量(1,0,3,5),(4,2,0,1)αβ=--=-,其内积为____________.

高等数学理工类考研真题

1... sin 12lim 1.4/1/0 +++→x x e e x x x 求=+∞-∞+=-∞→,0)(lim ,),()(2.a x f e a x x f x bx 、则常数 且内连续在设函数00数一考研题 ?? ?>≤=1(B)0(A)). ( )]}([{, 1,0, 1,1)(3.x f f f x x x f 等于则设01数二考研题 b 满足00数二考研题 ). ( <≥>≤>><<0,0)(0,0)(0,0)(0,0)(b a D b a C b a B b a A [ ] ;; . ;;; 考研真题一 . ,}{),,2,1()3(,307.).(,00,,0,2 arcsin 1)(6.112tan 并求此极限的极限存证明数列设则处连续在设函数n n n n x x x n x x x x a x x ae x x e x f Λ=-=<<==?? ??? ??≤>-=+02数二考研题 02数二考研题 8., lim ,1lim ,0lim }{},{},{9.则必有均为非负数列设n n n n n n n n n c b a c b a ∞ →∞ →∞ →===且,03数一考研题 )(. (D)(C)(B)(A);成立对任意n n n b a <;成立对任意n n n c b <; lim 不存在极限n n n c a ∞ →. lim 不存在极限n n n c b ∞ →. _____sin 1)1(,04 1 2=-- →a x x ax x 是等价无穷小与时若则,03数二考研题 . 4)(3)(2)(1)(,)1(sin ,sin )1ln )cos 1(,05.2 13lim 4.221 2等于 则正整数高阶的无穷小是比而高阶的无穷小是比时设当x n n x D C B A n e x x x x x x x x x x x -+-→=-++--→(01数二考研题 01数二考研题 ; ; ; 在__________. ∞>≤>≤.1 ,11 ,0(D)1 ,01,1(C)x x ???x x ?? ?; 2. .. _________)(,1 )1(lim )(10.2=+-=∞ →x x f nx x n x f n 的间断点为则设04数二考研题 12.设函数,1 1 )(1 -= -x x e x f 则( ).(A)1,0==x x 都是)(x f 的第一类间断点;(B)1,0==x x 都是)(x f 的第二类间断点; (C)0=x 是)(x f 的第一类间断点,1=x 是)(x f 的第二类间断点;(D)0=x 是)(x f 的第二类间断点,1=x 是)(x f 的第一类间断点.05数二考研题 11.当0→x 时, 2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无 , 则. ________=k 穷小05数二考研题 13.= -+→x x x x cos 1)1ln (lim . 06数一、二考研题

[全]高等数学-考研真题详解

高等数学-考研真题详解 1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中 .()[南京大学研] 【答案】对查看答案 【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故 a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈P ab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P 又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有 综上所述的P为数域. 2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f?(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]

【答案】错查看答案 【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ?(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f?(x)的k重根(k≥1). 3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研] 【答案】对查看答案 【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约. 二、计算题 1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研] 解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则

(1)当p=4时,有(f(x),f′(x))=x2+4x+4 所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2. (2)若p≠4,则继续辗转相除,即 当p=-5时,有(f(x),f′(x))=x-1

天津商业大学714高等数学考研真题和答案

天津商业大学714高等数学考研真题和答案 2021年天津商业大学理学院《714高等数学》考研全套目录 ?天津商业大学理学院《714高等数学》历年考研真题汇编 ?全国名校高等数学考研真题汇编(含部分答案) 说明:本部分收录了本科目近年考研真题,方便了解出题风格、难度及命题点。此外提供了相关院校考研真题,以供参考。 2.教材教辅 ?华东师范大学数学系《数学分析》(第4版)(上册)笔记和课后习题(含考研真题)详解 ?华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解 ?华东师范大学数学系《数学分析》(第4版)网授精讲班【注:因第23章考试不做要求,所以老师没有讲解。】展开视频列表

?北京大学数学系《高等代数》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册) ?北京大学数学系《高等代数》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(下册) ?北京大学数学系《高等代数》(第3版)网授精讲班【注:因第10章考试不做要求,所以老师没有讲解。】展开视频列表 说明:以上为本科目参考教材配套的辅导资料。 ? 试看部分内容 名校考研真题 第1章多项式 一、判断题 1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研] 【答案】对查看答案 【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b =α2+β2i其中α1,α2,β1,β2为有理数,故 a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈P

ab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P 又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有 综上所述得P为数域. 2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f?(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研] 【答案】错查看答案 【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f (a)=0,并且f?(x)=(k+3)(k+2)(k+1)(x-a)k 满足a是f(x)的三阶导数f?(x)的k重根(k≥1). 3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.( )[南京大学研] 【答案】对查看答案 【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约. 二、计算题 1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]

高等数学期末复习--多元函数微分学

高等数学期末复习 第九章 多元函数微分学 一、内容要求 1、会求简单二元函数定义域 2、会求多二元函数表达式和值 3、会求简单二元函数的极限 4、掌握二元函数偏导数定义,性质,能确识别二元函数偏导数定义形式,得出偏导数正确表达 5、会求二元函数偏导数值:求偏导函数,代入点求值 6、会求二元函数微分值:求偏导函数,代入点求微分表达式 7、会按一元函数求导法则求直接函数的偏导数 8、会由轮换对称性确定多元函数对称元导数 9、会用链式规则求抽象形式多元函数的偏导数 10、会求多元函数全微分 11、会求多元隐函数的偏导数 12、会求二元函数驻点,判定二元函数极值的存在性 13、能观察出简单多元函数极值情况 14、能应用多元函数求极值方法解决简单应用问题 15、会求空间曲面的切平面、法线方程 16、会求空间曲线的切线、法平面方程 17、会求多元函数的方向导数 18、会求多元函数的梯度 二、例题习题 1、二元函数x y z arcsin =的定义域是( ) A.|}||||),{(x y y x ≤ B. }0|||||),{(≠≤x x y y x C. }0|||||),{(≠>x x y y x D. }0|||||),{(≠≥x x y y x 解:使函数x y z arcsin =有意义,只要||1,0y x x ≤≠,即||||,0y x x ≤≠,所以,选B. (内容要求1) 2、函数22 1 (,)ln()=++ +f x y x y x y 的定义域为 ; 解:使函数22 1(,)ln()=++ +f x y x y x y 有意义,只要22 0,0x y x y +>+≠,所以填22{(,)|0,0}x y x y x y +>+≠(内容要求1)

相关文档
最新文档