(劳雷会议)地质雷达处理解释的一点体会杨峰

(劳雷会议)地质雷达处理解释的一点体会杨峰
(劳雷会议)地质雷达处理解释的一点体会杨峰

地质雷达处理解释的一点体会

中国矿业大学(北京校区)杨峰

地质雷达应用得到广泛的发展和应用。本文主要论述近几年来在地质雷达处理、解释等应用方面的其中一部分做一些探讨,希望得到广大专家的指导。

1 水平预测滤波

从地质雷达采集的信号来看,存在普遍的水平同相轴信号的干扰。这些水平干扰信号对不同深度信号影响效果不同,越深的信号影响越大。这主要是由于高频电磁波在地层传播过程中存在指数形式的衰减和能量扩散等。因而,在相对变化较小的水平干扰信号的作用下,深部反射信号信噪比明显低于浅部信号的信噪比。因此对水平干扰信号的去除,就显得非常重要。如何去除水平信号,其实方法也很多,常用的方法有:(1)背景道去除;(2)窗口滑动平均高通滤波;(3)二维滤波;(4)二维谱的反变化等。不同的方法都有各自的有点,同时也有各自的缺点。不同地区、不同仪器、不同勘探目的、不同采集方法可能都有不同的方法选取。作者在研究去除水平信号过程中,也尝试了不同的数据处理方式,在大量数据试验的基础上,提出水平预测滤波,将信号预测和滤波结合在一起达到去除水平信号的目的。

一、常规不同水平信号去除方法的对比

1.原始信号

2、背景去除

背景去除中背景噪声的计算是对背景道范围进行求均值运算得出的。这种处理方式对由仪器本身或偶合差异引起的噪声具有较好的效果。

采用背景去噪。背景去噪是一种常用的处理方法,尤其对数据量大的剖面运算,速度快,操作简单。但是:在进行背景去噪之前,一定要将剖面上没有的数据(如:天线停滞采集的数据,隧道的蔽塞洞等)删除掉,避免这些信号对综合背景信号的干扰。

3、窗口滑动平均高通滤波

滑动平均高通滤波,其实并不是真正意义上的滤波处理,其原理与背景去除相同,无非该方法的背景噪声是随道数窗口移动,对局部信号的突出有更显著的效果。

4、二维滤波

二维滤波就是利用F-K域中视速度的不同来提取滤波因子,从而达到压制水平信号的目的。

5、二维谱反变化

首先计算出信号的二维谱值,在对二维谱进行编辑,将去除干扰信号的谱值清楚,在通过反变化达到压制干扰信号的目的。由于二维谱运算量较大,这种方法比较适合短剖面的处理。

二、水平预测滤波

水平预测滤波只需要输入一个参数即可,即预测步长。通过不同的预测步长就可以达到水平信号压制程度不同的目的。预测步长越小,其水平信号压制能力越强,否则相反。

2 城市区域雷达勘探高压线缆信号的识别与去除

在城市区域进行地质雷达勘探,无论屏蔽天线还是非屏蔽天线都会受到高压线缆的干扰,如果不对这些干扰信号识别和去除,可能将干扰信号错误地解释为地层信号,甚至整个剖面都不能解释。这里讨论的识别和去除并不是针对所有的信号都有效,这里只是抛砖引玉,希望大家能提出更多的方法,扩大我们的思路。

一、高压电缆信号的识别

当天线从高压电线杆经过时,在雷达剖面上会形成一个清晰的双曲线异常,如果不做分析,可能会将该异常解释为地下金属管线。其实识别的方法很简单,就是利用反射双曲线弧度来求出异常双曲线的速度,根据速度大小,来确定异常的来源。如果所求出速度大于0.2m/ns,

则可以初步判断该异常来源高空,可以作为干扰波去除,相反可能来源于地下。

当采用反射双曲线弧度求速度的时候,一定要进行道间隔均匀化处理,即将所有设计的道间隔等距离化。

二、高压电缆干扰信号的去除

如何有效地去除高压电缆信号,也是大家关心地问题。这里提供地去除方法可以适用于任何突变干扰信号地去除。其步骤如下:

1.利用水平预测滤波去除水平信号

这个步骤其目的就是把电缆线干扰信号提取出来,压制掉其它任何信号。

2.相位取反

把经过水平预测滤波信号地相位取反,即正信号变成负信号,负信号变成正信号,其振幅不改变。

这个步骤处理后的电缆线干扰信号与原来剖面信号相反。

3.剖面叠加

将相位取反的剖面与原始剖面进行叠加,由于电缆线干扰信号与原始剖面相位相反,叠加后被很好压制。

3 地质雷达剖面解释

雷达剖面解释主要针对显示的剖面进行的,其主要内容有:标记管理及编辑、里程控制、层位追踪拾取、异常物的标定与统计等。

一、标记管理及编辑

主要实现如下功能:

1.在剖面上直接删除标记

2.标间隔数据道的等间隔化

3.标的规一化

二、里程控制

里程控制主要在实际应用中,需要将雷达剖面图与实际里程结合起来。

其主要功能如下:

1.输入道间隔参数

2.输入起始里程和里程方向

三、层位追踪与拾取

层位追踪拾取就是利用信号识别方法,从相邻道之间找到同一地层反射的波阻抗界面。从层位追踪结果可以得到以下不同横坐标的层位数据:

1.每一道对应的层位数据

2.标记里程对应的层位数据

3.道里程对应的层位数据

四、异常物体的标记与统计

该功能主要提供对剖面确定异常物在屏幕上的直接标定,例如裂隙、空洞等等。通过标定的结果,可以根据标定的属性直接进行异常物的统计,统计包括如下内容:1.异常物体的范围和大小

2.异常物体的数量

4 地质雷达地下物体属性定性解释

这里主要讨论公路路基基础地质雷达探测结果的分析,主要公路路基探测结果的数据比较充分。采用地质雷达技术进行公路探测,对压实度差、孔隙度高的地段从雷达剖面来判断很难达到一致的标准,即对同一剖面,不同人得出的结果差异很大。因此人为干扰因素很大,为了同一判断结果,我们在大量实测数据和钻孔资料的基础上进行公路路基属性解释的研究工

作,虽然取得一定结果,但是与现实要求还是相差甚远,本次提出也只是提出一种思路,这种思路可能不是最佳的方法,敬请广大专家提出宝贵意见。

一、技术方法

方法1:

本次研究主要采用谱分析的方法,采用的谱信号主要有滑动平均谱和振幅谱。

方法2:

采用K-L变化,提取信号的特征值及其对应的特征向量。

二、分析结果对比

1.背景介质信号对应的谱值分布特征

2.不同介质对应的谱值特征

3.油面层和水稳层对应的谱值特征

4.水稳层离析分析

5.水稳层软夹层分析

6.水稳层松散分析

5 地质雷达超前预报定性解释研究

本次主要采用三维显示技术来实现超前预报的定性解释研究,三维技术采用两种方式进行。

一、数据来源

第一步:输入掌子面对应测线位置。

第二步:网格化测线数据。采用三种数据网格化方式:距离反比、最小二乘法和克里格估值算法。

二、地质雷达三维平面解释

在开发过程中,根据系统的功能需求把系统分为以下一些模块:

总体控制系统:该模块含有三个子模块:图形放缩、参数设置、颜色管理模块,其中,图形放缩模块,是根据需要对图形的放大或缩小1.5倍;参数设置模块是对要显示的图形采取何种方式的参数进行设置;颜色处理:是对图形的颜色进行设置和管理。另外,该模块还具有图形的存取,和对G3D文件的读取管理。

雷达文件管理:该模块是对雷达采集的原始数据进行管理,同时负责把原始的雷达文件转化为项目管理文件(.prj文件)并对各测线的坐标进行设定和管理。

G3D文件管理模块:负责把项目管理文件转化为G3D文件(其流程图见图),进行参数设置、网格划分和G3D文件的管理。因为雷达采集的数据为单剖面文件,要想利用雷达文件进行数据拟合,则在拟合之前,把各个雷达文件转化为拟合所需要的G3D文件是至关重要,也是程序的重点内容之一。把雷达文件转换为G3D文件的前提为:一、雷达文件的在采集时所有参数的设置应该相同,否则用其转换后的文件进行拟合的结果没有任何意义;二、文件的数目大于两个,因为如果文件数目太少其拟合的结果没有实际意义。在上述两个条件的前提下从雷达文件转化成G3D文件的步骤为:

(1) 把单个的雷达文件形成一个项目管理文件,并输入各文件的起始点坐标。

(2) 读取雷达项目管理文件并统计该项目中的测线文件数目。

(3) 对各测线进行检查,看其各测线的参数设置是否一致,如果一致则进行下一步,如果不一致返回出错信息。

(4) 读入测线的数据。

(5) 设置时间间隔,从各项目管理文件的各测线中读取该时刻的采样值,形成需要进行拟合的各时刻G3D文件。

(6) 设置拟合参数,选取拟合算法,对各时刻的文件分别进行拟合,给出拟合结果。

算法模块:模块包含三个子模块:距离反比、最小二乘法和克里格估值算法模块;其中根据试验知,运用克里格算法比其它两种算法效果要好的多。

绘图模块:根据需要绘制各种图形:反射强度的等直线图、颜色充填图和各种预览图、剖面图。

三、三维立体解释

本软件主要含有三个显示功能:

1、三维模型显示

2、高程模型显示

3、断面的平面显示

本软件分为两个部分:高程数据模型和三维数据模型。前者有两种显示方式——高程模型显示和断面的平面显示;后者仅有三维模型显示一种显示方式,但可对模型进行剖分。

本软件通过参数面板框调整显示参数,从而调整显示对象的显示方式等。主要有四个参数面板框:

1、3D:选择高程或平面显示、选择显示的组件、参数控制等;

2、4D:选择显示的组件、剖分三维模型、剖分参数控制等;

3、变换:缩放图形、旋转图形等;

4、颜色:选择基本颜色、调节数据颜色等。

其中在高程数据模型下2不可用,在三维数据模型下1不可用。

四、三维显示的内容性质

不同的处理内容、不同的分析内容均可实现其三维显示与解释。

6 公路评价系统

本次解释主要采用公路评价标准的规范来编写的。主要针对路面厚度进行评价。

7 感谢

地质雷达 原理

地质雷达是目前分辨率最高的工程地球物理方法,在工程质量检测、场地勘察中被广泛采用,近年来也被用于隧道超前地质预报工作。地质雷达能发现掌子面前方地层的变化,对于断裂带特别是含水带、破碎带有较高的识别能力。在深埋隧道和富水地层以及溶洞发育地区,地质雷达是一个很好的预报手段。 1、基本原理 探地雷达是一种用于确定地下介质分布情况的高频电磁技术,基于地下介质的电性差异,探地雷达通过一个天线发射高频电磁波,另一个天线接收地下介质反射的电磁波,并对接收到的信号进行处理、分析、解译。其详细工作过程是:由置于地面的天线向地下发射一高频电磁脉冲,当其在地下传播过程中遇到不同电性(主要是相对介电常数)界面时,电磁波一部分发生折射透过界面继续传播,另一部分发生反射折向地面,被接收天线接收,并由主机记录,在更深处的界面,电磁波同样发生反射与折射,直到能量被完全吸收为止。反射波从被发射天线发射到被接收天线接收的时间称为双程走时t,当求得地下介质的波速时,可根据测到的精确t值折半乘以波速求得目标体的位置或埋深,同时结合各反射波组的波幅与频率特征可以得到探地雷达的波形图像,从而了解场地内目标体的分布情况。

一般,岩体、混凝土等的物质的相对介电常数为4—8,空气相对介电常数为1,而水体的相对介电常数高达81,差异较大,如在探测范围内存在水体、溶洞、断层破碎带,则会在雷达波形图中形成强烈的反射波信号,再经后期处理,能够得到较为清晰的波形异常图。 在众多地质超前预报手段中,使用探地雷达预报属于短期预报手段,预报距离与围岩电性参数、测试环境干扰强弱有关。一般,探地雷达预报距离在15~35米。 2、探地雷达在勘查中的基本参数 ①数电磁脉冲波旅行时

地质雷达法探测缺陷

1、地质雷达法的原理 地质雷达法是一种用于确定地下介质分布的光谱(1MHz~1GHz)电磁技术。地质雷达利用一个天线发射高频宽频带电磁波,另一个天线接收来自地下介质界面的反射波。电磁波在介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性质及几何形态而变化。因此,可根据接收到波的旅行时间(亦称双程走时)、幅度与波形资料,可推断介质的结构。 实测时将雷达的发射和接收天线密贴于喷层表面,雷达波通过天线进入混凝土衬砌中,遇到钢筋、钢拱架、材质有差别的混凝土、混凝土中间的不连续面、混凝土与空气分界面、混凝土与岩石分界面、岩石中的裂面等产生反射,接收天线接收到反射波,测出反射波的入射、反射双向走时,就可计算出反射波走过的路程长度,从而求出天线距反射面的距离D,即有下式: D=V·Δt/2 式中:D――天线到反射面的距离,km; Δt――雷达波从发射至接收到反射波的走时,用ns(纳秒,1ns=10-9秒)计; V――雷达波的行走速度,km/s。 可以用几何光学的概念来看待直线传播 雷达波的透射和反射,即有下式:V=C0/ε1/2 式中:C0――雷达波在空气中的传播速度,30cm/ns; ε――介电常数,由波所通过的物质决定。即物体中的雷达波速由其介电常数决定。如空气的ε=1,水的ε=81,混凝土的ε=4~10。 实际上,雷达波之所以会在物体界面产生反射,是因为界面两侧物质介电常数不同。

雷达探测原理示意图 雷达天线可沿所测测线连续滑动,所测的每个测点的时间曲线可以汇成时间剖面图像。从一个测点的反射波时间曲线上去判别哪一个波反映什么是困难的,但多个测点资料汇成的时间剖面,各测点接收到的同一反射面的反射波汇面一定图像,就能直观地反映出各种不同的反射面。例如,一个与测量平面近于平行的反射面,如衬砌的外缘面,在时间剖面上就是与时间0基线近于平行的线;衬砌与岩体交界面的起伏(反映了衬砌厚薄变化)表现为有起伏的图像;钢拱架的反射图像可能是一双曲线,在彩色或黑色灰度的图上也可能呈现一个个圆点;突入衬砌中的小块岩石、衬砌背后的空洞、两层衬砌间的空隙则多呈双曲线图像。根据这些图像即可辩别不同的物体。时间剖面图像是探地雷达成果的基本图件,其横座标为测点位置,纵座标为雷达波反射走时,可以用黑白波型图像(波形图变面积黑白显示)、黑白灰度显示、彩色色块显示等形式。可以用专用分析软件对所测图象进行分析。 2、现场检测程序

SIR-3000作业指导书

GSSI公司SIR-3000仪器参数 顺序系统参数Parameters 1500MHz 900MHz 400MHz 270MHz 100MHz 1* 系统调用SYSTEM->SETUP->RECALL 1500GrayCart 1500BlueCart 900met 400mhzTime 400mhz623Cart 400mhz620SW 270_SW 100met 2 显示刻度(竖直方向) SYSTEM->UNITS->VSCALE Time/Depth Time/Depth Time/Depth Time/Depth Time/Depth 天线COLLECT->RADAR->ANTENNA 1500mhz 900mhz 400mhz 270mhz 100mhz 发射率COLLECT->RADAR->T_RA TE 100KHz 100KHz 100KHz 100KHz 50KHz 6 测量模式(水平方向) COLLECT->RADAR->MODE Time/Distance Time/Distance Time/Distance Time/Distance Time/Point GPS COLLECT->RADAR->GPS None None None none None 采样点数COLLECT->SCAN->SAMPLES 512 512 512 512 512/1024 数据位COLLECT->SCAN->FORMA T(bits) 16 16 16 16 16 4* 记录长度(纳秒)COLLECT->SCAN->RANGE(ns) 12 15-20-25-30 40-50-80-100 50-80-100-120 100-200-300 介电常数COLLECT->SCAN->DIEL 6 6 6 6 6 7 扫描速度(扫描/秒) COLLECT->SCAN->RA TE 60-120 60-120 60-120 60-120 16 8 测点(扫描/单位)距离COLLECT->SCAN->SCN/UNIT 20-50-100-200 10-20-50-100 10-20-50 10-20-50 10 5* 增益:类型-点数COLLECT->GAIN->AUTO-POINTS Y-1 Y-2--3-4-5 Y-5 Y-5 Y-5 3-1 信号位置:模式COLLECT->POSTION->MODE MANUAL MANUAL MANUAL MANUAL MANUAL 3-2 信号位置:延时COLLECT->POSTION-> OFFSET 0 0 -14 3-3 信号位置:地面COLLECT->POSTION->SURFACE(%) 0 0 0 0 0 滤波COLLECT->FILTERS 低通-无限响应滤波器-> LP_IIR (mhz) 0 2500 800 700 300 高通-无限响应滤波器-> HP_IIR (mhz) 10 225 100 75 25 低通-有限响应滤波器-> LP_FIR (mhz) 3000 0 0 0 0 高通-有限响应滤波器-> HP_FIR (mhz) 250 0 0 0 0 叠加(扫描) COLLECT->FILTERS ->STACKING 0 0 0 0 3-64 背景去除(扫描) COLLECT->FILTERS->BGR_RMVL 0 0 0 0 0 9-1 颜色表OUTPUT->DISPLAY->C_TABLE 9-2 颜色变换表OUTPUT->DISPLAY->C_XFORM 10 保存参数SYSTEM->SETUP->SA VE SETUP15 SETUP09 SETUP04 Setup03 SETUP01 11* 数据采集RUN/SETUP 12* 数据传输OUTPUT->TRANSFER->FLASH Y Y Y Y Y

地质雷达操作规程

地质雷达法检测操作规程 1、地质雷达法适用范围 地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。 2、地质雷达主机技术指标: (1)系统增益不低于150dB; (2)信噪比不低于60dB; (3)采样间隔一般不大于、A/D模数转换不低于16位; (4)计时误差小于1ns; (5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒; (6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能; (7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。 3、地质雷达应符合下列要求: (1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。 (2)测线经过的表面相对平缓、无障碍、易于天线移动。 (3)避开高电导屏蔽层或大范围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为: (1)具有屏蔽功能; (2)最大探测深度应大于2m; (3)垂直分辨率应高于2cm。 5、现场检测 (1)测线布置 1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。 2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。 3、三线隧道应在隧道拱顶部位增加2条测线。 4、测线每5~10m应有一历程标记。 (2)介质参数的标定: 检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

地质雷达的应用

地质雷达的应用领域 探地雷达(Ground Penetrating Radar,简称GPR),又称地质雷达,是近些年发展起来的高效的浅层地球物理探测新技术,它利用主频为数十兆赫至千兆赫兹波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。与传统的地球物理方法相比,探地雷达最大的优点就是具有快速便捷、探测精度高以及对原物体无破坏作用。因此,探地雷达在道路建设和公路质量检测领域已逐渐被认识到并广泛应用起来。 地质雷达自上世纪70年代开始应用至今将近30年了,其应用领域逐渐扩大,在考古、建筑、铁路、公路、水利、电力、采矿、航空各领域都有重要的应用,解决场地勘查、线路选择、工程质量检测、病害诊断、超前预报、地质构造研究等问题。在工程地球物理领域有多种探测方法,包括反射地震、地震CT、高密度电法、地震面波和地质雷达等,其中地质雷达的分辨率最高,而且图象直观,使用方便,所以很受工程界信赖和欢迎。 1.1 工程场地勘察 地质雷达最早用于工程场地勘查,解决松散层厚度分布,基岩风化层分布,以及节理带断裂带等问题。有时也用于研究地下水分布,普查地下溶洞、人工洞室等。在粘土补发育的地区,探查深度可达20m以上,效果很好。 1.2 埋设物与考古探察 考古是地质雷达应较早的领域,在欧洲有成功的实例,如意大利罗马遗址考古、中国长江三峡库区考古等项目都应用了雷达技术。利用雷达探测古建筑基础、地下洞室、金属物品等。在现今城市改造中,有时也需要了解地下管网,如电力管线、热力管线、上下水管线、输气管线、通信电缆等,这对于地质雷实是很容易的。目前地质雷达为地下管线探测发展了

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

浅谈地质雷达在岩溶隧道超前地质预报中的运用

浅谈地质雷达在岩溶隧道超前地质预报中的运用 蒋帅男 (1.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059) 摘要:近年来,随着我国交通事业的迅猛发展和西部大开发战略的实施,在岩溶地区修筑的隧道越来越多,而在岩溶地区隧道施 工中,对掌子面前方一定范围的地质情况进行准确超前预报却是保证隧道施工安全的关键。本文以中坝隧道为例,通过对拟掘进段 隧道勘察资料及工程地质条件的解读、隧道掌子面地质编录情况的判别和解译结果的综合分析,预判拟掘进段存在溶腔,并通过 超前钻孔揭示验证,得以及时采取有效措施,确保了生命及生产安全,表明在岩溶地区采用地质雷达进行超前地质预报是可行的。关键词:隧道;超前地质预报;地质雷达;岩溶; 1 前言 由于地面水和地下水的溶蚀作用,在碳酸盐岩地区发育着各种类型的岩溶地貌和岩溶形态,给工程建设带来一定的复杂性,每年都因不同程度的岩溶危害而造成巨大的经济损失和危及人身安全,而随着我国交通事业的迅猛发展和西部大开发战略的实施,在岩溶地区修筑的隧道越来越多,因此在岩溶地区隧道施工中,对掌子面前方一定范围的地质情况进行准确超前预报是保证隧道施工安全的关键。 超前地质预报方法用来准确预测隧道开挖工作面前方工程地质状况,可以减少施工的盲目性。采用科学的、先进的隧道超前隧道岩溶超前预报的手段有很多种,比如TSP、超前地质钻孔和地质雷达等。而地质雷达探测具有分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示、处理速度快等优点,近年来在国内外岩溶预报上,比较受亲睐[1]。 本文以中坝隧道为例,具体阐述了地质雷达的基本工作原理及其在岩溶隧道超前地质预报中的测试方法,并针对岩溶预报雷达图像进行了具体的解译。最后通过对拟掘进段隧道勘察资料及工程地质条件的解读、隧道掌子面地质编录情况的判别和解译结果的综合分析[2],预判拟掘进段存在溶腔,并通过超前钻孔验证预判的准确性,得以及时采取有效措施,确保了生命及生产安全,实例表明在岩溶地区采用地质雷达进行超前地质预报是可行的。下面就将地质雷达在中坝隧道超前地质预报应用情况做一些阐述,并将其在岩溶预报上的规律进行总结,以期望对后续类似的工作具有借鉴意义。 2地质雷达的探测原理及方法 2.1探测原理 地质雷达是利用频率介于106~109Hz的无线电波来确定地下介质的一种地球物理探测仪器。岩溶洞穴、破碎带、岩溶水与完整围岩存在明显的电性差异, 对地质雷达发射的电磁波能形成强反射界面, 以此来探测不良地质体。地质雷达的基本原理如图1所示。 发射天线将高频短脉冲电磁波定向送入地下, 电磁波的传播取决于地质体的电性如电导率μ和介电常数ε。电导率μ主要影响电磁波的穿透深度, 介电常数ε决定电磁波在地质体中的传播速度。电磁波在传播过程中遇到存在电性差异的地层或目标体就会发生反射和透射, 接收天线收到反射波信号并将其数字化, 然后由电脑以反射波波形的形式记录下来。对所采集的数据进行相应的处理后, 可根据反射波的传播时间、幅度和波形, 判断地下目标体的空间位置、结构及其分布。探地雷达是在对反射波形特性分析的基础上来判断地下目标体的, 所

探地雷达操作规程

探地雷达操作规程 (文件编号:****-010) 共1页第1页版本/版次:D/ 0 生效日期:2016-01-01 1. 目的 为了使检测员更好地熟悉和掌握检测仪器的操作方法,保证检测数据的科学、公正和准确性,特制定本规程。 2. 适用范围 适用于探地雷达仪器 3 操作步骤 3.1测试前的安装准备 检查所有部件是否带齐,包括:电池、雷达主机、数据线、处理器电源线、信号线、工具箱、备件、固定用绑扎带、记录本; 3.2试验/检测的工作程序 (1)测试连接。将地质雷达天线通过支架安装。 (2)在扫描前调试主机并对主机进行参数设置。 (3)打开电源,控制天线移动的人员根据操作主机的人员口令,将天线紧贴待测界面上匀速移动。 (4)测试结束。按下stop结束测试点,保存文件并退出; (5)拆除信号线,拆除天线,支架。 3.3扫描之前的仪器调试和参数设置 (1)菜单系统—>设置—>调用,选择所用的天线。 (2)系统—>单位垂直刻度设为时间,单位为ns (3)测程:900M天线探测混凝土的量程约为15纳秒,为使所有有效信号完全显示,一般设置为20ns (4)采样点数:一般设为512或1024 采样点数越多,扫描曲线越光滑,垂直分辨率越好。但是采样点数增大,使得扫 描速率下降 (5)每秒扫描数:64 (6)增益点数:2 (7)垂向高通滤波器:225MHz

(8)垂向低通滤波器:2500MHz (9)数据位:16位 (10)发射率:100 KHz,发射功率越高,采集速度越快,但若采集过高,易损坏雷达系统 (11)信号位置设为手动 (12)表面设为0 (13)调出完整的直达波(首波),调整延时参数 若检测结构与上次相同,可不再次设置以上参数,系统默认上次检测参数。 (14)增益设置为自动,增益函数手动设置,可以改变增益点数多少、并且可以调整各增益点的函数大小,进而调整信号强度。增益函数调整过大,在探测资料中可能 人为造成假象。设置方法为先设为手动,再设为自动。 编制/日期:批准/日期:

浅谈煤矿开采中地质勘探技术的重要作用

摘要:矿产资源是国民经济和社会发展的重要物质基础,,如何准确有效的进行矿产勘查是摆在地质工作者面前的一个问题,因此我们应重视新理论、新技术、新方法的利用,同时结合以往多种勘查手段,以期提高各类矿床发现能力,取得良好的经济效益。文分析了煤田矿井开采中的地质勘探问题,论述了当前煤田矿井地球物理勘探主要技术方法的应用及特点, 提出了多波多分量地震勘探、矿井高密度直流电法、矿井瞬变电磁法及地质雷达等新技术新方法及其综合应用将在煤矿地质因素预测预报中发挥重要作用。 关键词:矿产勘查成矿理论技术研究煤矿开采地质勘探工作面

浅谈煤矿开采中地质勘探技术的重要作用 一、前言 (一)煤矿开采技术的介绍 矿井由于受地质条件差、断层发育、煤厚变化大等地质因素的影响,造成生产接续紧张,采用综合勘探方法,多种勘探手段结合并用,地面采用三维物探手段,井下先期施工多用途探巷,整理配合钻探及井下物探等手段,针对影响生产的地质因素开展各项专题研究,不断进行资料的动态综合分析,取得了较好的地质效果,为矿井的安全高效生产提供了有利的地质勘探预报保障。 1、开发煤矿高效集约化生产技术、建设生产高度集中、高可靠性的高产高效矿井开采技术。以提高工作面单产和生产集中化为核心,以提高效率和经济效益为目标,研究开发各种条件下的高效能、高可靠性的采煤装备和工艺,简单、高效、可靠的生产系统和开采布置,生产过程监控与科学管理等相互配套的成套开采技术,发展各种矿井煤层条件下的采煤机械化,进一步改进工艺和装备,提高应用水平和扩大应用范围,提高采煤机械化的程度和水平。 2、开发“浅埋深、硬顶板、硬煤层高产高效现代开采成套技术”,主要解决以下技术难题。硬顶板控制技术,研究埋深浅、地压小的硬厚顶板控制技术,主要通过岩层定向水力压裂、倾斜深孔爆破等顶板快速处理技术,使直接顶能随采随冒,提高顶煤回收率,且基本顶能按一定步距垮落,既有利于顶煤破碎,又保证工作面的安全生产。硬厚顶煤控制技术,研究开发埋深浅、支承压力小条件硬厚顶煤的快速处理技术,包括高压注水压裂技术和顶煤深孔预爆破处理技术,使顶煤体能随采随冒,提高其回收率。顶煤冒放性差、块度大的综放开采成套设备配套技术,研制既有利于顶煤破碎和顶板控制,又有利于放顶煤的新型液压支架,合理确定后部输送机能力。两硬条件下放顶煤开采快速推进技术,研究合适的综放开采回采工艺,优化工序,缩短放煤时间,提高工作面的推进度,实现高产高效。5~5.5m宽煤巷锚杆支护技术,通过宽煤巷锚杆支护技术的研究开发和应用,有利于综采配套设备的大功率和重型化,有助于连续采煤机的应用,促进工作面的高产高效。 3、缓倾斜薄煤层长壁开采。主要研究开发:体积小、功率大、高可靠性的薄煤层采煤机、刨煤机;研制适合刨煤机综采的液压支架;研究开发薄煤层工

地质超前预报作业指导书

地质超前预报作业指导书 一、目的 为确保隧道施工安全质量,根据设计提供的工程及水文地质资料,结合地质超前预报,进行分析研究,制定完整的施工技术方案。做好技术、物质、机械设备的储备,避免地质灾害的发生。使之达到施工设计及施工规范的要求及工期目标的实现,特制订本作业指导书。 二、使用范围 本指导书适用于隧道黄土Ⅴ级围岩洞身段开挖施工。 三、依据 1、双线客运专线施工技术指南(报批搞); 2、铁路隧道施工规范及验收规范《铁建设【2005】160号》; 3、铁路隧道喷锚构筑法技术规范《TB10108-2002》。 4、甬台温铁路施工图; 5、《铁路隧道施工规范》-TB10204-2002 6、《铁路隧道工程质量检验评定标准》-TB10417-98 四、加强隧道地质预报和围岩监控测量 山后隧道穿越地段工程地质条件复杂主要为粉质粘土、角砾土、粉砂岩及硅质岩层,隧道安全问题为隧道工程施工的重点。为此成立

专门的地质预报小组,工程施工中采用超前TSP-203型地质预报仪及BK2000型地质雷达进行探测预报不良地质,严格按新奥法原则进行施工,采用CRD、CD、台阶法进行施工,并建立完善的安全控制体系,确保施工安全。 五、超前地质预报 山后隧道根据地质特点,本着以“早预报、早预防”的原则组织施工,本隧道采用地质调查、TSP-203超前地质预报、钻孔超前探测、开挖面及其附近的地质观测素描和地质作用等综合手段,预测不良地质的位置、性质、规模和对施工的影响程度。 针对本隧有断层破碎带、岩溶等不良地质和设计阶段地质勘测异常区,采用超前地质预测方法主要有: 地质素描法进行预报;TSP203超前地质预报仪进行距离100m~200m的超前预报;采用地质雷达、红外探水仪、HSP水平声波反射法和超前地质钻孔进行距离在30m~50m的预报。 超前地质预报工作内容及方法分别见图5-1“主要地质预报工作范围图”和表5-2“各不良地质段采取的地质预报方法”。 图5-1 主要地质预报工作范围图

浅谈探地雷达法检测路面结构层

浅谈探地雷达法检测路面结构层 【摘要】以探测雷达在某高速公路上的路面结构层缺陷检测为例,阐述了探测雷达在路面结构检测的原理、方法、数据结果分析等。 【关键词】探测雷达;路面结构;检测 1路面结构层缺陷检测的意义 随着我国道路交通量日益增大,车辆迅速大型化以及超载现象,使公路路面面临严峻的考验。因此路面病害检测的作用凸显出来,其中路面结构层缺陷检测是路面病害检测的一项重要内容,通过探地雷达的检测可以达到识别地下目标物和道路结构层内隐伏缺陷的目的。根据病害程度采取相应的补救措施,保证路面的通行质量同时也有利于对公路路面的设计、施工等各方面提供有力的资料和经验。本文通过探地雷达法对某高速部分路段检测为例浅谈路面结构层缺陷检测。 2设备原理 图2.1探地雷达工作原理示意图 探地雷达方法(Ground Penetration Radar,简称GPR)是一种采用短脉冲宽带高频电磁波信号检测地下介质分布的新技术。根据电磁波在有耗介质中的传播特性,通过天线连续拖动的方式以宽频带短脉冲的形式向地下发射高频电磁波,电磁波信号在地下介质内部传播时遇到不同介质的界面时,就会发生反射、透射,其反射系数(反射信号的强度)主要由上、下层介质的相对介电常数决定。上、下层介质的介电常数差异越大,反射的电磁波能量也越大;反之,越小。反射的电磁波被与发射天线同步移动的接收天线接收后,通过雷达主机精确记录反射回的电磁波的运动特征,获得地下介质的扫描图像,通过对扫描图像进行处理,对地质雷达剖面上目标层(体)的反射波时间延迟、波形特征以及剖面的宏观和微观形态组合进行解译,达到识别地下目标物和道路结构层内隐伏缺陷的目的。 电磁波在特定介质中的传播速度V是不变的,因此,根据探地雷达记录上的地面反射波与地下反射波的时间差△T,即可据下式算出地下异常的埋藏深度H: H=V·△T/2(1) 式中,H即为目标层厚度;V是电磁波在地下介质中的传播速度,由下式表示: V=C/■(2) 式中,C是电磁波在大气中的传播速度,约为3×108m/s;ε为相对介电常数,取决于地下各层构成物质的介电常数。 雷达波反射信号的振幅与反射系数成正比,在以位移电流为主的低损耗介质中,反射系数r可表示为: r=■(3) 式中,ε1、ε2为界面上、下介质的相对介电常数。对公路检测而言,ε1为面层的相对介电常数,ε2为基层的相对介电常数。由公式(3)可知,雷达波的穿透深度主要取决于地下介质的电性和中心频率。导电率越高,穿透深度越小;中心频率越高,穿透深度越小,反之亦然。反射信号的强度主要取决于上、下介质的电性差,电性差越大,反射信号越强;反之,越小。对沥青混凝土面层而言,面层与基层(稳定层)存在明显的电性差,可以预期面层底部会有强反射出现。不同面层(上、中、下)之间所用材料也存在细微差别,因此也可以得到较弱的

隧道超前地质预报作业指导书

×××标段隧道工程 隧道超前地质预报作业指导书 1、适用范围 本作业指导书适用于×××标段×××段范围内隧道及×××隧道洞口地段超前地质预报工作。具体内容包括:预报内容、预报分级、预报流程及要点。 2、作业准备 2.1内业技术准备 作业指导书编制后,在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,掌握有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前的技术培训,考试合格后持证上岗。 2.2外业技术准备 施工作业层中所涉及的各种外部技术数据收集。 修建生活房屋,配齐生活、办公设施,满足主要管理、技术人员进场生活、办公需要。 所有仪器已经到位,经过校验并在使用有效期限内。 3、技术要求 明确隧道超前地质预报作业工艺流程、操作要点和重要性,指导、规范隧道超前地质预报,保障隧道安全掘进。施工过程中必须将超前地质预报纳入施工工序管理,做到先探测、后施工,不探测不施工。 所使用的仪器具有合格的出厂证明及使用期限,并按相关要求进行质

量验收,有验收记录,并在有效使用期内。 4、施工程序与工艺流程 4.1 预报内容 (1)地层岩性,特别是对软弱夹层、破碎地层、煤层及特殊土的预测预报。 (2)地质构造,特别是对断层、节理密集带、褶皱轴等影响山体完整性的构造发育情况的预测预报。 (3)不良地质,特别是溶洞、暗河、人为坑洞、放射性、有气体及高地应力等发育情况的预测预报。 (4)地下水,特别是对岩溶管道水、富水断层、富水褶皱轴、富水地层等的预测预报。 4.2 预报方法 (1)超前地质预报方法按预报原理可分为地质分析法、钻探法、物探法和超前导坑法。 ①地质分析法,包括地层分界线、构造线,地下和地表相关全分析、地质作图等。 ②钻探法,包括深水水平钻探、5~8m加深炮孔探测及孔内摄影。 ③物探法,包括地震波反射法、声波反射法、电磁波反射法、红外探测法等。 ④超前导坑法,包括平行超前导坑法、正洞超前导坑法。 (2)超前地质预报按长度可分为长距离预报(大于200m)、中长距离预报(30~200m)和短距离预报(小于30m)。

地质雷达使用与操作2

地质雷达仪的操作与保养 0.0前言:作为近十余年来发展起来的地球物理高新技术方法,地质雷达以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,在工程探测领域应用不断被拓宽。 就目前市场上而言,地质雷达厂家主要有加拿大ERROR,美国SIR系列,瑞典MALA,国产青岛中科院光电所等等,其设备主要部件都是操作平台,仪器主机,以及配套雷达三大块。目前国内各种地质雷达使用研发已相当成熟,不同厂家的仪器性能不断改善和优化。相信在以后工程实践中,地质雷达会应用越来越光,且越来越适应各类不同的现场条件。 我公司引进的是瑞典MALA公司生产的RAMAC/GPR地质雷达,现主要介绍该仪器的使用及其小知识。 首先仪器硬件部分,仪器操作平台为IBM笔记本电脑,分采集软件GROUND VISION和分析处理软件REFLAXW软件;雷达主机为同步采集系统和高频模块;雷达的发射和采集天线为集成天线,目前购置了1.2GHZ 屏蔽天线,500MHZ屏蔽天线,100MHZ屏蔽天线,50MHZ非屏蔽天线共四种。通过在不同的工作领域合理调配不同的天线,再辅以不同的辅助设备,(比如隧道中的脚架,提升车,公路上的拖车,水上物探上的木船,或者防水密闭管等等),使工作更便捷,应用效果更准确。 雷达的基本操作应当说比较傻瓜型,使用起来应该说比较容易上手,在实践中应当遵循《城市工程地球物理规范》等国家,行业标准,以及仪器本身操作指南,使测试工作安排,测线布置,采样方式,测试精度,测试效果,以及测试成果等等满足工程技术要求。 1.0 基础篇 一、软件安装 1、计算机开机时,首先进入 BIOS 设置(如IBM 按F1 进入,其它参阅计算机使用手册) 将并口设置为 ECP 方式,端口地址设为0378。 2、如果是 Windows XP 或2000 操作系统,应在控制面板中进入设备管理器,在并口属性中 的端口设置栏:筛选源方案选择“使用指派给此端口的任何中断”,并选择“使用即插 即拔设备”;在资源栏:输入/输出范围选“0378-037F” 3、使用软件安装光盘,点击“setup”进行安装,按照安装提示进行安装即可。 二、雷达操作使用

浅析地质雷达的分辨率-图

浅析地质雷达的分辨率 美国劳雷工业公司 袁明德 近年来,地质雷达无损检测技术的应用不断推广,经常有人提起其分辨率的问题。分辨率或称分辨能力,指将两个靠得非常近的异常区分开的能力。通俗地讲,就是能清楚识别的最小目标大小,更小就分不清了或“看”不出来了。 目标如地层、空洞、管道都是三度体,都具有长、宽、高,从地面看下去,有横向延展度和垂向延展度。因此,判别分辨率,就有横向分辨率和垂直分辨率之分。两者既不同又相互关联。 <垂向分辨率> 先说垂向分辨率。无论地层或具体目标,都有上下两个面,假设这两个面跟围岩或上下地层有明显的电性差异,则在顶、底面上都能形成反射波。那么分辨率的概念就是分别从顶、底反射回来的两个脉冲不重叠,或重叠的不厉害,能分得开(如图1)。显然,两者太靠拢了就分不开(如图2)。我们将这段能分得开的最小距离称为垂直分辨率。 将地下各个层面的反射系数按反射波到达时间编制成图,即为反射系数序列(如图1)。在数字化过程中,一条雷达扫描数据能用反射系数序列跟雷达讯号脉冲的褶积方程来表达: X(t)=R(T) * e(t) + n(t)----------------------------------(1) (图1)雷达扫描线可用反射系数 序列跟雷达脉冲的褶积来表示 X(t)------雷达扫描线 R(t)------雷达脉冲 n(t)------噪音 e(t)------反射序列 e(t) R(t) X(t) n(t)

借用地震反射理论,一般认为对离散的反射界面,根据瑞雷标准定义的分辨率的极限是λ/4,其中λ是主频波波长,怀特定义分辨率极限则为λ/8;对无限延展的平面层,极限分辨率为λ/30。这里并没有考虑噪音的影响,有没有噪音大不一样,而实际上都是有噪音的。所以有人用讯号的功率谱与噪音的功率谱的比S 2/N 2来表示分辨率,也有人用道间互相关C 和自相关A 的关系来衡量分辨率,因为C/(A-C)=S/N 。所以实际上,离散目标的垂直分辨率大约为λ/2左右,平面层在λ/20左右(图2)。 在地质雷达天线的设计中,一般选择天线的中心频率fp 等于天线的通频带 Δf ,即fp/Δf=1,因此,雷达的分辨率近似于C/2Δf(εr )1/2=λ/2,其中C 为空气中雷达波波速,εr 为地层介电常数。 (图2)能分辨的地层厚度跟脉冲波长之间的关系。(a)表示目标地层的波阻抗高于两侧的地层,(b)表示目标地层的波阻抗处于两侧地层之间。从左至右随着目标地层变薄,两个脉冲合二为一,最终无法分辨。 e(t) R1(t) X(t) = R2(t) R1(t) + R2(t) e(t) R1(t) X(t)= R2(t) R1(t)+ R2(t)

隧道衬砌地质雷达无损检测技术

隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图 1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的 ,因此根据地质雷达记录的电磁波传播时间ΔT ,即可据下式算出异常介质的埋藏深度H : H V T =??2 (1) 式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度

越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m~2.0m左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性差异,是探测工作是否有效的前提,这种电性差异就是介电常数;应根据不同的检测对象和检测要求选用不同的天线类型;适用条件,探测的目标体与周围介质有较大的介电常数差异并具有较好的反射条件;上覆层导电性较弱;目标体具有一定的体积,引起的异常有一定的强度;具有一定的探测对比资料。 该技术适用于隧道衬砌质量施工过程控制和竣工验收的无损检测。 4 主要引用标准 《高速铁路隧道工程施工质量验收标准》(TB 10753-2010) 《铁路隧道工程施工质量验收标准》TBl0417-2003 《铁路隧道衬砌质量无损检测规程施工规范》(TB10223-2004) 《铁路工程物理勘探规程》(TB10013-2004) 《岩土工程勘察规范》(GB50021-2001) 《云桂铁路石林隧道地质雷达无损检测实施细则》 云桂铁路石林隧道相关设计图纸以及相关施工资料。 5 施工方法 1、检测前的准备工作: 收集隧道工程地质资料、施工图、设计变更资料和施工记录;

地质雷达探测技术说明C.doc

减免税进口仪器、设备说明 今有中国地质大学(北京)地球物理与信息技术学院进口Scintrex公司CG-5型重力仪一套。 一、仪器主要部分 1.灵敏系统:主要部件由一个矩形石英框架支撑着,用一个支杆固定在密封器顶盖上。灵敏系统的位移方式属角位移。 2.测量系统:由测读装置、测程调节装置及纵、横水准器等组成,测量出弹簧长度变化后经过电子系统转化成电流的大小,从而数字化将测量值显示到主机显示屏上。 二、仪器性能 相比较其他传统金属弹簧重力仪而言Scintrex公司生产的CG-5型重力仪不容易产生掉格现象从而保证了更高的测量精度和稳定性: (一)石英材料的滞后作用比金属材料小。对于悬挂承重的石英弹簧来说,一旦去掉承重,弹簧就会精确地恢复原状,而一个金属弹簧则会保持一定的记忆。Scintrex所制造的石英传感器是整体铸造,包括石英弹簧及其悬挂连接点是一个整体结构,它的滞后作用比类似的金属部件要小许多。

(二)传感器的所有联结点,象悬挂弹簧的支点和石英弹簧本身焊成一个整体。相反,金属弹簧重力仪的各种功能部件都是通过机械连接装配在一起的。所以整体熔凝的石英传感器不会出现部件之间的滑移或内部变形。这是使石英传感器不易产生掉格的又一个重要原因,也使它很少出现测试数据混乱的现象。 (三)石英弹簧比金属弹簧具有比较大的温度系数,并且石英弹簧传感器是垂直悬挂式弹簧,对于相同的重力值,它的弹簧伸长比金属弹簧重力仪中的金属弹簧小。三、仪器工作原理 Scintrex公司CG-5型重力仪采用无静电熔凝石英材料做为传感器,是基于一种垂直悬挂式石英弹簧,弹簧末端的重锤上悬挂一根测量弹簧。当作用在重锤上的重力发生变化时,可以伸缩测量弹簧,使摆杆改变原来的静平衡位置。这样通过测量弹簧的伸缩量来测定重力的变化。重力变化同弹簧的伸缩量成线性关系,从而勘探地表重力场变化的先进仪器。 通过测定地表各点上的重力加速度的值,对地下介质和地质体的分布做出推断。 四、仪器技术参数 传感器类型:无静电熔凝石英 测量范围:8000mGal,不用重置 自动修正:潮汐、仪器倾斜、温度、噪声、地震噪声 尺寸:30cmX21cmX22cm 重量(含电池):8kg 电池容量:2X6Ah(10.78V) 袖珍锂电池 功耗:25°C时4.5W 工作温度:-40~+45°C 环境温度修正:通常0.2microGal/°C 大气压力修正:通常0.15microGal/kPa 磁场修正:通常1microGal/Gauss(微伽/高斯) 五、仪器在教学中的应用 该仪器是我院“地球物理学”专业和“地球探测与信息技术”专业勘探地质构造、

隧道超前地质预报(地质雷达法)施工作业指导书

超前地质预报(地质雷达法)施工作业指导书 1.适用范围 适用于铁路隧道工程超前地质预报(地质雷达法)施工作业。 2.作业准备 2.1施工前应充分掌握隧道设计图纸及相关文件内容,并及时与现场进行核对,以确定合适的超前地质预报方法并配备相应机具设备。根据施工图设计要求及现场实际情况做好超前地质预报作业技术交底。 2.2熟悉《铁路隧道超前地质预报技术规程》(Q/CR9217-2015)、业主下发有关超前地质预报的管理办法等文件要求。 2.3将隧道超前地质预报工作纳入正常的施工工序管理,建立完善的信息收集和信息反馈系统。 2.4熟悉了解已有勘察资料,掌握掌子面所处地段的地层岩性、构造特征、不良地质及水文地质特征。 2.5熟悉了解其他预报手段探测成果,分析判断掌子面所处地段工程地质与水文地质特征可能出现的差异(与勘察成果比较)。 3.技术要求 3.1技术指标 3.1.1地层岩性预报,特别是针对软弱夹层、破碎地层及特殊岩土的预测预报。 3.1.2地质构造预报,特别是针对断层、节理密集带、褶皱轴等影响岩体完整性的构造发育情况的预测预报。 3.1.3不良地质预报,特别是针对瓦斯等发育情况的预测预报。 3.1.4地下水预测预报,特别是针对富水断层、富水褶皱轴、富水地层中的裂隙水等发育情况的预测预报。 3.2技术标准 3.2.1探明断层的性质、产状、富水情况、在隧道中的分布位置、断层破碎带的规模、物质组成等,并分析其对隧道的危害程度。 3.2.2测定瓦斯含量、瓦斯压力、涌出量、瓦斯放散初速度等,评价隧道瓦斯严重程度及对工程的影响,提出技术措施建议等。 4.施工程序与工艺流程 4.1 施工程序 隧道地质复杂程度分级→超前地质预报设计→编制超前地质预报实施方案→超前地 质预报实施→地质综合分析→提交地质预报成果报告→隧道实施方案根据地质预报结论 变更设计或方案后实施。 4.2工艺流程 详见下页 5.施工要求 5.1施工准备 5.1.1根据施工图设计要求及现场实际情况做好超前地质预报作业技术交底。 5.1.2超前地质预报施工前应熟悉相应隧道的设计图纸,核对地质资料。 5.1.3根据检测方法准备好各种施工机械和检测仪器,配备相应的专业人员。 5.1.4检测之前对仪器进行检查,确保能正常运行。 5.1.5准备好预测使用的各种材料。

相关文档
最新文档