天线线列阵方向图

天线线列阵方向图
天线线列阵方向图

阵列方向图及MATLAB 仿真

1、线阵的方向图

2

()22cos(cos )R φψπφ=+-

MATLAB 程序如下(2元):

clear;

a=0:0.1:2*pi;

y=sqrt(2+2*cos(pi-pi*cos(a)));

polar(a,y); 图形如下:

若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g e g e φφ???加以组合的话,阵列的方向图为

[(1)cos()]1()m M

j m m m R g e ψπφφ--==∑

MATLAB 程序如下(10个阵元):

clear;

f=3e10;

lamda=(3e8)/f;

beta=2.*pi/lamda;

n=10;

t=0:0.01:2*pi;

d=lamda/4;

W=beta.*d.*cos(t);

z1=((n/2).*W)-n/2*beta* d;

z2=((1/2).*W)-1/2*beta* d;

F1=sin(z1)./(n.*sin(z2));i

K1=abs(F1) ;

polar(t,K1);

方向图如下:

2、圆阵方向图程序如下:

clc;

clear all;

close all;

M = 16; % 行阵元数

k = 0.8090; % k = r/lambda

DOA_theta = 90; % 方位角

DOA_fi = 0; % 俯仰角

% 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];

w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180));

% w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置

% w = chebwin(M, 20) .* w; % 行加切比雪夫权

% 绘制水平面放置的均匀圆阵的方向图

theta = linspace(0,180,360);

fi = linspace(0,90,180);

for i_theta = 1 : length(theta)

for i_fi = 1 : length(fi)

a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180));

%a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置

Y(i_theta,i_fi) = w'*a;

end

end

Y= abs(Y); Y = Y/max(max(Y));

Y = 20*log10(Y);

% Y = (Y+20) .* ((Y+20)>0) - 20; % 切图

Z = Y + 20;

Z = Z .* (Z > 0);

Y = Z - 20;

figure; mesh(fi, theta, Y); view([66, 33]);

title('水平放置时的均匀圆阵方向图');

% title('竖面放置时的均匀圆阵方向图'); % 竖直放置

axis([0 90 0 180 -20 0]);

xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB');

figure; contour(fi, theta, Y);

方向图如下:

3、平面阵方向图:

clc;

clear all;

close all;

Row_N = 16; % 行阵元数

Col_N = 16; % 列阵元数

k = 0.5; % k = d/lambda

DOA_theta = 90; % 方位角

DOA_fi = 0; % 俯仰角

% 形成方位角为theta,俯仰角位fi的波束的权值

Row_n = [0 : Row_N-1]; Col_n = [0 : Col_N-1];

W_Row = exp(-j*2*pi*k*Row_n'*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_fi*pi/180)); % 竖直放置

W_Row = chebwin(Row_N, 20) .* W_Row; % 行加切比雪夫权

W_Col = chebwin(Col_N, 30) .* W_Col; % 列加切比雪夫权

W = kron(W_Row, W_Col); % 合成的权值N*N x 1

% 绘制水平面放置的平面阵的方向图

theta = linspace(0,180,180);

fi = linspace(0,90,90);

for i_theta = 1 : length(theta)

for i_fi = 1 : length(fi)

row_temp = exp(-j*2*pi*k*Row_n'*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 行导向矢量N x 1

col_temp = exp(-j*2*pi*k*Col_n'*sin(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 列导向矢量N x 1

% col_temp = exp(-j*2*pi*k*Col_n'*sin(fi(i_fi)*pi/180)); % 竖直放置

Y(i_theta,i_fi) = W'*kron(row_temp, col_temp); % 合成的导向矢量N*N x 1 end

end

Y= abs(Y); Y = Y/max(max(Y));

Y = 20*log10(Y);

Y = (Y+60) .* ((Y+60)>0) - 60; % 切图

% Z = Y + 60;

% Z = Z .* (Z > 0);

% Y = Z - 60;

figure; mesh(fi, theta, Y); view([66, 33]);

title('水平面放置时的面阵方向图');

axis([0 90 0 180 -60 0]);

xlabel('俯仰角/(\circ)'); ylabel('方位角(\circ)'); zlabel('P/dB');

figure; contour(fi, theta, Y);

方向图如下:

4、CAPON方法波束形成

MATLAB程序如下(阵元16,信号源3,快拍数1024):clear all

i=sqrt(-1);

j=i;

M=16; %均匀线阵列数目

P=3; %信号源数目

f0=10;f1=50;f2=100;%信号频率

nn=1024; %快拍数

angle1=-15;angle2=15;angle3=30;%the signal angle

th=[angle1;angle2;angle3]';

SN1=10;SN2=10;SN3=10;%信噪比

sn=[SN1;SN2;SN3];

degrad=pi/180;

tt=0:.001:1024;

x0=exp(-j*2*pi*f0*tt); %3个信号x0、x1、x2

x1=exp(-j*2*pi*f1*tt); %

x2=exp(-j*2*pi*f2*tt); %

t=1:nn;

S=[x0(t);x1(t);x2(t)];

nr=randn(M,nn);

ni=randn(M,nn);

u=nr+j*ni; %复高斯白噪声

Ps=S*S'./nn; %信号能量

ps=diag(Ps);

refp=2*10.^(sn/10);

tmp=sqrt(refp./ps);

S2=diag(tmp)*S; %加入噪声

tmp=-j*pi*sin(th*degrad);

tmp2=[0:M-1]';

a2=tmp2*tmp;

A=exp(a2);

X=A*S2+.1*u; %接收到的信号

Rxx=X*X'./nn; %相关矩阵

invRxx=inv(Rxx);

%搜寻信号

th2=[-90:90]';

tmp=-j*pi*sin(th2'*degrad);

tmp2=[0:M-1]';

a2=tmp2*tmp;

A2=exp(a2);

den=A2'*invRxx*A2;

doa=1./den;

semilogy(th2,doa,'r');

title('spectrum'); xlabel('angle'); ylabel('spectrum'); axis([-90 90 1e1 1e5]); grid;

方向图与阵列

第一篇:Jen-Chieh Wu, Chia-Chan Chang, Ting-Yueh Chin, Shao-Yu Huang, and Sheng-Fuh Chang. Sidelobe Level Reduction in Wide-Angle Scanning Array System Using Pattern-Reconfigurable Antennas. Microwave Symposium Digest, 2010 IEEE MTT-S International. Pages:1274-1278. DD modes:360 MHz 2.23GHz-2.59GHz

DR modes 和RD modes:2.2GHz-2.62GHz 420MHz,它们的频率响应基本一致。 H_Plane在2.45GHz辐射方向图,DR mode的主波束最大值在-70度,增益2.1dBi,RD mode在82度,增益在1.8dBi。DD mode的辐射方向图和单极子天线的很相似,在0度的增益大概是0.4dBi。

虚线:当主波束方向在(-40,+40)之外时,SLL增加的非常快,并在90o 时达到最大。SLL<-10Db时,波束扫描范围是(-38,+38) 实线:在(-20,+20)范围内,DD mode能达到较低的SLL,并与一般的单极子天线一致。在(-90,+90)范围内,DR mode 大大降低了SLL。另外,RD mode 也能很好地降低SLL。PRAs在SLL<-10Db时,波束扫描范围可达到(-90,+53),通过优化,可达到(-90,+90)。 相隔半波长,频率在2.45GHz。

天线线列阵方向图

阵列方向图及MATLAB 仿真 1、线阵的方向图 2 ()22cos(cos )R φψπφ=+- MATLAB 程序如下(2元): clear; a=0:0.1:2*pi; y=sqrt(2+2*cos(pi-pi*cos(a))); polar(a,y); 图形如下: 若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g e g e φφ???加以组合的话,阵列的方向图为 [(1)cos()]1()m M j m m m R g e ψπφφ--==∑ MATLAB 程序如下(10个阵元): clear; f=3e10; lamda=(3e8)/f;

beta=2.*pi/lamda; n=10; t=0:0.01:2*pi; d=lamda/4; W=beta.*d.*cos(t); z1=((n/2).*W)-n/2*beta* d; z2=((1/2).*W)-1/2*beta* d; F1=sin(z1)./(n.*sin(z2));i K1=abs(F1) ; polar(t,K1); 方向图如下: 2、圆阵方向图程序如下: clc; clear all; close all; M = 16; % 行阵元数 k = 0.8090; % k = r/lambda DOA_theta = 90; % 方位角 DOA_fi = 0; % 俯仰角 % 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];

w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置 % w = chebwin(M, 20) .* w; % 行加切比雪夫权 % 绘制水平面放置的均匀圆阵的方向图 theta = linspace(0,180,360); fi = linspace(0,90,180); for i_theta = 1 : length(theta) for i_fi = 1 : length(fi) a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); %a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置 Y(i_theta,i_fi) = w'*a; end end Y= abs(Y); Y = Y/max(max(Y)); Y = 20*log10(Y); % Y = (Y+20) .* ((Y+20)>0) - 20; % 切图 Z = Y + 20; Z = Z .* (Z > 0); Y = Z - 20; figure; mesh(fi, theta, Y); view([66, 33]); title('水平放置时的均匀圆阵方向图'); % title('竖面放置时的均匀圆阵方向图'); % 竖直放置 axis([0 90 0 180 -20 0]); xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB'); figure; contour(fi, theta, Y); 方向图如下:

阵列天线方向图的初步研究

通信信号处理实验报告 ——阵列天线方向图的初步研究 11级通信(研) 刘晓娟 一、实验原理: 1、智能天线的基本概念:智能天线是一种阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预制方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益,节省发射功率。智能天线系统主要由①天线阵列部分;②模/数或数/模转换部分;③波束形成网络部分组成。本次实验着重讨论天线阵列部分。 2、智能天线的工作原理:智能天线的基本思想是:天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。 3、方向图的概念:以入射角为横坐标,对应的智能天线输出增益为纵坐标所作的图称为方向图,智能天线的方向图有主瓣、副瓣等,相比其他天线的方向图,智能天线通常有较窄的主瓣,较灵活的主、副瓣大小、位置关系,和较大的天线增益。与固定天线相比最大的区别是:不同的全职通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图,即天线模式。方向图一般分为两类:一类是静态方向图,即不考虑信号的方向,由阵列的输出直接相加得到;另一类是带指向的方向,这类方向图需要考虑信号的指向,通过控制加权相位来实现。 二、实验目的: 1、设计一个均匀线阵,给出λ(波长),N (天线个数),d (阵元间距),画出方向图曲线,计算3dB 带宽。 2、通过控制变量法讨论λ,N ,d 对方向图曲线的影响。 3、分析旁瓣相对主瓣衰减的程度(即幅度比)。 三、实验内容: 1、公式推导与整理: 权矢量12(,,......)T N ωωωω=,本实验旨在讨论静态方向图,所以此处选择 ω=(1,1,......1)T 。 信号源矢量(1)()[1,,...]j j N T a e e ββθ---=,2sin d πβθλ = , 幅度方向图函数()()H F a θωθ== (1)1 sin 2sin 2N j n n N e β β β--== ∑=sin(sin /)sin(sin /)n d n d πθλπθλ。

(重要)阵列天线

Progress In Electromagnetics Research, PIER 98, 1–13, 2009
A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING J. Yu ? , M. Yuan, and Q. H. Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708, USA Abstract—A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than ?10 dB from 2.7 to 5 GHz. The scattered ?eld detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber. 1. INTRODUCTION Breast cancer is the most common cancer in women, but fortunately early detection and treatment can signi?cantly improve the survival rate. Ultrasound, mammography and magnetic resonance imaging (MRI) are currently used clinically for breast cancer diagnosis [1]. However, these techniques have many limitations, such as high rate of missed detections, ionizing radiation (mamography), too expensive to be widely available, and so on. Compared with conventional mammography, microwave imaging of breast tumors is a nonionizing, potentially low-cost, comfortable and safe alternative [2]. The high contrast of the dielectric property between the malignant tumor and the normal breast tissue should manifest itself in terms of lower numbers of missed detections and false positives [3, 4]. The microwave breast tumor detection also has the potential to be both sensitive and speci?c, to detect small tumors, and to be less expensive than methods such as MRI.
?
Corresponding author: M. Yuan (mengqing.yuan@https://www.360docs.net/doc/0211169296.html,). Also with National Key Laboratory of EMC, Wuhan, Hubei 430064, China.

天线方向图

1、仿真方向图基于如下定义天线与坐标的关系:天线安装在球坐标的原点上,天线法向(与安装平面垂直)或轴向为z轴,指向天顶,如下图所示。Theta(θ)面方向图:指phi取恒定值的平面;theta从0到360°,其中0~180°对应球坐标中x>0的0~180°,180~360 对应球坐标中x<0的180~0°,方向图均为功率方向图。对于喇叭、微带天线等定向辐射天线而言,通常所说的E、H面是theta面的两个特例。Phi(φ)面方向图(水平面):指Theta 取恒定值的锥面,phi从0到360°。E-theata分量(垂直面):Theta=0°附近对应为水平极化分量的一部分(垂直极化振子天线的零点区域,即垂直振子无水平极化分量,常规微带天线水平极化分量大);Theta=90°附近时,对应垂直极化分量(垂直极化振子天线的最大辐射区域,即垂直振子为垂直极化天线,常规微带天线垂直极化分量较小,约-8dBi)。E-phi 分量:电场矢量与z轴垂直,theta=0°附近对应为水平极化分量的一部分;theta=90°附近时,对应全部水平极化分量。总场:Etheta与Ephi的之合成,或者垂直与水平分量之合成,相当于分集接收的效果。天顶 2、方向图形状定义为了形象地描述某些具有一定特征的天线方向图,定义几个名词,仅限于本网站,与其它场合可能有所区别。名词轴向增益θ=0°低仰角θ=80°旋转对称性典型形状典型天线桃子形方向图5 -4 Y 微带天线、振子天线半球形方向图 2 0 Y 四臂螺旋天线、特种微带天线南瓜形方向图-1 1 Y 四臂螺旋天线、特种微带天线全向方向图<-10 2 Y 振子天线、特种微带天线偏轴方向图0 3 N 特种微带天线葫芦形方向图-10 3 N 特种微带天线 实例: l “葫芦形”方向图。 最大辐射方向:+Y,-Y轴方向,适用于需要覆盖狭长空间的场合 l 体积小:相当于普通微带天线的尺寸 l 相对带宽:约5.5%(VSWR<1.5),13%(VSWR<2) l 可以增加第二个频率的微带天线,半球形方向图,厚度增加约4mm。 l 天线形式:微带天线 l 极化:垂直线极化(E-syt) l 3dB波束宽度:水平面(=90°)70°,垂直面(=90°)110° l 增益:>4dB(两个主瓣方向) l 安装方式:微带天线面位于球坐标的XOY平面,可以直接安装在金属体上,也可以安装在非金属介质上,方向图稍微有变化。 仿真实例:1.9GHz通讯天线 仿真结果:

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱 班级:04091202 姓名:黄文平 学号:04091158 成绩:

阵列天线方向图的MATLAB 实现 摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。 关键词:阵列天线;;方向图;MATLAB 前言: 天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。因此,对阵列天线方向性分析在天线理论研究中占有重要地位。阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。 1 均匀直线阵方向图分析 若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]: 均匀直线阵归一化阵因子为[ 3 ]: Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

阵列的方向图

阵列的方向图 阵列输出的绝对值与来波方向图之间的关系称为天线的方向图。方向图一般有两类:一类是阵列输出的直接相加(不考虑信号及其来向),即静态方向图;另一类是带指向的方向图(考虑信号指向),信号指向是通过控制加权的相位来实现的。 由信号模型可知,对于某一确定的m 元空间阵列,在忽略噪声的条件下,第 l 个阵元的振幅为: l j l e g x ωτ-=0 (1) 式中0g 为来波的复振幅l τ为第l 个阵元与参考点之间的延迟。设第l 个阵元的权值为l w ,那么所有阵元加权的输出相加得到阵列输出为: ∑=-=m l j l l e g w Y 100ωτ (2) 对上式取绝对值并归一化后可得到空间阵列的方向图)(θG : } max{)(00Y Y G = θ (3) 如果式中1=l w ,式(3)即是静态方向图。 1. 均匀线列阵 假设均匀线阵间距为d ,以左边的阵元为参考点,另假设入射方位角为θ, 图1 均匀线列阵 其中方位角表示与阵列法线方向的夹角,则有: d l c x c k l )1(1 sin 1-== θτ (4) 式(3)可以化简为:

∑=--=m l l j l e g w Y 1 )1(00β (5) 式中λθπβ/sin 2=,当1=l w 时又可以进一步化简为: ) 2/sin() 2/sin(2 /)(00βββm m e mg Y l m j -= (6) 可得均匀线阵静态方向图图: ) 2/sin() 2/sin()(0ββθm m G = (7) 当d l j l e w β)1(-=,λ θπβd d d sin 2= 的式(6)可以简化为: ) 2/)sin(() 2/)(sin(2 /)(00d d l m j m m e mg Y βββββ--=- (8) 于是可得指向为d θ的阵列指向图: ) 2/)sin(() 2/)(sin()(0d d m m G ββββθ--= (9) MATLAB 仿真图 阵元M=8,thetad=0,均匀线阵方向图 方位角/度 G (θ)/d B 270 0阵元M=8,thetad=0,均匀线阵方向图 图2 指向0°时,均匀线列阵的方向图 阵元M=8,thetad=30,均匀线阵方向图 方位角/度 G (θ)/d B 270 0阵元M=8,thetad=30,均匀线阵方向图 图3 指向30°时,均匀线列阵的方向图

元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2 πθ=) 2/sin() 2/sin(1)(ψψψN N A =

式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时 0=m ?或π,也就是说阵的 各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: kd m ζ?-=cos 2π ?±=m

阵列天线分析报告与综合_1

阵列天线分析与综合 前言 任何无线电设备都需要用到天线。天线的基本功能是能量转换和电磁波的定向辐射或接收。天线的性能直接影响到无线电设备的使用。现代无线电设备,不管是通讯、雷达、导航、微波着陆、干扰和抗干扰等系统的应用中,越来越多地采用阵列天线。阵列天线是根据电磁波在空间相互干涉的原理,把具有相同结构、相同尺寸的某种基本天线按一定规律排列在一起组成的。如果按直线排列,就构成直线阵;如果排列在一个平面内,就为平面阵。平面阵又分矩形平面阵、圆形平面阵等;还可以排列在飞行体表面以形成共形阵。 在无线电系统中为了提高工作性能,如提高增益,增强方向性,往往需要天线将能量集中于一个非常狭窄的空间辐射出去。例如精密跟踪雷达天线,要求其主瓣宽度只有1/3度;接收天体辐射的射电天文望远镜的天线,其主瓣宽度只有1/30度。天线辐射能量的集中程度如此之高,采用单个的振子天线、喇叭天线等,甚至反射面天线或卡塞格伦天线是不能胜任的,必须采用阵列天线。 对一些雷达设备、飞机着陆系统等,其天线要求辐射能量集中程度不是很高,其主瓣宽度也只有几度,虽然采用一副天线就能完成任务,但是为了提高天线增益和辐射效率,降低副瓣电平,形成赋形波束和多波束等,往往也需要采用阵列天线。 在雷达应用中,其天线即需要有尖锐的辐射波束又希望有较宽的覆盖范围,则需要波束扫描,若采用机械扫描则反应时间较慢,必须采用电扫描,如相控扫描,因此就需要采用相控阵天线。 在多功能雷达系统中,既需要在俯仰面进行波束扫描,又需要改变相位展宽波束,还需要仅改变相位进行波束赋形,实现这些功能的天线系统只有相控阵天线才能完成。 随着各项技术的发展,天线馈电网络与单元天线进行一体化设计成为可能,高集成度的T/R组件的成本越来越低,使得在阵列天线中的越来越广泛的采用,阵列天线实现低副瓣和极低副瓣越来越容易,功能越来越强。等等。 综上所述,采用阵列天线的原因大致有如下几点: ■容易实现极窄波束,以提高天线的方向性和增益; ■易于实现赋形波束和多波束;

天线阵列辐射方向图的研究

微波技术课程考核题目天线阵列辐射方向图的研究 系别物理与电子工程学院专业电子科学与技术班级07(4) 学号050207404 学生姓名牛涛 指导教师范瑜 日期2010-01-05

目录 一、基本概念 (2) 1.1方向图基本概念 (2) 1.2主瓣宽度 (3) 1.2.1主瓣宽度基本概念及特性 (5) 1.3旁瓣抑制 (5)

一、基本概念 1.1方向图基本概念 天线的辐射电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。天线方向图是空间立体图形,但是通常应用的是两个互相垂直的主平面內的方向图,称为平面方向图。在线性天线中,由于地面影响较大,都采用垂直面和水平面作为主平面。在面型天线中,则采用E平面和H平面作为两个主平面。归一化方向图取最大值为一。在方向图中,包含所需最大辐射方向的辐射波瓣叫天线主波瓣,也称天线波束。主瓣之外的波瓣叫副瓣或旁瓣或边瓣,与主瓣相反方向上的旁瓣叫后瓣,见图1:全向天线水平波瓣和垂直波瓣图,其天线外形为圆柱型;图2:定向天线水平波瓣和垂直波瓣图,其天线外形为板状。 图1 全向天线波瓣示意图

图2 定向天线波瓣示意图 1.2主瓣宽度 为了方便对各种天线的方向图特性进行比较,就需要规定一些特性参数。主要包括:零功率波瓣宽度、半功率点波瓣宽度、旁瓣电平、前后比、方向系数等。 1.零功率波瓣宽度,指主瓣两侧场强值为0的两个方向之间的夹角,用2表示。许多天线方向图的主瓣是关于最大辐射方向对称的,因此,只要确定零功率主瓣宽度的一半,再取其2倍即可求得零功率主瓣宽度,即2=2。 2. 半功率点波瓣宽度,指方向图主瓣两侧两个半功率点(即场强下降到最大值下降到0.707(或分贝值从最大值下降3dB处对应的两点)之间的夹角,又称为3dB波束宽度或主瓣宽度,记为。对方向

天线方向图测量

电磁场与电磁波实验报告实验内容:天线方向图的测量 学院:电子工程学院 班级:2010211207 姓名:林铭雯 学号:10210880(21)

一、实验目的 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 二、实验原理 1、天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它 的辐射或接收效率可能很低。要能够有 效地辐射或者接收电磁波,天线在结构 和形式上必须满足一定的要求。图B1-1 给出由高频开路平行双导线传输线演变 为天线的过程。开始时,平行双导线传 输线之间的电场呈现驻波分布,如图 B3-1a 。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长, 它们所激发的电磁场在两线外部的大部 分空间由于相位相反而互相抵消。如果 将两线末端逐渐张开,如图B3-1b 所示, 那么在某些方向上,两导线产生的电磁 场就不能抵消,辐射将会逐渐增强。当 两线完全张开时,如图B3-1c 所示,张开 的两臂上电流方向相同,它们在周围空 间激发的电磁场只在一定方向由于相位关系而互相抵消,在大部分方向则互相叠加,使辐射显著增强。这样的结构被称为开放式结构。由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 天线辐射的是无线电波,接收的也是无线电波,然而发射机通过馈线送入天线的并不是无线电波,接收天线也不能把无线电波直接经馈线送入接收机,其中必须进行能量的转换。图B3-2是进行无线电通信时,从发射机到接收机信号通 图1 传输线演变为天线 a.发射机c. b.

天线方向图仿真

阵列天线方向图MATLAB仿真 一.实验要求 1.运用MATLAB仿真16单元阵列天线的方向图。 2.变换θ和d观察曲线变化。 二.实验原理 1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并 通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。 三、仿真结果 16单元天线方向图,θ=0°,d=2/λ

16单元天线方向图,θ=0°,d=λ 16单元天线方向图,θ=20°,d=2/λ

16单元天线方向图,θ=20°,d=λ 结果分析: 经过仿真结果实现了16单元天线方向图,并分别在d=2/λ时在θ=0°,θ=20°方向形成波束。在d=λ时,通过对比d=2/λ时的曲线可以发现随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。 四、源代码 1. clear; theta=-pi/2:0.01:pi/2; lamda=0.03;

阵列天线方向图函数实验

阵列天线方向图函数实验 一、 实验目的 1. 设计一个均匀线阵,给定d N d ,,,λθ画出方向图)(θF 函数图; 2. 改变参数后,画出方向图)(θF 函数图,观察方向图)(θF 的变化并加以分析; 3. 分析方向图)(θF 主瓣的衰减情况以及主瓣对第一旁瓣的衰减情况,确定dB 3衰减对应的θ; 二、 实验原理 阵列输出的绝对值与来波方向之间的关系称为天线的方向图。方向图一般有两类:一类是阵列输出的直接相加(不考虑信号及其来向),即静态方向图;另一类是带指向的方向图(考虑信号指向),当然信号的指向是通过控制加权的相位来实现的。对于某一确定的M 元空间阵列,在忽略噪声的条件下,第k 个阵元的复振幅为 ) ,2,1(0M k e g x k j k ==-ωτ (2.1) 式中:0g 为来波的复振幅,k τ为第k 个阵元与参考点之间的延迟。设第k 个阵元的权值为k w ,那么所有阵元加权的输出得到的阵列的输出为 ) ,2,1(01 0M k e g w Y k j M k k == -=∑ωτ (2.2) 对上式取绝对值并归一化后可得到空间阵列的方向图 {} 0max )(Y Y F = θ (2.3) 如果),2,1(1M k w k ==式(2.3)即为静态方向图) (θF 。下面考虑均匀线阵方向 图。假设均匀线阵的间距为d ,且以最左边的阵元为参考点(最左边的阵元位于原点),另假设信号入射方位角为θ,其中方位角表示与线阵法线方向的夹角,与参考点的波程差为 θ θτsin )1(1)sin (11d k c x c k -= = (2.4) 则阵列的输出为

阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB仿真一.实验目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 二.实验原理 1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并 通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 ^ 2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元 阵列天线 天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。

三.源程序及相应的仿真图1.方向图随n变化的源程序 clear; sita=-pi/2::pi/2; lamda=; ] d=lamda/4; n1=20; beta=2*pi*d*sin(sita)/lamda; z11=(n1/2)*beta; z21=(1/2)*beta; f1=sin(z11)./(n1*sin(z21)); F1=abs(f1); figure(1); plot(sita,F1,'b'); hold on; n2=25; : beta=2*pi*d*sin(sita)/lamda; z12=(n2/2)*beta; z22=(1/2)*beta; f2=sin(z12)./(n2*sin(z22)); F2=abs(f2); plot(sita,F2,'r'); hold on; n3=30; beta=2*pi*d*sin(sita)/lamda; z13=(n3/2)*beta; z23=(1/2)*beta; > f3=sin(z13)./(n3*sin(z23)); F3=abs(f3); plot(sita,F3,'k') hold off; grid on; xlabel('theta/radian'); ylabel('amplitude'); title('方向图与阵列个数的关系'); legend('n=20','n=25','n=30');

天线的方向图测量(设计性试验)

中国石油大学近代物理实验报告 班级:材料物理10-2 姓名:同组者:教师: 设计性实验不同材质天线的方向图测量【实验目的】 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 【预习问题】 1.什么是天线? 2.AT3200天线实训系统有那几部分组成,分别都有什么作用? 3.与AT3200天线实训系统配套的软件有几个,分别有什么作用? 【实验原理】 一.天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。要能够有效地辐射或者接收电磁波,天线在 结构和形式上必须满足一定的要求。图B1-1给出 由高频开路平行双导线传输线演变为天线的过程。 开始时,平行双导线传输线之间的电场呈现驻波分 布,如图B3-1a。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长,它们所激发 的电磁场在两线外部的大部分空间由于相位相反 而互相抵消。如果将两线末端逐渐张开,如图B3-1b 所示,那么在某些方向上,两导线产生的电磁场就 不能抵消,辐射将会逐渐增强。当两线完全张开时, 如图B3-1c所示,张开的两臂上电流方向相同,它 们在周围空间激发的电磁场只在一定方向由于相 位关系而互相抵消,在大部分方向则互相叠加,使 辐射显著增强。这样的结构被称为开放式结构。由 末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 图B3-1 传输线演变为天线a. 发射机 c. b.

天线方向图测试系统操作说明

大连理工大学实验预习报告 姓名:牛玉博班级:电通1202 学号:201201203 实验六天线方向图测试 本系统主要用于线天线E面方向图测试,可动态、实时绘制极坐标和直角坐标系方向图曲线,保存测试数据用于后续分析处理。 系统使用步骤示意如图0.1所示。 图0.1 系统使用步骤示意图 1系统连接 测试系统由发射装置、接收装置和控制器三大部分组成,三部分的连接示意如图1.1所示。连接时注意信号线要根据待测工作频率接至对应端子,并将接收装置方向调整到正确姿态。

图1.1 系统连接示意图 发射装置包含400MHz 和900MHz 两个频点的发射电路和天线,如图1.2所示。接收装置包含400MHz 和900MHz 两个频点的接收电路和天线,并具有天线旋转机构,如图1.3所示。控制器利用触摸屏完成所有测试操作和方向图曲线的实时绘制,如图1.4所示。 图1.2 发射装置 图1.3 接收装置 此处少一图(图1.4 测试控制器)、待发。 2 控制器操作 2.1 打开控制器电源,等待系统启动,进入提示界面,如图2.1所示。 发射装置 接收装置 控制器 电机线 信号线

图2.1 方向图测试系统提示界面 2.2点击界面任意位置,进入“实测方向图”界面,如图2.2所示。 图2.2 实测方向图界面 2.3点击图2.2中的“频率选择”按钮,选择与硬件链接对应的工作频率。 2.4点击“天线长度”数字框,输入实际天线长度(单位为毫米),并按“确 定”确认,如图2.3所示。

图2.3 天线长度输入界面 2.5点击“机械回零”按钮,接收天线旋转,当到达机械零点基准点时,自 动停止旋转,如图2.4所示。注意:机械回零完成之前不要做其它操作! 图2.4 机械归零界面 2.6点击“归一化”按钮,接收天线旋转,搜索信号最大值,并提示“归一 化进行中”。当到天线旋转一周时,搜索结束,如图2.5所示。注意:归

王健阵列天线讲义习题

阵列天线分析与综合习题 第一章 直线阵列的分析 1. 分析由五个各向同性单元组成的均匀线阵,其间距d=2λ/3。求(a) 主瓣最大值;(b) 零点位置;(c) 副瓣位置和相对电平;(d) 方向系数;(e) d 趋于零时的方向系数。 2. 有一单元数目N=100,单元间距d=λ/2的均匀线阵,在(a) 侧射;(b) 端射;(c) 主瓣最大值发生在θ=45o时,求主瓣宽度和第一副瓣电平。 3. 有一由N 个各向同性单元组成的间距为 d 的均匀侧射阵,当kd<<1,Nkd>>1 时,证明其方向系数D =2Nd/λ。提示: 2(sin /)x x dx π∞ ?∞=∫ 。 4. 设有十个各向同性辐射元沿Z 轴均匀排列,d=λ/4,等幅激励。当它们组成(a) 侧射阵;(b) 普通端射阵;(c) 满足汉森—伍德亚德条件的强方向性端射阵时,求相邻单元间相位差、第一零点波瓣宽度、半功率波瓣宽度、第一副瓣相对电平和方向系数。 5. 利用有限Z 变换求出均匀线阵的阵因子,并利用y=Z+Z -1的变量置换分析均匀阵功率方向图的特性。 6. 若有五个各向同性辐射元沿Z 轴以间距d 均匀排列,各单元均同相激励,激励幅度包络函数为[]()1sin /(1)I N d ξπξ=+?。试分别用Z 变换法和直接相加法导出阵因子S(u),并计算S(u) 在0

相关主题