风管制作步骤及要求

风管制作步骤及要求
风管制作步骤及要求

风管制作步骤及要求 一、制作步骤

1. 金属风管制作

1.1

咬边连接金属风管制作工艺流程

1.2

焊接金属风管制作工艺流程

2. 非金属风管制作

2.1 硬聚氯乙烯风管制作工艺流程

2.2 玻璃钢风管制作工艺流程

3. 圆风管圈圆示意

二、制作要求

1. 总体要求 1.1 加固

1.1.1 风管周长<1190mm 不加固 1.1.2 风管周长≥1190mm 须加固

1.1.3 金属风管加固,一般可采用楞筋、立筋、角钢、扁钢、加固筋和管内支撑等形式,如下图

1.1.4 常用加固方式:起凸(环向压筋),间距约为300mm(筋宽30~50mm ,筋高5~6mm)(铝制间距490mm ),如下图:

注意点:压筋须在卷板前做好!

1.2 导流叶片制作

1.2.1 弯头的弯曲半径R=l.4倍风管当量直径范围内的局部阻力最小,在弯头中应避免出现死弯;如果矩形风管沿转弯方向的边长过大而其R 值又偏小时,或者弯头内弯曲半径为100mm 或者角度≥30°的矩形风管应设置导流片。 1.2.2 当400mm <B <1120mm 时,安装一片导流叶片(半径为250mm);当B ≥1120mm 时,安装两片导流叶片(半径为250mm),如下图:

1.2.3 弯管导流叶片制作 1.2.4 固定

H:导流叶片长度

1400mm≤H<2000mm,等距安装两个

H≥2000mm,等距安装三个,且当α﹥60°时,叶片两端各安装一个加强件

600mm≤H<900mm,且当30°<α≤60°时,安装一个加强件

900mm≤H<1200mm,且当30°<α≤60°时,等距安装两个加强件

1200mm≤H<1500mm,且当30°<α≤60°时,等距安装三个加强件

注意:导流叶片的宽度应比弯头的宽度小1~2mm ;在任何状态下都应避免切割导流叶片翻边;所有螺栓螺母应镀锌;制作中间加强筋的管子应油漆 1.3 法兰

1.3.1 法兰尺寸及中心距对应表

GS —铸钢 SS —不锈钢 AL —铝

导流叶片长度≥等距离,且当30°<α≤60°时,等距安装四个加强件

中间加强件由M8双头螺杆、平垫圈、螺母组成并用密封胶密封

1.3.2 法兰用料选择应满足下表要求

1.3.3 矩形风管法兰由四根角钢或扁钢组焊而成,划线下料时应注意使焊成后的法兰内径不能小于风管外径。用切割机切断角钢或扁钢,下料调直后用台钻加工。中、低压系统的风管法兰的铆钉孔及螺栓孔孔距不应大于150mm;高压系统风管的法兰的柳钉孔及螺栓孔孔距不应大于100mm。净化空调系统,当洁净度的等级为l~5级时,不应大于65mm;洁净度的等级为6~9级时,不应大于100mm。矩形法兰的四角部位必须设有螺孔。钻孔后的型钢放在焊接平台上进行焊接,焊接时用模具卡紧。

1.3.4 加工圆形法兰时,先将整根角钢或扁钢在型钢卷圆机上卷成螺旋形状。将卷好后的型钢划线割开,逐个放在平台上找平找正,调整后进行焊接、钻孔。孔位应沿圆周均布,使备法兰可互换使用。

1.3.5 风管与法兰连接

1.3.5.1 风管与法兰柳接前先进行技术质量复核。将法兰套在风管上,管端留出6~9mm左右的翻边量,管中心线与法兰平面应垂直,然后使用铆钉钳将风管与法兰铆固,并留出四周翻边。

1.3.5.2 铆钉:用钢铆钉,铆钉平头朝内,圆头在外。铆钉规格及铆钉孔尺寸见下表。

风管法兰内侧的铆钉处应涂密封胶,涂胶前应清除铆钉处表面油污。

1.3.5.3 风管翻边应平整并紧贴法兰,应剪去风管咬口部位多余的咬口层,并保留一层余量;翻边四角不得撕裂,

翻拐角边时,应拍打成圆弧形;涂胶时,应适量、均匀,不得有堆积现象

1.4 铆接

1.5 合口成型

将两块压制好咬口的钢板按顺序扣死,用手锤或者木质打板机打平整。 2. 细节要求

2.1 板材下料后在压口之前,要进行倒角。倒角形状如下图。

2.2 咬口形式见下图。板材的拼接和圆形风管的闭合咬口可采用单咬口;矩形风管或配件的四角组合可采用转角咬口、联合角咬口、按扣式咬口;圆形弯管的组合可采用立咬口。

风管中心线与法兰成90°(±10′

)

2.4 咬口宽度和留量根据板材厚度而定,应符合下表的要求。咬口留量的大小、咬口宽度和重叠层数同使用机械有关。对单平咬口、单立咬口、转角咬口在第一块板上等于咬口宽,而在第二块板上是两倍宽,即咬口留量就等于三倍咬口宽;联合角咬口在第一块板上为咬口宽,在第二块板上是三倍咬口宽,咬口留量就等于四倍咬口宽度。

2.5 制作矩形风管时,画好折方线 ,在折方机上折方;制作圆风管时,将咬口两端拍成圆弧状放在卷圆机上圈圆;操作时,手不得直接推送钢板 。折方或卷圆后的钢板用合缝机或手工进行合缝。操作时,用力要均匀,不宣过重 ;咬口缝结合应紧密,不得有胀裂和半咬口现象。

3. 风管无法兰连接

无法兰连接风管的接口应采用机械加工,尺寸应正确、形状应规则,接口处应严密。无法兰矩形风管接口处的四角应有固定措施。金属风管无法兰连接可分为圆形风管和矩形风管两大类,其形式按结构原理可分为承插、插条、咬合 、铁皮弹簧夹和混合式连接 5 种。风管无法兰连接应满足严密、牢固的要求,不得发生自行脱落、胀裂等缺陷。 3.1 承插连接 ① 直接承插连接 :

制作风管时,使风管的一端比另一端的尺寸略小,然后插入连接,插入深度>30mm ,用拉铆钉或自攻螺钉固定,在接口缝内或外沿涂抹密封胶,完成风管段的连接。这种连接形式结构最为简单,用料也最省,但接头刚度较差,所以仅用在断面较小的圆形风管上(低压风管,直径<700mm)。

利用芯管作为中间连接件,芯管两端分别插入两根风管实现连接,插入深度>20mm ,然后用拉铆钉或自攻螺钉将风管和芯管连接段固定,并用密封胶将接缝封堵严密。这种连接方式一般都用在圆形风管和椭圆形风管上。圆形风管芯管连接应符合下表的规定

3.2 插条连接 ① c 形插条连接

利用 c 形插条插入端头翻边180°的两风管连接部位,将风管扣咬达到连接的目的,其中插条插入风管两对边和风管接口相等,另两对边各长50mm 左右,使这两长边每头翻压90°,盖压在另一插条端头上,完成矩形风管的四个角定位,并用密刽胶将接缝处堵严。这种连接方式多用于矩形风管。 ② s 形插条连接

利用中间连接件s 形插条,将要连接的两根风管的管端分别插入插条的两面槽内,四角处理方法同c 形插条。因s 形插条风管是轴向插入槽内,故必须采取预防风管与插条轴向分离措施,一般可采用拉铆钉、自攻螺钉固定,或两对边分别采用 c 、s 形插条混用的方法。s 形插条均用于矩形风管连接。(备 注:采用 s 、c 形插条连接时,风管最长边尺寸不得大于630mm 。立咬口小于等于 lOOOmm )

利用c形插条从中间外弯90°作连接件插入短形风管主管平面与支管管端的连接。主管平面开洞,洞边四周翻边180°,翻边后净留孔尺寸刚好等于所连接支管断面尺寸,支管管瑞翻边180°,将需连接口对合后,四边分别插入己折90°的c形插条,四角处理同c形插条。

3.3 咬合连接

①立咬口连接

利用风管两头四个面分别折成一个90°和两个90°,形成两个折边或一公一母。连接时,将一公端插顶到母端,然后将母端外折边翻托到公端翻边背后,压紧后再用铆钉每间隔200mm 左右进行铆接。为了堵严并固定四角,在合口时四角各加上一个90°贴角。全部咬合完后,在咬口接缝处涂抹密封胶。

②包边立咬口连接

在风管管头四边均翻一个垂直立边,然后利用一个公用包边将连接管头的两翻边合在一起,并用铆钉完成紧固。风管连接四角和立咬口连接一样,需做贴角以保证风管四角刚度和密封。全部连接后,接缝处涂抹密封胶

3.4 铁皮弹簧夹连接

矩形风管管端四面连接的铁皮法兰和风管不是一休,而是专门压制出来的空心法兰条,连接风管管端四个面,分别插到预制好的法兰插条内,插条和风管本体的固定可做成铆钉连接,也可做成倒刺止退形式。风管四角插入90°贴角,以加强矩形风管的四角成型及密封。弹簧夹须用专用机械加工,连接接口密封除插入空心法兰和风管管端平面有密封胶条密封外,两法兰平面也需由密封胶条在连接时加以密封。

3.5 混合连接

①立联合角插条连接

利用一立咬平插条,将矩形风管连接两个头,分别采用立咬口和平插的方式连在一起。不管是平插和立咬口连接处,均需用铆钉铆住。风管四角立咬口处加90°贴角,在平插处靠一对插条两头长出另两个风管面20mm 左右压倒在齐平风管面的插条上,这种连接方式主要是改变平插条接头刚度较低的缺陷。咬口后的连接接缝处均需涂抹密封胶。

②铁皮法兰c形平插条连接

利用c形插条连接时,在风管端部多翻出一个立面,相当于连接法兰,以增大风管连接处的刚度。在接头连接时,四角须加工成对贴角,以便插条延伸出角及加固风管四角定形。

4. 金属风管的焊接连接

当普通钢板的厚度大于1. 2mm,不锈钢板的厚度大于1. Omm ,铝板厚度大于1. 5mm 时,可采用焊接连接。

4.1 碳钢风管焊接

①焊接前,必须清除焊接端口处的污物、油迹、锈蚀;采用点焊或连续焊缝时,还需清除氧化物。对口应保持最小的缝隙,应及时清除手工点焊定位处的焊瘤。采用机械焊接方法时,电网电压的波动不能超过± 10% 。焊接后,应将焊缝及其附近区域的电极熔渣及残留的焊丝清除。

②风管焊缝形式对接焊缝适用于板材拼接或横向缝及纵向闭合缝。搭接焊缝适用于矩形或管件的纵向闭合缝矩形弯头、三通的转向缝,圆形、矩形风管封头闭合缝。

4.2 不锈钢板风管的焊接

①不锈钢板风管的焊接,可采用非熔化极氢弧焊;当板材的厚度大于1. 2mm 时,可采用直流电焊机反极法进行焊接,但不得采用氧乙烘气焊焊接焊条或焊丝材质应与母材相同,机械强度不应低于母材。

②焊接前,应将焊缝区域的油脂,污物清除干净,以防止焊缝出现气孔、砂眼。清洗可用汽油、丙酮等进行。

③用电弧焊焊接不锈钢时,应在焊缝的两侧表面涂上白垩粉,防止飞溅金属粘附在板材的表面,损伤板材。

④焊接后,应注意清除焊缝处的熔渣,并用不绣钢丝刷或铜丝刷刷出金属光泽,再用酸洗膏进行酸洗钝化,最后用热水洗干净。

⑤风管应避免在风管焊缝及其边缘处开孔。

4.3 铝板风管焊接

①铝板风管的焊接宜采用氧乙烘气焊或氢弧焊,焊缝应牢固不得有虚焊、穿孔等缺陷。

②在焊接前,必须对铝制风管焊口处和焊丝上的氧化物及污物进行清理,并应在清除氧化膜后的2~3h内焊接结束,防止处理后的表面再度氧化。

③在对口过程中,要使焊口达到最小间隙,以避免焊穿。对于易焊穿的薄板,焊接须在铜垫板上进行。

④当采用点焊或连续焊工艺焊接铝制风管时,必须首先进行试验,形成成熟的焊接工艺后,方可正式施焊。

⑤焊接后应用热水清洗焊缝表面的焊渣、焊药等杂物。

5. 制作不锈钢及铝板风管的特殊要求

5.1 风管制作场地应铺设木板,工作之前必须把工作场地上的铁屑、杂物打扫干净。

5.2 放样划线时,不得用锋利的金属划针在板材表面划辅助线和冲眼,以免造成划痕。制作较复杂的管件时,应先做好样板,经复核无误后,再在不锈钢板表面套裁下料。

5.3 不锈钢风管采用手工咬口制作时,应使用木方尺(木槌)、铜锤或不锈钢锤,不得使用碳素钢锤。

5.4 剪切不锈钢板时,为了使切断的边缘保持光洁,应仔细调整好上下刀刃的间隙,刀刃间隙一般为板材厚度的0.04 倍。

5.5 在不锈钢板上钻孔时,应采用高速钢钻头,钻孔的切削速度约为普通钢的一半,最多不要超过20m/ s。5.6 不锈钢热煨法兰时应采用专用的加热设备加热,其温度应控制在1100~1200℃之间。煨弯温度不得低于820℃。煨好后的法兰必须重新加热到1100~1200℃,再在冷水中迅速冷却。

5.7 铝制风管和配件板材应注意保护表面,制作时应用铅笔或记号笔划线,避免表面刻伤。

5.8 铝制圆形法兰冷煨前,应将冷煨机辊轮擦拭干净,铝材上采用贴牛皮纸保护。

6. 钢板厚度要求

6.1 钢板风管

6.2 高、中、低压系统不锈钢板风管

6.3 中、低压系统铝板风管

6.4 中、低压系统硬聚氯乙烯圆形风管

6.5 中低压系统硬聚氯乙烯距形风管

6.6 中、低压系统有机玻璃钢

6.7 中、低压系统无机玻璃钢

7. 非金属风管制作要点 7.1 硬聚氯乙烯板风管

7.1.1 划线时,应按图纸尺寸、板材规格和现有加热箱的大小等具体情况,合理安排,尽量减少切割和焊接工作量,又要注意节省原材料。

7.1.2 风管的纵缝应交错设置 ,圆形风管可在组配焊接时考虑 ;矩形风管则应在展开划线时,注意 相邻管段纵缝要交错设置 ;同时还要注意焊缝避免设在转角处 ,因为四角要加热折方。

7.1.3 展开划线时应使用红铅笔或不伤板材表面软休笔进行 ,严禁用锋利金属针或锯条进行划线,不应使板材表面形成伤痕或折裂 。

7.1.4 在下料时,对需要加热成形的风管或管件应适当留出收缩裕量。每批板材加工前均应进行加热试验,以确定其收缩余量。

7.1.5 严禁在圆形风管的管底设置纵焊缝。矩形风管底宽度小于板材宽度不应设置纵焊缝 ,管底宽度大于板材宽度,只能设置一条纵缝 ,并应尽量避免纵焊缝存在;焊缝应牢固、平整,光滑。

7.1.6 使用剪床下料时,5mm 厚以下的板材可在常温下进行;5mm 厚以上或冬天气温较低时,应将板材加热到30℃左右,再进行剪切 ,防止材料碎裂。

7.1.7 锯割时,速度应控制在每分钟3m的范围内,防止材料过热,发生烧焦和粘住现象;也可用压缩空气进行冷却7.1.8 板材厚度大于3mm时应开v形坡口;大于5mm时应开双面V形坡口。坡口角度为50~ 60 °,留钝边l~1.5mm ,坡口间隙0.5~lmm ,坡口角度和尺寸应均匀一致,如下图所示。

7.1.9 采用坡口机或砂轮机制备坡口时应将坡口机或砂轮机底板和挡板调整到需要角度,先作样板

坡口,检查角度是否合乎要求,确认无误后再进行大批量加工。

7.1.10 矩形风管加热成型时,不得用四周角焊成型,应四边加热折方成型。加热表面温度应控制在130~150℃,加热折方部位不得有焦黄、发白裂口;成型后不得有明显扭曲和翘角。

7.1.11 矩形法兰制作:在硬聚氯乙烯板上按规格划好样板,尺寸应准确,对角线长度应一致,四角的外边应整齐;焊接成型时应用钢块等重物适当压住,防止塑料焊接变形,使法兰的表面保持平整。

7.1.12 圆形法兰制作:应将聚氯乙烯按直径要求计算板条长度并放足热胀冷缩余料,用剪床或圆盘锯裁切成条状。圆形法兰宣采用两次热成形,第一次将加热成柔软状态的聚氯乙烯板煨成圈带,接头焊牢后,第二次再加热成柔软状态板休,在胎具上压平校形。DN150以下法兰不宜热煨,可用车床加工。

7.1.13 焊缝应填满,不得有焦黄断裂和未熔合现象。焊缝强度不得低于母材强度的60% ,焊条材质与板材相同。

三、验收要求

1. 一般要求

1.1. 风管制作完成后,进行强度和严密性试验,对其工艺性能进行检测或验证。

1.1.1 风管的强度应能满足在1. 5 倍工作压力下接缝处无开裂;

1.1.2 用漏光法检测系统风管严密程度:采用一定强度的安全光源沿着被检测接口部位与接缝作缓慢移动,在另一侧进行观察,作好记录,对发现的条缝形漏光应作密封处理;当采用精光法检测系统的严密性时,低压系统风管以每lOm接缝,漏光点不大于2 处,且lOOm接缝平均不大于16处为合格;中压系统风管每lOm接缝,漏光点不大于l处,且lOOm接缝平均不大于8处为合格;

1.1.3 系统漏风量测试可以整体或分段进行。测试时,被测系统的所有开口均应封闭,不应漏风。当漏风量超过设计和验收规范要求时,可用听、摸、观察、水或烟检铺,查出漏风部位,作好标记;修补完后,重新测试,直至合格。

1.1.4 风管的强度应能满足在1. 5 倍工作压力下接缝处无开裂

1.1.5 矩形风管的允许漏风量应符合以下规定:

低压系统风管Q L≤0.1056P0.65

中压系统风管Q M≤0.0352P0.65

高压系统风管Q H≤0.0117P0.65

式中Q L Q M Q H—系统风管在相应工作压力下,单位面积风管单位时间内的允许漏风量[m3/(h2m2)]

P—风管系统的工作压力( p a )。

1.1.6 低压、中压圆形金属风管、复合材料风管以及采用非法兰形式的非金属风管的允许漏风量,应为矩形风管规定值的50%;

2. 细节要求

2.1 金属风管的连接应符合下列规定:

2.1.1 风管板材拼接的咬口缝应错开,不得有十字形拼接缝。

2.1.2 金属风管法兰材料规格小应小于下表的规定。中、低压系统风道法兰的螺栓及铆钉孔的孔距不得大于150mm高压系统风管不得大于100mm。矩形风管法兰的四角部位应设有螺孔。

金属圆形风管法兰及螺栓规格

金属矩形风管法兰及螺栓规格

当采用加固方法提高了风管法兰部位的强度时,其法兰材料规格相应的使用条件可适当放宽。 无法兰连接风管的薄钢板法兰高度应参照金属法兰风管的规定执行。

2.3 复合材料风管采用法兰连接时,法兰与风管板材的连接应可靠 ,其绝热层不得外露,不得采用降低板材强度和绝热性能的连接方法 。

2.3.1 硬聚氯乙烯圆形风管法兰规格

2.3.2 硬聚氯乙烯矩形风管法兰规格

2.3.3 有机、无机玻璃钢风管法兰规格

2.4 风管与配件的咬口缝应紧密、宽度应一致;折角应平直,圆弧应均匀;两端面平行。风管无明显扭曲与翘角;表面应平整,凹凸不大于10mm。

2.5 圆形弯管曲率半径和最少节数

2.6 风管外径或外边长的允许偏差:当小于或等于300mm时,为2mm;当大于300mm时,为3mm。管口平面度的允许偏差为2mm,矩形风管两条对角线长度之差不应大于3mm;圆形法兰任意正交两直径之差不应大于2mm。

2.7 焊接风管的焊缝应平整,不应有裂缝、凸瘤、穿透的夹渣、气孔及其他缺陷等,焊接后板材的变形应矫正,并将焊渣及飞溅物清除于净。

2.8 薄钢板法兰矩形风管的接口及附件,其尺寸应准确.形状应规则,接口处应严密;薄钢板法兰的折边(或法兰条)应平直,弯曲度不应大于5/ 1000 ;弹性插条或弹簧夹应与薄钢板法兰相匹配;角件与风管薄钢板法兰四角接口的固定位置应稳固,端面应平整,相连处不应有缝隙大于2mm 的连续穿透缝

2.9 采用c、s形插条连接的矩形风管,其边长不应大于630mm,插条与风管加工插口的宽度应匹配一致,其允许偏差为2mm ,连接应平整、严密,插条两端压倒长度不应小于20mm;

2.10 采用立咬口、包边立咬口的矩形风管,其立筋的高度应大于或等于同规格风管的角钢法兰宽度。同一规格风管的立咬口、包边立咬口的高度应一致,折角应倾角、直线度允许偏差为5/ 1000 ;咬口连接铆钉的间距不应大于150mm,间隔应

均匀;立咬口四角连接处的铆固,应紧密、无孔洞。

四、风管连接形式

1. 圆形风管无法兰连接形式Array

2. 矩形风管无法兰连接形式

3. 圆形风管的芯管连接

4. 无机玻璃钢风管外形尺寸

风管弯头制作规范

电子血压计,操作方便,对技术的要求比较低,可能会有一点误差,单一般使用是不影响的。欧姆龙Omron,九安andon,松下Panasonic,迈克大夫Microlife,鱼跃YUYUE这些牌 一、风道设计问题 现象:风管不能突然扩大、突然缩小。很多工程中由于建筑空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图2.6.6-1(a)。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤150,而缩小不宜大于1/4,即≤300。 为了保持上述斜度,变径管的长度L可按下法求得: (1)单边变径时,如图2.6.6-2(a)。 当(W1-W2) ≥(h1-h2)时L=(W1-W2)×7 当(W1-W2)≤(h1-h2)时,L=(h1-h2) ×7 双边均变径时,如图2.6.6-2(b)

当(W1-W2) ≥(h1-h2)时,L=(W1-W2)× 当(W1-W2) ≤(h1-h2)时,L=(h1-h2) × 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度)。一般以1W 为宜。 2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6.6-1及图、(b)。 表2.6.6-1 3.当弯头为直角弯头时,为了降低其阻力,应在弯头内安装导流叶片,如图2.6.6-4。用叶片(a)时,片距P=38mm;用叶片(b),片距P=81mm。 二、风管防火阀门的设备 1、防火阀上设置防火阀应严格遵守防火规范的有关规定。防火阀安装时应顺气流方向设置。如图2.6.9-1。

空调设计基本步骤

空调设计基本步骤 设计顺序:先末端,后主机设计原则:合理、经济,最大限度节约运行成本设计方案及适用范围: 一、末端部分: 1、风机盘管系统;适用范围:一般办公、餐饮等场所 2、风机盘管加新风系统;适用范围:要求较高的办公、酒店、餐饮娱乐等场所 3、全空气系统;适用范围:商场超市、车间等大开间场所 二、主机部分: 1、螺杆式冷水机组制冷,市政或锅炉供热;适用范围:有专用机房、电力充足、需专人值守 2、风冷机组制冷(制热),市政或锅炉供热;适用范围:空调面积较小、没有机房、无专人值守 3、离心式冷水机组制冷,市政或锅炉供热;适用范围:空调面积较大、有专用机房、电力充足、需专人值守 4、溴化锂机组制冷(制热),市政或锅炉供热;适用范围:电力不足、有市政热源并经综合比较经济、有专用机房、需专人值守 三、其它: 1、一拖多系统; 适用范围:空调面积较小、无专用机房、无专人值守、空调面积较大但非同时使用且需独立计费等场所 2、风管机系统;适用范围:大开间、无专用机房、无专人值守、控制灵活、初投资较低设计程序:

一、末端部分: (一)设备选型: 1、计算实际空调面积; 2、根据使用场所确定冷负荷指标,计算出设计总负荷,根据设备布置特点确定所需设备数量,确定设备型号; 冷负荷概算指标: 采用组合式空调器,循环次数商场6?7次,推荐8?9次 (二)水系统设计: 1、设备定位布置,确定立管位置,根据系统复杂程度确定采用同程式或异程式(当立管与最末端设备距离超过30 米时尽量采用同程式); 2、确定主管道走向,并与设备合理连接,当主管道有分支时应设阀门以便于调节; 3、根据设备流量确定每一管段的水流量,再根据设计水流速计算出管径; 4、空调水设计流速为0.9 -2.5m/s ,管径越大、流速越大,管道比摩阻应小于500; 5、水管与设备连接时,进水管上设软接、过滤器、阀门,出水管上设软接、阀门; 6、冷凝水管径设计: 当机组冷负荷QC 7KW, Dl^20; Q= 7.1 —17.6 , DN= 25; Q= 17.7 —100, DNk32; Q =101- 176, DN^40; Q= 177—598, DN^50; Q= 599—1055, DN^80; Q= 1056—1512, DN^ 100; Q= 1513—12462, DN^ 125; Q> 12462, DN^ 150 7、空调水管保温:

风管制作安装注意事项

风管制作1、风管制作 1.2风管种类 ①金属风管 -镀锌钢板风管(俗称白铁皮) -薄钢板风管(俗称黑铁皮风管) -不锈钢板风管 -铝板风管 ②非金属风管 -机玻璃钢风管 -无机玻璃钢风管 -硬聚氯乙烯板风管 -超级风管:又称玻璃纤维风管 1.3金属风管制作 ①圆形风管制作(略) ②矩形风管制作 矩形风管制作 钢板制矩形风管的常用规格/mm 风管厚度对照表 风管及配件钢板厚度(mm)

注:1、排烟系统风管板厚度可按高压系统 2、特殊除尘系统钢板厚度应符合设计要求 1.3.3不锈钢板厚度对照表 不锈钢板风管与配件板材厚度(mm) 铝板风管厚度对照表 铝板风管和配件材料厚度(mm) 风管加固 ①当矩形风管边长大于或等于630mm和保温风管边长大于或等于800mm,且其管段长度大于1200mm时均应采取加固措施。对边长小于或等于800mm的风管。宜采用楞筋、楞线的方法加固。 ②当中压和高压风管的管段长度大于1200mm时,应采用加固框的形式加固。 ③高压风管的单咬口缝应有加固补强措施 ④当风管的板材厚度大于或等于时,加固措施的范围可放宽。 风管加固示意图: (a)风管壁滚槽 (b)风管壁棱线 (630~1200) (630~1200) (c)角钢加固 (大于1200) 2. 风管安装 一、送、排风管安装 2.1风管连接 (1)法兰连接:风管和风管,风管与部件、配件(弯头三通、异径管)可采用法兰连接,为使风管的法兰用料规格统一和通用化,风管法兰的规格按下表所示: 法兰螺栓及铆钉的间距,低压和中压系统风管应小于或等于150mm;高压系统风管应小于或等于100mm。矩形法兰的四角处应高螺孔,铆钉也应尽量靠近四角处。 圆形风管法兰(mm)

风管制作步骤及要求

风管制作步骤及要求 一、制作步骤 1. 金属风管制作 1.1 咬边连接金属风管制作工艺流程 1.2 焊接金属风管制作工艺流程 2. 非金属风管制作 2.1 硬聚氯乙烯风管制作工艺流程 2.2 玻璃钢风管制作工艺流程 3. 圆风管圈圆示意

二、制作要求 1. 总体要求 1.1 加固 1.1.1 风管周长<1190mm 不加固 1.1.2 风管周长≥1190mm 须加固 1.1.3 金属风管加固,一般可采用楞筋、立筋、角钢、扁钢、加固筋和管内支撑等形式,如下图 1.1.4 常用加固方式:起凸(环向压筋),间距约为300mm(筋宽30~50mm ,筋高5~6mm)(铝制间距490mm ),如下图: 注意点:压筋须在卷板前做好! 1.2 导流叶片制作 1.2.1 弯头的弯曲半径R=l.4倍风管当量直径范围内的局部阻力最小,在弯头中应避免出现死弯;如果矩形风管沿转弯方向的边长过大而其R 值又偏小时,或者弯头内弯曲半径为100mm 或者角度≥30°的矩形风管应设置导流片。 1.2.2 当400mm <B <1120mm 时,安装一片导流叶片(半径为250mm);当B ≥1120mm 时,安装两片导流叶片(半径为250mm),如下图:

1.2.3 弯管导流叶片制作 1.2.4 固定

H:导流叶片长度 1400mm≤H<2000mm,等距安装两个 H≥2000mm,等距安装三个,且当α﹥60°时,叶片两端各安装一个加强件 600mm≤H<900mm,且当30°<α≤60°时,安装一个加强件 900mm≤H<1200mm,且当30°<α≤60°时,等距安装两个加强件 1200mm≤H<1500mm,且当30°<α≤60°时,等距安装三个加强件

风冷热泵空调系统的设计方法(一)

风冷热泵空调系统的设计方法(一) 空调负荷与容量的确定 空调负荷包括空调冷负荷和空调热负荷。空调冷(热)负荷指为将室内的空气参数维持在设计参数状态,单位时间内需向建筑提供的冷(热)量。这是一个受室内设计参数,室内人员、设备等散热和散湿量,围护结构性质,室外空气环境参数(包括温度、湿度、气流速度等),太阳辐射强度等诸多因素影响的变量。让空调系统恰如其分地提供冷(热)量,以满足设计计算状态下建筑物的需求,并随时适应建筑物空调冷(热)负荷及其变化的需要是空调设计的根本目的。 在空调系统设计过程中,空调负荷计算是第一步。空调负荷的计算应包括空调设计计算负荷的确定和各时段负荷的分析;其次,设备的容量必须满足空调设计计算冷(热)负荷的要求;另外设备的配置应适应空调负荷变化的特点。在以空气源热泵型冷热水机组为冷源的空调系统设计中,热泵机组的容量既要考虑到大楼各部分的同时使用系数,还应考虑到热泵的实际制冷量和实际供热量会因设备间距限制等原因造成通风不畅,部分气流短路(这部分的出力损失约占5%左右)而受到影响,和室外换热器表面积灰和表面结垢、设备衰减等因素的影响,故所选择的热泵机组应考虑安全系数。 由公式来表示:Q=β1?β2?QD. 式中:Q——热泵机组在设计工况下的制冷(供热)量,KW QD——设计计算负荷,KW β1——同时使用系数,由具体工程定,一般为0.75~1.0 β2——安全系数,一般取1.05~1.10 另外,热泵机组既要满足系统夏季的供冷要求,又要满足系统冬季的供暖要求。不同供应商的热泵机组的额定制冷量、额定供热量的参数不尽相同,与各地区空调室外设计参数不一定一致。对南京而言,一般供应商所提供的热泵机组额定制冷工况条件与实际一致或相近,一般空气干球温度为35℃,空调冷冻水进出水温度分别为12℃、7℃左右。而冬季制热的额定工况条件为室外空气温度7~8℃,进出水水温为50-55℃。这一条件与南京地区冬季空调设计计算温度相差甚远。南京气候特征为冬冷夏热。对于一般办公、酒店为主的综合楼,冬季空调供暖设计计算热负荷约为夏季空调设计计算冷负荷的70-85%.在热泵机组选择时,应查看热泵机组对应于当地设计计算气象参数条件的真实出力。如果热泵机组在设计计算室外参数条件下的制冷量大于设计计算冷负荷,而制热量等于热负荷,则应以热负荷为准选择热泵。反之,如果制冷量满足设计计算冷负荷要求,而供热量大于所需热量,则可考虑部分选用风冷型冷水机组,部分选用风冷型热泵机组,以减少投资。一般情况下,按夏季冷负荷选定的热泵,能满足冬季供暖的要求。 机组类型与台数的确定 风冷热泵型冷热水机组根据压缩机的不同可分为涡旋式热泵机组、活塞式热泵机组和螺杆式热泵机组;按机组结构大小、组合规模不同,热泵机组可分为整体式热泵机组和模块式热泵机组。整体式热泵机组与模块式热泵机组没有本质的区别,所谓模块式热泵就是指一台热泵机组由若干台热泵单元(有独立的制冷回路,独立的蒸发、冷凝,独立的框架,甚至有独立的控制板)并联而成,各单元增减组合灵活方便,任意一单元的故障不影响其余各单元的工作。 国内的热泵机组生产企业以生产模块式热泵机组为多,而整体式热泵机组从外观上看是一组合单元、一整体框架,虽然内部可有多台压缩机,甚至有两个以上的制冷回路,但它们之间一般不可再分解。模块式热泵机组的主要优点是噪音低、振动小,由于系统总的制冷回路多,冬季化霜时对系统水温影响小。系统互备性也好。另外,热泵机组一般置于屋顶,模块式热泵机组由于各单元组合灵活,各单元尺寸小、重量轻,故具有运输、吊装、安装方便等优点。

空调通风系统风管制作与安装技术交底

分项工程技术(安全)交底记录 编号:AC-003

2、施工设备 根据本工程风管加工量大的具体情况,设立一个风管加工自动流水作业线。本自动风管生产线(见下图)由上料架,调平压筋机,冲尖口和冲方口油压机,液压剪板机,位移式联合角咬口机,双机联动式自成法兰机,TDF(TDC)液压折边机和全自动电脑控制系统组成。 自动风管生产线示意图 3、风管制作工艺流程 按施工进度制定风管及零部件加工制作计划,根据设计图纸与现场测量情况结合风管生产线的技术参数绘制通风系统分解图,编制风管规格明细表和风管用料清单交生产车间实施。 角钢法兰系统制作工艺 (1)下料、压筋 在加工车间按制作好的风管用料清单选定镀锌钢板厚度,将镀锌钢板从上料架装入调平压筋机中,开机剪去钢板端部。上料时要检查钢板是否倾斜,试剪一张钢板,测量剪切的钢板切口线是否与边线垂直,对角线是否一致。 按照用料清单的下料长度和数量输入电脑,开动机器,由电脑自动剪切和压筋。板材剪切必须进行用料的复核,以免有误。 特殊形状的板材用ACL3100等离子切割机,零星材料使用现场电剪刀进行剪切,使用固定式震动剪时两手要扶稳钢板,手离刀口不得小于5cm,用力均匀适当。 (2)倒角、咬口 板材下料后用冲角机进行倒角工作。 1)常用咬口及使用范围 型式名称适用范围 单咬口 用于板材拼接和圆形风管的闭合咬 口 立咬口用于圆形弯管或直管的管节咬口 联合咬口 用于矩形风管、弯管、三通管及四 通通管的咬接

2)采用咬口连接的风管其咬口宽度和留量根据板材厚度而定,咬口宽度根据规范确定。 (3)法兰加工 角钢法兰连接方式:方法兰由四根角钢组焊而成,划线下料时应注意使焊成后的法兰内径不能小于风管的外径,用砂轮切割机按线切断;下料调直后放在冲床上冲击铆钉孔及螺栓孔、孔距,高压系统不应大于100 mm。中、低压系统不应大于150 mm冲孔后的角钢放在焊接平台上进行焊接,焊接时按各规格模具卡紧压平。风管法兰的焊缝应融合良好、饱满,无假焊和孔洞,法兰平面度的允许偏差为2mm,同一批量加工的相同规格法兰的螺孔排列应一致,并具有互换性。 (4)折方 咬口后的板料按画好的折方线放在折方机上,置于下模的中心线。操作时使机械上刀片中心线与下模中心重合,折成所需要的角度。折方时应互相配合并与折方机保持一定距离,以免被翻转的钢板或配重碰伤。 (5)风管缝合 咬口完成的风管采用手持电动缝口机进行缝合,缝合后的风管外观质量应达到折角平直,圆弧均匀,两端面平行,无翘角,表面凹凸不大于5mm。 (6)上法兰 风管与法兰铆接前先进行技术质量复核,合格后将法兰套在风管上,风管折方线与法兰平面应垂直,然后使用液压铆钉钳或手动夹眼钳用5X10铆钉(铆钉根据不同风管按规程选用,详见下表)将风管铆固,并将四周翻边;翻边应平整,不应小于6mm,四角应铲平,不应出现豁口,以免漏风。 不同规格的风管选用不同规格的铆钉,详细如下: 类型风管规格铆钉尺寸(mm) 矩形风管120-630 直径4.0 矩形风管800及以上直径4.0 圆形风管100-500 直径5.0 圆形风管500及以上直径5.0 法兰制作应该核对几何尺寸,找好平整度,法兰平整度的允许偏差为2mm,对于相同尺寸的法兰,统一制作,统一钻孔,保证法兰具有互换性。法兰角钢、铆钉、螺钉用料规格应符合下表规定: 金属矩形风管法兰及螺栓规格(mm) 风管长边尺寸b 法兰材料规格(角钢)螺栓规格 b≤630 30X3 M8 630<b≤1500 30X3 M8 1500<b≤2500 40X4 2500<b≤4000 50X5 M10 5、共板式法兰连接(TDF及TDC)方式 由于法兰由镀锌钢板本身弯曲而成,具有重量轻,密封性好,制作安装方便,基本要求同角钢法兰风管。 共板式法兰风管制作的基本要求同角钢法兰风管,在板材冲角、咬口后进入共板式法兰机压制法兰。见下图 共板式法兰(TDF及TDC)风管制作示意图

风管弯头制作守则

风管弯头制作守则文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、风道设计问题现象:风管不能突然扩大、突然缩小。很多工程中由于空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图2.6.6-1(a)。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤150,而缩小不宜大于1/4,即≤300。 为了保持上述斜度,变径管的长度L可按下法求得: (1)单边变径时,如图2.6.6-2(a)。 当(W1-W2)≥(h1-h2)时L=(W1-W2)×7 当(W1-W2)≤(h1-h2)时,L=(h1-h2)×7 双边均变径时,如图2.6.6-2(b)

当(W1-W2)≥(h1-h2)时,L=(W1-W2)×3.5 当(W1-W2)≤(h1-h2)时,L=(h1-h2)×3.5 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度)。一般以1W 为宜。 2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6. 6 表2.6.6-1 3.当弯头为直角弯头时,为了降低其阻力,应在弯头内安装导流叶片,如图2.6.6-4。用叶片(a)时,片距P=38mm;用叶片(b),片距P=81mm。 二、风管防火阀门的设备

中央空调设计步骤

中央空调设计步骤简要说明 1、第一步得到建筑条件图后,熟悉图纸。没有建筑图纸的需要绘制建筑图纸。 2、第二步确定方案,冷热源型式,水系统形式,风系统形式。工程所在地的能 源情况应作为空调冷热源形式的主要依据。 3、第三步,做初步设计,在方案的基础上深化。空调机组及附属设备用房等条 件要与建筑专业或业主沟通明确。自动控制系统也要有一个初步的方案。4、第四步负荷计算,根据每个空调房间的使用功能和使用要求计算每个房间的 冷、热负荷。 (负荷计算分为估算和精算两种,精算常用谐波法进行计算)根据计算结果选择合适的未端及主机的具体型号。 5、第五步做施工图,(前面的步骤可以估算)施工图要详细计算。 1)绘制空调水路平面图,空调水路系统图(水系统根据设计情况分为空调供水、空调回水、空调冷凝水、及附属管道)。 A.确定空调系统水路形式,合理布置水管,并绘制水管系统轴测图,作为水力计算草图。 B.在计算草图上进行管段编号,并标注管段的长度和水量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。 C.选定系统最不利环路,一般指最远或局部阻力最多得环路。 D.根据设计手册选择合理的水流速。根据经验总结,确定水管内的水流速。 E.根据给定水量和选定流速,逐段计算管道断面尺寸即管道规格,然后根据选定了的断面尺寸和水量,计算出水管内实际流速并和原假定流速进行校核。 F.计算水管的沿程阻力 根据沿程阻力计算公式:?Pm=R.L 查《冷水管道的摩擦阻力计算表》求出单位长度摩擦阻力损失?py,再根据管长L,计算出管段的摩擦阻力损失。 G.计算各管段局部阻力 根据局部阻力计算公式:?Pj=ζ×υ2ρ/2

风管系统安装施工工艺标准

风管系统安装施工工艺标准 一、适用范围 二、本施工工艺标准适用于通风与空调工程中的金属和非金属风管系统的安装。 三、二、基本规定 四、1. 风管系统安装后,必须进行严密性检验,合格后方能交付下道工序。风管严密性检验以主、干管为主。在加工工艺得到保证的前提下,低压风管系统可采用漏光法检测。 五、2. 风管系统吊、支架采用膨胀螺栓等胀锚方法固定时,必须符合其相应技术文件的规定。 六、3. 风管及部件穿墙、过楼板或屋面时,应设预留孔洞,尺寸和位置应符合设计要求。 七、4. 风管和空气处理室内,不得敷设电线、电缆以及输送有毒、易燃、易爆气体或液体的管道。 八、5. 风管与配件可拆卸的接口及调节机构,不得装设在墙或楼板内。 九、6. 风管及部件安装前,应清理内外杂物及污物,并保持清洁。 十、7. 现场风管接口的配置,不得缩小其有效截面。 十一、8. 风管安装时应及时进行支、吊架的固定和高速,其位置应正确、受力应均匀。可调隔振支、吊架的拉伸或压缩量应按设计要求调整。 十二、三、施工准备 十三、(一)、技术准备 十四、1.安装风管前,应将图纸与施工现场进行核对,检查能否按设计的标高和位置进行安

装。检查支、吊架的敷设、设备基础和预留孔洞是否符合要求。 十五、2.检查已制作好的风管和部件:风管不应有变形、扭曲、开裂、孔洞,法兰脱落;法兰开焊、漏焊、漏打螺栓孔等缺陷。 十六、3.有完善的风管安装施工方案,并进行了技术交底。 十七、4.安装用工机具、计量器具准备齐全,并检查使用性能完好。 十八、(二)、材料要求 十九、1.各种安装材料产品应具有出厂合格证书或质量鉴定文件。 二十、2.型钢应按照国家现行有关标准进行验收。 二十一、3.螺栓、螺母、垫圈、膨胀螺栓、铆钉、拉铆钉、石棉绳、橡胶板、密封胶条、电焊焊条等应符合产品质量要求,不得存在影响安装质量的缺陷。 二十二、(三)、主要机具 二十三、1.常用工具:板手、手电钻、冲击钻、台钻、射钉枪,磨光机、交、直流电焊机、倒链、木锤、拍板、麻绳等。 二十四、2.测量工具:水平尺、钢直尺、钢卷尺、水准仪、线坠、角尺。 二十五、(四)、作业条件 二十六、1.通风管道的安装,宜在建筑围护结构施工完毕,安装部位的障碍物已清理,地面无杂物的条件下进行;净化系统安装,且在建筑物内部安装部位的地面做好,墙面抹灰完毕,室内无灰尘飞扬或有防尘措施的条件下进行。 二十七、2.工艺设备安装完毕或设备基础已确定,设备的连接管等方位已明确。

PVC风管工艺及规范

精心整理 PVC 风管制作工艺 一、PVC 风管施工工艺 (一)、主要使用加工机具 1.平台式木工锯床。 2.手提式切割锯。 3.电热式塑料焊枪。5.木工刨刀、小手锤,6手枪钻,角磨机,冲击钻等工具。 1. 2. PVC 度根据规范要求依据风管管径的大小确定,切不可以薄代厚,避免减少软接的韧性。制作好的软接表面应平整,美观,不应有明显的扭曲现象,两端尺寸相等,软接长度一般为200mm ;风管边接方式:可以采用套管式承插焊接,也可以法兰连接。本工程风管的风管连接为套管式承插焊接形式,所有焊缝均满焊。 矩形风管用料表

1.风管的下料若为成批量加工可以从锯床上定好靠尺,既能保证下料的速度,又能使下料准 除,重新进行焊接。由于外界的气候、温度、气流变化对焊接工艺影响较大,所以风管宜在室内焊接。由于PVC风管的强度及韧性较差,比较笨重,为了便于运输,每一管段长度加工长度宜在三米左右。 4.风管的加固、运输 由于PVC风管的强度及韧性不大,所以需要加固。规范要求:直管段的630—800mm的风管应在风管内部加固,其加固的PVC厚度不应小于风管的板材厚度,加固条与风管必须满焊,加固条

排列均匀、整齐,避免出现歪斜现象。为了保证锁角表面的美观、整齐。焊接完毕后应用摆放好,被免损坏及损伤。 由于PVC风管容易被,较脆,容易断裂和损坏。故风管在运输过程中应将风管固定并保护 5.风管的连接 由于PVC风管常用于输送腐蚀性气体或在有腐蚀性的环境中使用,因此管道安装时应尽量采 用套管式承插连接,既可以保证风管的密封性,又可以避免风管内的腐蚀性介质对法兰、金属螺 6. PVC 7. 8. 9.风管的阀件安装有两种方式:(1).采用套管式承插焊接。(2).法兰连接安装。安装风口时应注意对风口表面盘的保护,防止划伤。安装时风口不可扭曲。 10.伸缩软接的安装当风管长度超过20m应加伸缩软接,软接材质应采用耐腐蚀的软帆布,厚度根据规范要求依据风管管径的大小确定,切不可以薄代厚,避免减少软接的韧性。制作好的软 接表面应平整,美观,不应有明显的扭曲现象,两端尺寸相等,软接长度一般为200MM。 11.风管与通风机等震动设备连接的柔性帆布套管式式连接。

暖通施工细节(风管制作及安装)

风管部分 1、洁净室风系统施工安装应遵循不产尘、不积尘、不受潮和易清洁的原则。 2、风管系统按其系统的工作压力划分为三个类别,其类别划分应符合表4.1.5的规定。 2.1镀锌钢板及各类含有复合保护层的钢板,应采用咬口连接或铆接,不得采用影响其保护层防腐性能的焊接连接方法。 2.2 风管的密封,应以板材连接的密封为主,可采用密封胶嵌缝和其他方法密封。密封胶性能应符合使用环境的要求,密封面宜设在风管的正压侧。 3、金属风管的材料品种、规格、性能与厚度等应符合设计和现行国家产品标准的规定。当设计无规定时,应按本规范执行。钢板或镀锌钢板的厚度不得小于表4.2.1-1的规定;其中百级手术室风管按高压系统算。风管长边尺寸大于1000,风管需做加固。

5.2.21 当用于5级和高于5级洁净度级别场合时,角钢法兰上的螺栓孔和管件上的铆钉孔孔距均不应大于65mm,5级以下时不应大于100mm。薄壁法兰弹簧夹间距不应大于100mm,顶丝卡间距不应大于100mm。矩形法兰四角应设螺栓孔,法兰拼角缝应避开螺栓孔。螺栓、螺母、垫片和铆钉应镀锌。如必须使用抽芯铆钉,不得使用端头未封闭的产品,并应在端头胶封。 5.2.10 风管不得有横向拼接缝,矩形风管底边宽度小于或等于900mm时,其底边不得有纵向拼接缝,大于900mm且小于或等于1800mm时,不得多于1条纵向接缝,大于1800mm且小于或等于2600mm时,不得多于2条纵向接缝。 5.2.16 风管内表面应平整光滑,不得在风管内设加固框及加固筋。 5.2.6 风管板材存放处应清洁、干燥。不锈钢板应竖靠在木支架上。不锈钢板材、管材与镀锌钢板、管材不应与碳素钢材料接触,应分开放置。 5.2.7 风系统风管制作应有专用场地,其房间应清洁,宜封闭。工作人员应穿干净工作服和软性工作鞋。 5.2.8 卷筒板材或平板材在制作时应使用无毒性的中性清洗液并用清水将表面清洗干净,应无镀层粉化现象。不覆油板材可用约40℃的温水清洗,晾干后均应用不掉纤维的长丝白色纺织材料擦拭干净。 5.2.11 输送无害空气的风管,应采用咬接成型。风管板材的拼接和圆形风管的闭合缝可采用单咬口;弯管的横向连接缝可采用立咬口;矩形风管成形咬缝可采用联合角咬口。风管不应采用按扣式咬口。咬口缝必须涂密封胶或贴密封胶带,宜在正压面实施,特殊的尺寸狭小空间或受力状况多变和运动中的受控环境以及输送特殊介质的,按设计可采用金属螺旋形风管或金属、非金属软管。

风管制作安装技术交底

分项工程技术(安全)交底记录

自动风管生产线示意图 3、风管制作工艺流程 按施工进度制定风管及零部件加工制作计划,根据设计图纸与现场测量情况结合风管生产线的技术参数绘制通风系统分解图,编制风管规格明细表与风管用料清单交生产车间实施。 角钢法兰系统制作工艺 (1)下料、压筋 在加工车间按制作好的风管用料清单选定镀锌钢板厚度,将镀锌钢板从上料架装入调平压筋机中,开机剪去钢板端部。上料时要检查钢板就是否倾斜,试剪一张钢板,测量剪切的钢板切口线就是否与边线垂直,对角线就是否一致。 按照用料清单的下料长度与数量输入电脑,开动机器,由电脑自动剪切与压筋。板材剪切必须进行用料的复核,以免有误。 特殊形状的板材用ACL3100等离子切割机,零星材料使用现场电剪刀进行剪切,使用固定式震动剪时两手要扶稳钢板,手离刀口不得小于5cm,用力均匀适当。 (2)倒角、咬口 板材下料后用冲角机进行倒角工作。 1)常用咬口及使用范围 型式名称适用范围 单咬口用于板材拼接与圆形风管的闭合咬口 立咬口用于圆形弯管或直管的管节咬口 联合咬口用于矩形风管、弯管、三通管及四通通管的咬接 2)采用咬口连接的风管其咬口宽度与留量根据板材厚度而定,咬口宽度根据规范确定。 (3)法兰加工 角钢法兰连接方式:方法兰由四根角钢组焊而成,划线下料时应注意使焊成后的法兰内径不能小于风管的外径,用砂轮切割机按线切断;下料调直后放在冲床上冲击铆钉孔及螺栓孔、孔距,高压系统不应大于100 mm。中、低压系统不应大于150 mm冲孔后的角钢放在焊接平台上进行焊接,焊接时按各规格模具卡紧压平。风管法兰的焊缝应融合良好、饱满,无假焊与孔洞,法兰平面度的允许偏差为2mm,同一批量加工的相同规格法兰的螺孔排列应一致,并具有互换性。(4)折方 咬口后的板料按画好的折方线放在折方机上,置于下模的中心线。操作时使机械上刀片中心线与下模中心重合,折成所需要的角度。折方时应互相配合并与折方机保持一定距离,以免被翻转的钢板或配重碰伤。

风管弯头制作规范

一、风道设计问题 现象:风管不能突然扩大、突然缩小。很多工程中由于空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图2.6.6-1(a)。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤150,而缩小不宜大于1/4,即≤300。 为了保持上述斜度,变径管的长度L可按下法求得:

(1)单边变径时,如图2.6.6-2(a)。 当(W1-W2) ≥(h1-h2)时L=(W1-W2)×7 当(W1-W2)≤(h1-h2)时,L=(h1-h2) ×7 双边均变径时,如图2.6.6-2(b) 当(W1-W2) ≥(h1-h2)时,L=(W1-W2)× 当(W1-W2) ≤(h1-h2)时,L=(h1-h2) × 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度)。一般以1W 为宜。 2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6.6-1及图、(b)。

风管制作规范

风管制作规范一、所有风管及其配件的制作、安装必须符合《通风与空调工程施工质量验收规范》(GB50243-2002)、及国家建材和质量保证体系并应满足消防部门的检测要求。 二、镀锌风管的种类: 根据法兰的不同分为:共板法兰、角铁法兰、插条式法兰、德国法兰等。 根据公司设备特点,加工优势就是共板法兰。 共板法兰风管插条风管德国法兰风管角钢法兰风管 直管1160mm 1220mm 1250mm 1230mm 直管(堵)1175mm 1205mm 1220mm 1210mm 直管(口)1205mm 1235mm 1250mm 1240mm 三、空调排风、通风系统、消防排烟系统采用镀锌钢板风管,板材厚度按下表确定: 镀锌钢板风管板材厚度 风管长边尺寸b 空调、通风 低压系统(P≤500Pa) 中压系统(500Pa1500Pa) b≤320 0.5 0.75 320<b≤450 0.6 0.75 450<b≤630 0.6 0.75 630<b≤1000 0.75 1.0 1000<b≤1250 1.0 1.0 1250<b≤2000 1.0 1.2 2000<b<4000 1.2 1.2 四、风管的制作: 1.风管与配件的咬口应紧密,宽度应一致,圆弧应均匀,两端面平齐,风管无明显的扭曲与翅角,表面应平整,凹凸不大于10mm; 2.风管边长(直径)小于或等于300mm时,边长(直径)的允许偏差为±2mm;风管边长(直径)大于300mm 时,边长(直径)的允许偏差为±3mm; 3.管口应平整,其平面度的允许偏差为2mm;矩形风管两条对角线长度之差不应大于3mm;

风管制作安装注意事项

风管制作 1、风管制作 1.2风管种类 ①金属风管 -镀锌钢板风管(俗称白铁皮) -薄钢板风管(俗称黑铁皮风管) -不锈钢板风管 -铝板风管 ②非金属风管 -机玻璃钢风管 -无机玻璃钢风管 -硬聚氯乙烯板风管 -超级风管:又称玻璃纤维风管 1.3金属风管制作 ①圆形风管制作(略) ②矩形风管制作 矩形风管制作 钢板制矩形风管的常用规格/mm

风管厚度对照表 注:1、排烟系统风管板厚度可按高压系统 2、特殊除尘系统钢板厚度应符合设计要求 1.3.3不锈钢板厚度对照表 铝板风管厚度对照表 风管加固 ①当矩形风管边长大于或等于630mm和保温风管边长大于或等于800mm,且其管段长度大于1200mm时均应采取加固措施。对边长小于或等于800mm的风管。宜采用楞筋、楞线的方法加固。 ②当中压和高压风管的管段长度大于1200mm时,应采用加固框的形式加固。 ③高压风管的单咬口缝应有加固补强措施

④当风管的板材厚度大于或等于时,加固措施的范围可放宽。 风管加固示意图: (a)风管壁滚槽 (b)风管壁棱线 (630~1200) (630~1200) (c)角钢加固 (大于1200) 2. 风管安装 一、送、排风管安装 2.1风管连接 (1)法兰连接:风管和风管,风管与部件、配件(弯头三通、异径管)可采用法兰连接,为使风管的法兰用料规格统一和通用化,风管法兰的规格按下表所示: 法兰螺栓及铆钉的间距,低压和中压系统风管应小于或等于150mm;高压系统风管应小于或等于100mm。矩形法兰的四角处应高螺孔,铆钉也应尽量靠近四角处。 圆形风管法兰(mm) (2)风管无法兰连接:采用承插、插条、薄钢板法兰弹簧夹等的连接形式,见表如下:

风管弯头制作守则修订稿

风管弯头制作守则集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

电子血压计,操作方便,对技术的要求比较低,可能会有一点误差,单一般使用是不影响的。欧姆龙Omron,九安andon,松下Panasonic,迈克大夫Microlife,鱼跃YUYUE这些牌 一、风道设计问题 现象:风管不能突然扩大、突然缩小。很多工程中由于空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图2.6.6-1(a)。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤1 50,而缩小不宜大于1/4,即≤300。 为了保持上述斜度,变径管的长度L可按下法求得: (1)单边变径时,如图2.6.6-2(a)。 当(W1-W2)≥(h1-h2)时L=(W1-W2)×7 当(W1-W2)≤(h1-h2)时,L=(h1-h2)×7 双边均变径时,如图2.6.6-2(b) 当(W1-W2)≥(h1-h2)时,L=(W1-W2)×3.5 当(W1-W2)≤(h1-h2)时,L=(h1-h2)×3.5 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度)。一般以1W为宜。 2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6.6 表2.6.6-1

风管制作要求规范2014

风管制作规范 一、所有风管及其配件的制作、安装必须符合《通风与空调工程施工质量验收规范》(GB50243-2002)、及国家建材和质量保证体系并应满足消防部门的检测要求。 二、镀锌风管的种类: 根据法兰的不同分为:共板法兰、角铁法兰、插条式法兰、德国法兰等。 根据公司设备特点,加工优势就是共板法兰。 共板法兰风管插条风管德国法兰风管角钢法兰风管直管1160mm 1220mm 1250mm 1230mm 直管(堵)1175mm 1205mm 1220mm 1210mm 直管(口)1205mm 1235mm 1250mm 1240mm 三、空调排风、通风系统、消防排烟系统采用镀锌钢板风管,板材厚度按下表确定: 镀锌钢板风管板材厚度 风管长边尺寸b 空调、通风 低压系统(P≤500Pa) 中压系统(500Pa1500Pa) b≤320 0.5 0.75 320<b≤450 0.6 0.75

450<b≤630 0.6 0.75 630<b≤1000 0.75 1.0 1000<b≤1250 1.0 1.0 1250<b≤2000 1.0 1.2 2000<b<4000 1.2 1.2 四、风管的制作: 1.风管与配件的咬口应紧密,宽度应一致,圆弧应均匀,两端面平齐,风管无明显的扭曲与翅角,表面应平整,凹凸不大于10mm; 2.风管边长(直径)小于或等于300mm时,边长(直径)的允许偏差为±2mm;风管边长(直径)大于300mm时,边长(直径)的允许偏差为±3mm; 3.管口应平整,其平面度的允许偏差为2mm;矩形风管两条对角线长度之差不应大于3mm; 4.风管与法兰采用铆接连接时,铆接应牢固、不应有脱铆和漏铆现象;翻边应平整、紧贴法兰,其宽度应一致;咬缝与四角处不应有开裂与孔洞。 5.风管内外表面不应有严重的划痕; 6.风管板材拼接的咬口缝应错开,不应形成十字交叉缝; 7.洁净空调系统风管不应采用横向接缝; 8.风管为联合角咬口形式,单咬口长度为6mm~8mm。单咬口包括直管的单边、弯头三通等的弧片都应满足咬口长度。 9.角铁法兰风管的翻边应紧贴法兰,翻边量均与、宽度应一致,不应小于6mm,且不应大于9mm。

空调及风管安装规范全)

空调及风管安装规范一,空调安装规范 1. 设备搬运就位条件 电梯(货梯)尺寸和载重,楼梯楼道,设备间通道、标准门需要吊运机组时,如果可能应连同包装箱一起吊运,确保机箱不受损坏设备就位应使用滚轴或滑块,不允许使用撬杠,防止局部受力损坏设备。 2. 室内外机的放置 设备应固定在稳定而平整的基础或支架上,该基础或支架必须保证水平室外机应放置在通风、避光、散热良好,周围无障碍物处。 3. 安装工艺要求 室内外机垂直位差≤22m,管道水平距离≤40m,若位差过大,则应每隔6m 设置存油弯,增大管径以减少阻力。 4. 供水、排水、供电 供水管、排水管规格,供电电缆规格按技术规范,引到实际安装位置处。 5. 安装维护专用工具 压力表,真空泵,割刀,扩管器,焊接工具(氧气、乙炔、氮气瓶)等。 6. 安装维护常用工具 扳手,螺丝刀,万用表,电流表等。 空调安装的好坏,直接关系到空调使用。对于机房空调来说安装工艺极为重要,安装不合格的话那在使用过程中就会不断地遇到麻烦。在安装过程中经常会碰到以下问题: 1.机房空调室内机与室外机距离超过设计极限。 2.机房空调室外机组低于室内机组超过设计极限。

3.商用空调机组内外机组距离超过设计极限。 4.机房空调及商用空调机组解体搬运。 5.根据用户需求将风冷机组改为水冷机组。 6.根据用户的需求改变空调的送风方式。 7.古建内的空调设备安装。 8.特殊环境的空调设计及安装。 09年国家质量技术监督局曾发布了空调器安装的国家标准,并规定从2000年3月1日起实施。了解空调器安装的国家标准,对于空调安装质量做到心中有数,能够判断空调安装是否合格,下面是某工程公司在长期的机房专用空调安装过程中总结出来的经验,和大家一起分享,仅供参考。 标准的安装程序 设备的二次搬运就位 1.二次搬运前进行设备箱体/外观检查; 2.设备就位后打开设备,检查空调机检查机组零件是否和技术资料相符; 3.检查连接冷媒铜管和蒸发器铜管是否有明显的小孔、变形及氮气保压情况等现象; 4.检查其他零部件,如压缩机、室内机组、加湿器等是否有因运输而松动,或者遭遇野蛮装卸而脱落或损坏; 5.开箱后设备及附件是否有损坏、遗漏现象;

通风空调风管制作安装施工方案

中国建筑工程总公司 CHINA STATE CONSTRUCTION ENGRC CORP. 十堰市火车站北广场项目(地下综合体一期工程)通风空调风管制作安装施工方案 中建三局建设工程股份有限公司 十堰市火车站北广场项目(地下综合体一期工程)安装部二0一六年三月

目录 第1章编制说明 (1) 1.1 编制目的 (1) 1.2 编制依据 (1) 1.3 工程概况 (1) 第2章施工准备 (3) 2.1 技术准备 (3) 2.2 人力资源准备 (3) 2.3 机具及物资准备 (4) 第3章风管制作施工工艺 (6) 3.1 风管材质及连接方式选择 (6) 3.2 风管制作 (7) 3.2.1 风管制作工艺流程 (7) 3.2.2 共板法兰风管制作 (7) 3.2.3 角钢法兰风管制作 (9) 3.2.4 风管加固 (11) 3.2.5 风管配件制作 (12) 第4章风管系统安装施工工艺 (14) 4.1 风管系统安装施工工艺流程 (14) 4.2 风管支吊架制作安装 (14) 4.2.1 风管系统支吊架方案 (14) (15) 4.2.2 风管系统支吊架安装 (17) 4.3 风管安装 (17) 4.3.1 风管组对 (17)

4.3.2 风管安装 (19) 4.3.3 风管部件及消声器静压箱安装 (22) 4.3.4 风管严密性测试 (23) 4.3.5 软风管安装 (24) 第5章成品保护及安全措施 (26) 5.1 成品保护 (26) 5.2 安全措施 (26) 第6章质量通病及防治措施 (27)

第1章编制说明 1.1 编制目的 为更好地与工程总体施工组织设计相结合,明确通风与空调工程风管制作安装分项工程的施工范围及主要的施工工艺,找出施工过程中主要的重难点,并提出相应的应对措施、注意事项等,避免施工过程中不必要的返工和整改工作,保证工程按照既定进度计划顺利保质保量完成,特编制此方案。 1.2 编制依据 本方案编制主要依据的规范、标准、图集及相关资料文件如表1.2-1所示。 表1.2-1 编制依据 1.3 工程概况 施工范围包括通风与空调系统及消防送排风(烟)系统风管及部件、消声器与静压箱等的制作安装。本工程通风与空调系统设计概况如表1.3-2所示。 表1.3-1 通风与空调系统设计概况

相关文档
最新文档