高一数学解三角形练习题

高一数学解三角形练习题
高一数学解三角形练习题

必修五 第一章 解三角形

一、选择题

1.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ).

A .10 km

B .103km

C .105km

D .107km

2.在△ABC 中,若2

cos

A

a =

2

cos

B b =2

cos

C c ,则△ABC 是( ).

A .等腰三角形

B .等边三角形

C .直角三角形

D .等腰直角三角形

3.三角形三边长为a ,b ,c ,且满足关系式(a +b +c )(a +b -c )=3ab ,则c 边的对角等于( ).

A .15°

B .45°

C .60°

D .120°

4.在△ABC 中,三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a ∶b ∶c =1∶3∶2,则sin A ∶sin B ∶sin C =( ).

A .3∶2∶1

B .2∶3∶1

C .1∶2∶3

D .1∶3∶2

5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ).

A .△A 1

B 1

C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形

C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形

D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形

6.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为( ). A .30°或150°

B .60°

C .60°或120°

D .30°

7.在△ABC 中,关于x 的方程(1+x 2)sin A +2x sin B +(1-x 2)sin C =0有两个不等的实根,则A 为( ).

A .锐角

B .直角

C .钝角

D .不存在

8.在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ).

A .

22

3

B .

2

3

3

C .

2

3 D .33 9.在△ABC 中,c b a c b a -+-+333=c 2,sin A ·sin B =43

,则△ABC 一定是( ).

A .等边三角形

B .等腰三角形

C .直角三角形

D .等腰三角形或直角三角形

10.根据下列条件解三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9.那么,下面判断正确的是( ).

A .①只有一解,②也只有一解.

B .①有两解,②也有两解.

C .①有两解,②只有一解.

D .①只有一解,②有两解.

二、填空题

11.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 .

12.在△ABC 中,已知sin B sin C =cos 2

2

A

,则此三角形是__________三角形. 13.已知a ,b ,c 是△ABC 中∠A ,∠B ,∠C 的对边,S 是△ABC 的面积.若a =4, b =5,S =53,求c 的长度 .

14.△ABC 中,a +b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值 .

15.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足sin A ∶sin B ∶sin C =2∶5∶6.若△ABC 的面积为

4

39

3,则△ABC 的周长为________________. 16.在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .

三、解答题

17.在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边,且a =4=3

3

b ,解此三角形.

18.如图所示,在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15°,向山顶前进100米后到达点B ,又从点B 测得斜度为45°,建筑物的高CD 为50米.求此山对于地平面的倾斜角 .

19.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若b cos C =(2a -c )cos B , (Ⅰ)求∠B 的大小;

(Ⅱ)若b =7,a +c =4,求△ABC 的面积.

20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,求证:22

2c b a -=C B A sin sin )(-.

参考答案

一、选择题 1.D

解析:AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC

=102+202-2×10×20cos 120° =700.

AC =107. 2.B

解析:由

2cos A a

2cos B b

2cos C c

及正弦定理,得2cos sin A A =2cos sin B =2cos sin C C ,由2倍角的正弦公式得2sin A =2sin B =2

sin C

,∠A =∠B =∠C .

3.C

解析:由(a +b +c )(a +b -c )=3ab , 得 a 2+b 2-c 2=ab .

∴ cos C =ab c b a 22

22-+=21.

故C =60°. 4.D

解析:由正弦定理可得a ∶b ∶c =sin A ∶sin B ∶sin C =1∶3∶2. 5.D

解析:△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 若△A 2B 2C 2不是钝角三角形,由?????????)

-(==)-(==)-(==1121121122πsin cos sin 2πsin cos sin 2πsin cos sin C C C B B B A A A ,得????

?

????

1212122π2π2πC C B B A A -=-=-=,

那么,A 2+B 2+C 2=

23π

-(A 1+B 1+C 1)=2

π,与A 2+B 2+C 2=π矛盾. 所以△A 2B 2C 2是钝角三角形. 6.C

解析:由

A a sin =

B b sin ,得sin A =b

B

a sin =2

222

32?

=23,

而b <a ,

∴ 有两解,即∠A =60°或∠A =120°. 7.A

解析:由方程可得(sin A -sin C )x 2+2x sin B +sin A +sin C =0. ∵ 方程有两个不等的实根, ∴ 4sin 2 B -4(sin 2 A -sin 2 C )>0. 由正弦定理

A a sin =

B b sin =C

c

sin ,代入不等式中得 b 2-a 2+c 2>0, 再由余弦定理,有2ac cos A =b 2+c 2-a 2>0. ∴ 0<∠A <90°. 8.B

解析:由余弦定理得cos A =2

1

,从而sin A =23,则AC 边上的高BD =233.

9.A

解析:由c

b a

c b a -+-+333=c 2?a 3+b 3-c 3=(a +b -c )c 2?a 3+b 3-c 2(a +b )=0?

(a +b )(a 2+b 2-ab -c 2)=0.

∵ a +b >0,

∴ a 2+b 2-c 2-ab =0. (1) 由余弦定理(1)式可化为

a 2+

b 2-(a 2+b 2-2ab cos C )-ab =0,

得cos C =

2

1

,∠C =60°. 由正弦定理A a

sin =B b sin =?60sin c ,得sin A =c a ?60sin ,sin B =c b ?60sin ,

∴ sin A ·sin B =2

260sin c

ab )(?=43

, ∴ 2c

ab

=1,ab =c 2.将ab =c 2代入(1)式得,a 2+b 2-2ab =0,即(a -b )2=0,a =b .

△ABC 是等边三角形.

10.D

解析:由正弦定理得sin A =

b B a sin ,①中sin A =1,②中sin A =9

3

5.分析后可知①有一解,∠A =90°;②有两解,∠A 可为锐角或钝角.

二、填空题 11.60°或120°. 解析:由正弦定理A a sin =B b sin 计算可得sin A =2

3

,∠A =60°或120°. 12.等腰.

解析:由已知得2sin B sin C =1+cos A =1-cos (B +C ), 即2sin B sin C =1-(cos B cos C -sin B sin C ), ∴ cos (B -C )=1,得∠B =∠C , ∴ 此三角形是等腰三角形. 13.21或61. 解:∵ S =

2

1

ab sin C ,∴ sin C =23,于是∠C =60°或∠C =120°.

又c 2=a 2+b 2-2ab cos C ,

当∠C =60°时,c 2=a 2+b 2-ab ,c =21; 当∠C =120°时,c 2=a 2+b 2+ab ,c =61. ∴ c 的长度为21或61. 14.10+53.

解析:由余弦定理可得c 2=a 2+b 2-2ab cos C ,然后运用函数思想加以处理. ∵ 2x 2-3x -2=0, ∴x 1=2,x 2=-

2

1. 又cos C 是方程2x 2-3x -2=0的一个根, ∴ cos C =-

2

1. 由余弦定理可得c 2=a 2+b 2-2ab ·(-

2

1

)=(a +b )2-ab , 则c 2=100-a (10-a )=(a -5)2+75,

当a =5时,c 最小,且c =75=53, 此时a +b +c =5+5+53=10+53, ∴ △ABC 周长的最小值为10+53. 15.13.

解析:由正弦定理及sin A ∶sin B ∶sin C =2∶5∶6,可得a ∶b ∶c =2∶5∶6,于是可设a =2k ,b =5k ,c =6k (k >0),由余弦定理可得

cos B =ab c b a 2-+222=)

)((k k k k k 62225-36+4222=85

∴ sin B =B 2cos -1=8

39

. 由面积公式S △ABC =

2

1

ac sin B ,得 2

1

·(2k )·(6k )·839=4393,

∴ k =1,△ABC 的周长为2k +5k +6k =13k =13.

本题也可由三角形面积(海伦公式)得)62

13)(5213)(2213(213k k k k k k k ---=439

3,

4393k 2=4

39

3,∴ k =1. ∴ a +b +c =13k =13. 16.6∶5∶4.

解析:本例主要考查正、余弦定理的综合应用. 由正弦定理得

c a =C A sin sin =C

C sin 2sin =2cos C ,即cos C =c a

2, 由余弦定理cos C =ab c b a 2-+222=ab

b c a c a 2+-+2

))((.

∵ a +c =2b ,

∴ cos C =

ab

c a b c a b 22++-2

)(=a

c

a c a 22++-2)(,

c

a 2=a

c

a c a 22++

-2)(.

整理得2a 2-5ac +3c 2=0.

解得a =c 或a =

2

3c . ∵∠A =2∠C ,∴ a =c 不成立,a =

2

3c ∴ b =2c a +=2

23

c

c +=c 45,

∴ a ∶b ∶c =

23

c ∶c 4

5∶c =6∶5∶4. 故此三角形三边之比为6∶5∶4. 三、解答题

17.b =43,c =8,∠C =90°,∠B =60°或b =43,c =4,∠C =30°,∠B =120°. 解:由正弦定理知

A a

sin =B b sin ??30sin 4=B

sin 34?sin B =

23,b =43. ∠B =60°或∠B =120°?∠C =90°或∠C =30°?c =8或c =4.

18.分析:设山对于地平面的倾斜角∠EAD =θ,这样可在△ABC 中利用正弦定理求出BC ;再在△BCD 中,利用正弦定理得到关于θ 的三角函数等式,进而解出θ 角.

解:在△ABC 中,∠BAC =15°,AB =100米, ∠ACB =45°-15°=30°. 根据正弦定理有?30sin 100=?

15sin BC

, ∴ BC =

?

?

30sin 15sin 100.

又在△BCD 中,∵ CD =50,BC =

?

?

30sin 15sin 100,∠CBD =45°,∠CDB =90°+θ ,

根据正弦定理有?45sin 50

=)(θ+90sin

30sin 15sin 100???

解得cos θ =3-1,∴ θ ≈42.94°. ∴ 山对于地平面的倾斜角约为42.94°.

19.解:(Ⅰ)由已知及正弦定理可得sin B cos C =2sin A cos B -cos B sin C , ∴ 2sin A cos B =sin B cos C +cos B sin C =sin (B +C ). 又在三角形ABC 中,sin (B +C )=sin A ≠0, ∴ 2sin A cos B =sin A ,即cos B =

21,B =3

π

. (Ⅱ)∵ b 2=7=a 2+c 2-2ac cos B ,∴ 7=a 2+c 2-ac ,

(第18题)

又 (a +c )2=16=a 2+c 2+2ac ,∴ ac =3,∴ S △ABC =

2

1

ac sin B , 即S △ABC =

21·3·23=4

33. 20.分析:由于所证明的是三角形的边角关系,很自然联想到应用正余弦定理. 解:由余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B 得 a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴ 2(a 2-b 2)=-2bc cos A +2ac cos B , 222-c b a =c

B a A b cos +cos -. 由正弦定理得 a =2R sin A ,b =2R sin B ,c =2R sin

C , ∴2

22-c b a =c B a A b cos +cos - =C

A B B A sin cos sin -cos sin

C

B A sin -sin )

(.

故命题成立.

高一数学解三角形练习题

必修五 第一章 解三角形 一、选择题 1.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ). A .10 km B .103km C .105km D .107km 2.在△ABC 中,若2 cos A a = 2 cos B b =2 cos C c ,则△ABC 是( ). A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 3.三角形三边长为a ,b ,c ,且满足关系式(a +b +c )(a +b -c )=3ab ,则c 边的对角等于( ). A .15° B .45° C .60° D .120° 4.在△ABC 中,三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a ∶b ∶c =1∶3∶2,则sin A ∶sin B ∶sin C =( ). A .3∶2∶1 B .2∶3∶1 C .1∶2∶3 D .1∶3∶2 5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ). A .△A 1 B 1 C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形 C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形 D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形 6.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为( ). A .30°或150° B .60° C .60°或120° D .30°

高二解三角形综合练习题

解三角形 一、选择题 1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=() A.1 B. 3 C.2 D.3 2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c =0与l2:bx-sin B·y+sin C=0的位置关系是() A.平行B.重合 C.垂直D.相交但不垂直 3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是() A.等腰直角三角形B.直角三角形 C.等腰三角形D.等边三角形 4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于() A.1 3 B. 1 2 C.3 4D.0 5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于() A. 3 2 B. 33 2 C.3+6 2 D. 3+39 4 6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为() A.1

A .43-1 B.37 C.13 D .1 8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A .(0,π 6] B .[π 6,π) C .(0,π 3] D .[π 3,π) 9.如图,△ADC 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 与AC 交于E 点.若AB =2,则AE 的长为( ) A.6- 2 B.1 2(6-2) C.6+ 2 D.1 2(6+2) 10.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515 11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =π 3,a =3,b =1,则c 等于( ) A .1 B .2

高一数学-解三角形综合练习题

必修五 解三角形 一、选择题 1. 在ABC ?中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( ) A.1:2:3 B.3:2:1 C. D.2 2.在△ABC 中,222a b c bc =++ ,则A 等于 ( ) A .60° B .45° C .120° D .30° 3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长 A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4.等腰三角形一腰上的高是3,这条高与底边的夹角为 60,则底边长= ( ) A .2 B .2 3 C .3 D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ( ) A .135<

较为全面的解三角形专题高考题附答案

.. 这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针 对高考数学第一道大题,一定不要失分。——(下载之后删掉我) 1、在b 、c ,向量m2sinB,3, 2 B nB ,且m//n 。 cos2,2cos1 2 (I )求锐角B 的大小;(II )如果b2,求ABC 的面积S ABC 的最大值。 (1)解:m ∥n2sinB(2cos2 B -1)=-3cos2B 2 2sinBcosB =-3cos2Btan2B =-3??4分 2π π ∵0<2B <π,∴2B = 3,∴锐角B = 3 ??2分 (2)由tan2B =-3B = 5π π 或 36 π ①当B = 3 时,已知b =2,由余弦定理,得: 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立)??3分 1 2 ∵△ABC 的面积S △ABC = acsinB = 3 ac ≤3 4 ∴△ABC 的面积最大值为3??1分 5π ②当B =时,已知b =2,由余弦定理,得: 6 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)??1分 1 2 1 acsinB =ac ≤2-3 4

∵△ABC的面积S△ABC= 2-3??1分∴△ABC的面积最大值为

.. 5、在△ABC中,角A,B,C的对边分别 为a,b,c,且bcosC3acosBccosB. (I)求cosB的值;(II)若BABC2,且b22,求a和c b的值. 解:(I)由正弦定理得a2RsinA,b2RsinB,c2RsinC, 则 2RsinBcosC6RsinAcosB2RsinCcosB, 故sinBcosC3sinAcosBsinCcosB, 可得sinBcosCsinCcosB3sinAcosB, 即sin(BC)3sinAcosB, 可得sinA3sinAcosB.sinA0, 又 因此cosB 1 3 . ????6分 (II)解:由BABC2,可得acosB2,又cosB 1 3 ,故ac 6, 2 由b 2 a 2 c2accosB, 2 可得a 2 c 12, 2 所以(ac)0,ac, 即所以a=c=6 6、在ABC中,cos 5 A, 5 cos 10 B. 10 (Ⅰ)求角C;(Ⅱ)设A B2,求ABC的面积 . cosA 5 5 , cos B 10 10 ,得 A、B0, 2 (Ⅰ)解:由,所以 23 sinA,sinB. 510 ??3分 cosCcos[(A B)]cos(AB)cosAcosBsinAsinB 因为 2 2 ?6分 C. 且0C故 4

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高一数学解三角形知识点总结及习题练习.doc

. 解三角形 一、基础知识梳理 a = b = c =2R ( R 为△ABC 外接圆半径),了解正弦定理 1 正弦定理: sin C sin A sin B 以下变形: a 2Rsin A,b 2R sin B, c 2Rsin C sin A a , sin B b , sin C c 2R 2R 2R a : b : c sin A : sin B : sin C a b c a b c sin A sin B sin C sin A sin B sin C 最常用三角形面积公式: S ABC 1 1 1 acsin B 1 bcsin A ah a ab sin C 2 2 2 2 2 正弦定理可解决两类问题: 1 .两角和任意一边,求其它两边和一角; (唯一解) 2 .两边和其中一边对角,求另一边的对角,进而可求其它的边和角 (解可能不唯一) 了解:已知 a, b 和 A, 用正弦定理求 B 时的各种情况 : b 2 c 2 a 2 3 . 余弦定理 : a 2 b 2 c 2 2bccos A cosA 2bc c 2 a 2 b 2 b 2 c 2 a 2 2ac cosB cosB 2ca c a b 2ab cosC a 2 b 2 c 2 2 2 2 cosC 2ab 4 . 余弦定理可以解决的问题: (1 )已知三边,求三个角; (解唯一) (2 )已知两边和它们的夹角,求第三边和其他两个角 (解唯一): (3 )两边和其中一边对角,求另一边,进而可求其它的边和角 (解 可能不唯一)

解三角形专题高考题练习附答案

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 2、已知ABC ?中,1||=AC ,0120=∠ABC ,θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值;(2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小;(II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值;(II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ? 中,cos A = ,cos B =. (Ⅰ)求角C ;(Ⅱ)设AB =ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =, (sin ,1cos ),//,3.n A A m n b c a =++=满足(I )求A 的大小;(II )求)sin(6π +B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。 A B C 120°

解三角形综合练习题

解三角形综合练习题 解三角形 一、选择题 1、在中,若,则等于() A、 B、 C、 D、2、在△ABC 中,,则A等于() A、60 B、45 C、120 D、303、有一长为1公里的斜坡,它的倾斜角为20,现要将倾斜角改为10,则坡底要伸长 A、1公里 B、 sin10公里 C、 cos10公里 D、 cos20公里 4、等腰三角形一腰上的高是,这条高与底边的夹角为,则底边长= () A、2 B、

C、3 D、5、已知锐角三角形的边长分别为 2、3、x,则x的取值范围是() A、 B、<x<5 C、2<x< D、<x< 56、在中,,,,则解的情况() A、无解 B、有一解 C、有两解 D、不能确定 7、在△ABC中,若,则∠A= () A、 B、 C、 D、 8、在△ABC中,A为锐角,lgb+lg()=lgsinA=-lg, 则△ABC 为() A、等腰三角形 B、等边三角形 C、直角三角形

D、等腰直角三角形 9、如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与,测得,,米,并在点测得塔顶的仰角为,则塔高= () A、米 B、90米 C、米 D、米 10、某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离与第二辆车与第三辆车的距离之间的关系为() A、 B、 C、 D、不能确定大小 二、填空题(本大题共5个小题,每小题5分,共25分) 11、在中,三边、、所对的角分别为、、,已知,,的面积S=,则; 12、在△ABC中,已知AB=4,AC=7,BC边的中线,那么 BC= ;

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

《解三角形》单元测试卷

高二数学必修5解三角形单元测试题 (时间120分钟,满分150分) 一、选择题:(每小题5分,共计60分) 1. 在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .() 1310- C .13+ D .310 2. 在△ABC 中,,c=3,B=300,则a 等于( ) A . C .2 3. 不解三角形,下列判断中正确的是( ) A .a=7,b=14,A=300有两解 B .a=30,b=25,A=1500有一解 C .a=6,b=9,A=450有两解 D .a=9,c=10,B=600无解 4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为 ( ) A .41- B .41 C .32- D .3 2 5. 在△ABC 中,A =60°,b =1,其面积为3,则C B A c b a sin sin sin ++++等于( ) A .33 B .3392 C .338 D .2 39 6. 在△ABC 中,AB =5,BC =7,AC =8,则?的值为( ) A .79 B .69 C .5 D .-5 7.关于x 的方程02 cos cos cos 22=-??-C B A x x 有一个根为1,则△AB C 一定是 ( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 8. 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . () 10,8 D .() 8,10 9. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60° B.120° C.60°或120° D.45° 10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° C.0°<A <90° D.30°<A <60° 11.在△ABC 中,A B B A 22sin tan sin tan ?=?,那么△ABC 一定是 ( ) A .锐角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 12. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( ) A . 14 B .142 C .15 D .152

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

(完整word)解三角形高考大题,带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形, 90ACB =o ∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ)因为9060150BCD =+=o o o ∠, CB AC CD ==, 所以15CBE =o ∠. 所以cos cos(4530)4 CBE =-=o o ∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+o o o o . 故2sin 30 cos15AE = o o 124 ? = = 12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。 (1)按下列要求写出函数关系式: ①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++- B A C D E B

必修五解三角形练习题

一.选择题(共10小题) 1.在△ABC中,sinA=sinB是△ABC为等腰三角形的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 2.在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是() A.(2,+∞)B.(0,2)C.(2,2)D.(,2) 3.在锐角△ABC中,若C=2B,则的范围() A.B.C.(0,2)D. 4.在△ABC中,下列等式恒成立的是() A.csinA=asinB B.bcosA=acosB C.asinA=bsinB D.asinB=bsinA 5.已知在△ABC中,若αcosA+bcosB=ccosC,则这个三角形一定是()A.锐角三角形或钝角三角形B.以a或b为斜边的直角三角形C.以c为斜边的直角三角形D.等边三角形 6.在△ABC中,若cosAsinB+cos(B+C)sinC=0,则△ABC的形状是()A.等腰三角形B.直角三角形 C.等腰直角三角形D.等腰或直角三角形 7.在△ABC中,内角A,B,C所对的边分别为a,b,c,且=,则∠B为() A.B.C.D. 8.在△ABC中,已知sinA=2sinBcosC,则该三角形的形状是() A.等边三角形B.直角三角形 C.等腰三角形D.等腰直角三角形 9.△ABC的内角A、B、C的对边分别为a、b、c,,,b=1,则角B 等于() A.B.C.D.或

10.在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A.x>2 B.x<2 C.D. 二.填空题(共1小题) 11.(文)在△ABC中,∠A=60°,b=1,△ABC的面积为,则 的值为. 三.解答题(共7小题) 12.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB (1)求角C的大小; (2)求△ABC的面积的最大值. 13.在△ABC中,角A,B,C所对边分别为a,b,c,已知bccosA=3,△ABC的面积为2. (Ⅰ)求cosA的值; (Ⅱ)若a=2,求b+c的值. 14.在△ABC中,角A、B、C的对边分别是a、b、c,且=. (1)求角B的大小; (2)△ABC的外接圆半径是,求三角形周长的范围.

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

解三角形练习题及答案

解三角形练习题及答案 解三角形习题及答案 、选择题(每题5分,共40分) 1、己知三角形三边之比为5 : 7 : 8,则最大角与最小角的和为(). A. 90° B. 120° C. 135° D. 150° 2、在厶ABC中,下列等式正确的是(). A. a : b=Z A :Z B B . a : b= sin A : sin B C. a : b= sin B : sin A D . asin A= bsin B 1 : 2 : 3,则它们所对的边长之比为( 3、若三角形的三个内角之比为 A. 1 : 2 : 3 B . 1 : 3 : 2 C . 1 : 4 : 9 D . 1 :;』2 : 3 4、在厶ABC中,a= V5 , b= 尿,/ A= 30 °贝卩c等于(). A. 2 5 B. --:5C . 2 ;5或■、5 D. . 10或■,5 5、已知△ ABC中,/ A= 60° a=76 , b= 4,那么满足条件的厶ABC的形 状大小(). A .有一种情形B.有两种情形

C .不可求出 D .有三种以上情形 6、在厶ABC 中,若a2+ b2—c2v 0,则4 ABC 是(). A .锐角三角形B.直角三角形 C .钝角三角形 D .形状不能确定 7、sin7cos37 -sin 83 sin 37 的值为( ) A.—一 2 B. 1 2 C. 1 2 n 3 D.— — 8、化简1 T:等于( ) A. 3 B.二 C. 3 D. 1 2 二、填空题(每题5分,共20分) 9、已知cos a —cos B 二丄,sin a —sin 3 =丄,贝S cos (a —B )= . 2 3 10、在厶ABC 中,/ A= 105° / B= 45° c=忑,贝S b= _____________ . a + b + c 你在厶ABC 中,/ A= 60° a= 3,则sinA + sinB + sinC = --------- ? 12、在厶ABC中,若sin A : sin B : sin C = 2 : 3 : 4,则最大角的余弦值等于__ . 班别:__________ 姓名: _____________ 序号:_______ 得分: _______ 9、______ 10、_______ 11、 ________ 12、__________

高一数学总结归纳:解三角形专题

学而思教育·学习改变命运 思考成就未来! 高考网https://www.360docs.net/doc/0212629866.html, 专题8 解三角形 【考题回放】 1.设,,a b c 分别是A B C ?的三个内角,,A B C 所对的边,则()2 a b b c =+是2A B =的 ( A ) (A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B A sin 2 tan =+,给出以下四个论断: ① 1cot tan =?B A ② 2sin sin 0≤+

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形练习题(含答案)

一、选择题 1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为() A、正三角形 B、直角三角形 C、等腰三角形或直角三角形 D、等腰直角三角形 2、已知中,,,则角等于 A . B . C . D . 3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是() A.(2,+∞) B.(0,2) C.(2,) D.() 4、,则△ABC的面积等于 A . B . C .或 D .或 5、在中,,则角C的大小为 A.300 B.450 C.600 D.1200 6、的三个内角、、所对边长分别为、、,设向量 ,,若,则角的大小为 () A . B . C . D . 7、若ΔABC的内角A、B、C所对的边a、b、c 满足,则ab的值为() A . B . C.1 D . 8、在中,若,且,则是( ) A.等边三角形 B.等腰三角形,但不是等边三角形 C.等腰直角三角形 D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则 = A . B . C . D . 10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ). A.等边三角形 B.直角三角形 C.锐角三角形 D.钝角三角形 11、在△中,,,,则此三角形的最大边长为() A. B. C. D. 12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c 2b2)tanB=ac,则角B=() A . B . C .或 D .或 13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则 () A . B . C . D . 14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为() A、1 B、2 C、3 D、0 15、在钝角中,a,b,c分别是角A,B,C 的对边,若,则最大边c的取值范围是 ( ) ( A . B . C . D . 16、(2012年高考(上海理))在中,若,则的形状是() A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定. 17、在△ABC中,a=15,b=10, ∠A=,则() A . B . C . D .

三角函数解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)求实数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π. (1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].

(1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值范围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.

相关文档
最新文档