余弦定理的八种证明方法

余弦定理的八种证明方法
余弦定理的八种证明方法

余弦定理的八种证明方法

研究背景:

2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。

目的意义:

用多种方法证明余弦定理,扩展思维,了解更多的过程。

内容摘要:

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。

成果展示:

一余弦定理的内容

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质

a2= b2+ c2- 2·b·c·cosA

b2= a2+ c2- 2·a·c·cosB

c2= a2+ b2- 2·a·b·cosC

二证明方法

方法一:平面几何法

∵如图,有a+b=c ∴c·c=(a+b)·(a+b)

∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ)

又∵Cos(π-θ)=-Cosθ∴c2=a2+b2-2|a||b|cosθ

再拆开,得c^2=a2+b2-2*a*b*cosC

方法二:勾股法

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC2=AD2+DC2

b2=(sinB*c)2+(a-cosB*c)2

b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2

b2=(sinB2+cosB2)*c2-2ac*cosB+a2

b2=c2+a2-2ac*cosB

方法三:解析法

在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,

设三角形三边abc

则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA)

∵BC=a

bc(cos∠BAC)+ac(cos∠CBA)=2(S△ACQ+S△PBC)=c2, 同理,ac(cos∠CBA)+ab(cos∠ACB)=a2,

ab(cos∠ACB)+bc(cos∠BAC)=b2.

联立三个方程,

bc(cos∠BAC)+ac(cos∠CBA)=c2(1)

ac(cos∠CBA)+ab(cos∠ACB)=a2(2)

ab(cos∠ACB)+bc(cos∠BAC)=b2(3)易得余弦定理

方法八:物理法

设三角形ABC是边长分别为a、b、c的通电导线框,其电流长度为I。

现将它置于磁感应强度为B的匀强磁场中且线框平面与磁场方向垂直,

那么三角形ABC的三边所受的安培力如图1所示,其大小分别为

Fa=BIa

Fb=BIb(1)

Fc=BIc

很显然,这三个力是相互平衡的共点力,它们的作用线相交与三角形ABC的外心O,现以O点为原点,分别建立如图2甲、丙所示的直角坐标系,对Fa、Fb、Fc进行正交分解,根据甲图,有

正弦定理证明

一、正弦定理的几种证明方法
1.利用三角形的高证明正弦定理
(1)当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据锐角三角函数的定义,
有CD ?asinB ,CD ? b sin A 。
C
由此,得
a sin A
b ? sinB
同理可得 ,
c sinC
?
b sin B

b
a
A
B
故有
a
b
sinA ? sinB
c ? sinC .从而这个结论在锐角三角形中成立.
D
(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有CD ?asin?CBD ?asin?ABC ,CD ? b sin A 。由此,

a sin A
b ? sin?ABC
同理可得 ,
c sinC
b ? sin?ABC
C
故有
a
b
sinA ? sin?ABC
c ? sinC .
b
a
A
由(1)(2)可知,在
?
ABC
中,
a sin
A
?
b sin
B
c ? sinC
成立.
BD
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
b
c
sinA ? sinB ? sinC .
2.利用三角形面积证明正弦定理
已知△ ABC,设 BC=a, CA=b,AB=c,作 AD⊥BC,垂足为 D. 则 Rt△ ADB
中, sin B ? AD , ∴AD=AB·sinB=csinB.
A
AB
∴S△ ABC= 1 a ? AD ? 1 acsin B . 同理,可证 S△ ABC= 1 absin C ? 1 bcsin A.
2
2
2
2
∴ S△ ABC= 1 absin C ? 1 bcsin A ? 1 acsin B . ∴absinc=bcsinA=acsinB, C
2
2
2
D
B
在等式两端同除以 ABC,可得 sin C ? sin A ? sin B . 即 a ? b ? c .
c
a
b
sin A sin B sin C
3.向量法证明正弦定理
(1)△ ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与 AB 的夹角为
90°-A,j 与 CB 的夹角为 90°-C. 由向量的加法原则可得 AC ? CB ? AB ,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量
第1页共5页

余弦定理证明过程(完整版)

余弦定理证明过程 余弦定理证明过程 =a,∠da=π-∠ba=π-,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=b∴=∴asin=sina………… ①-aos=osa-b…… ②由 ①得asina=sin,同理可证asina=bsinb,∴asina=bsinb=sin.由 ②得aos=b-osa,平方得: a2os2=b2-2bosa+2os2a,即a2-a2sin2=b2-2bosa+2-2sin2a.而由 ①可得a2sin2=2sin2a∴a2=b2+2-2bosa.同理可证b2=a2+2- 2aosb,2=a2+b2-2abos.到此正弦定理和余弦定理证明完毕。3△ab的三边分别为a,b,,边b,a,ab上的中线分别为ma.mb,m,应用余弦定理证明: mb= m=ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 同理可得: mb=

m= 4 ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 证毕。 第五篇: 余弦定理的多种证明 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形三边为a,b, 三角为a,b, 满足性质 a^2=b^2+^2-2*b**osa b^2=a^2+^2-2*a**osb ^2=a^2+b^2-2*a*b*os os=2ab osb=2a osa=2b 证明:

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

正弦定理的几种证明

正弦定理的几种证明 内蒙古赤峰建筑工程学校 迟冰 邮编(024400) 正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养学生的探索精神,体验数学的探索活动过程,也有利于教师根据不同的教学质量要求和学次,进行适当的选择。 C c B b A a C B A c b a ABC sin =sin =sin ,,,,:则:和中的三边和三角分别是 在正弦定理的内容: ? 一向量法 C c B b A a B b A a C c C CB i A CB AC i AB i AC i ABC sin sin sin :sin sin sin sin ||||sin | ) (,⊥=== ==+?=??即正弦定理可证 同理可证:,则:中做单位向量 证明:在

即正弦定理可证 同理可证:即中 和则在中做高线证明:在, sin =sin ,sin =s sin =sin sin =, sin =, C c A a B b inA a B a A b B a CD A b CD BDC Rt ADC Rt CD ABC ??? 三外接圆法 C c B b A R C c R A a R B b B R b B D a D R b Rt CAD R AD D C O ABC sin sin sin a ∴2sin ,2sin :2sin ,sin 2∴∠∠,sin ,∴, ,,========???同理即且且为设圆的半径为连接连接圆心与圆交于点过点的外接圆证明:做

四面积法 C c B b A a B ac C ab A bc S ABC sin sin sin ∴sin 21sin 2 1 sin 21=====?正弦定理可证:

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B =, 故有 sin sin a b A B =sin c C =.从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 =∠sin sin a b A ABC , 同理可得 =∠sin sin c b C ABC 故有 =∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B =sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C =. 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C === sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

余弦定理的八种证明方法

余弦定理的八种证明方法 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。 用多种方法证明余弦定理,扩展思维,了解更多的过程。 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。 一余弦定理的内容 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质 a2 = b2 + c2- 2·b·c·cosA b2 = a2 + c2 - 2·a·c·cosB c2 = a2 + b2 - 2·a·b·cosC 二证明方法 方法一:平面几何法 ∵如图,有a+b=c ∴c·c=(a+b)·(a+b) ∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ) 又∵Cos(π-θ)=-Cosθ∴c2=a2+b2-2|a||b|cosθ 再拆开,得c^2=a2+b2-2*a*b*cosC

方法二:勾股法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB 方法三:解析法 在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc 则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA) ∵BC=a 则由距离公式得a=(c-bcosA)2-(bsinA)2 化简得a=c2+b2-2bccosA ∴a2=c2+b2-2bccosA 方法四:面积法 S△ACQ=(1/2)bc(cos∠BAC), S△PBC=(1/2)ac(cos∠CBA),

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

正弦定理的四种证明方法

正弦定理的四种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等, 即.其中R是三角形外接圆的 半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2=. 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C=. 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, 时,只有一解. (4)已知两边及夹角,用____________定理,必有一解.

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行 实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面 平行实现 l

βααβ//',',' //'//??? ?? ? ? ? ??且相交且相交m l m l m m l l 。βαβαα//,////??? ????且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

正弦定理的几种证明方法

正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定 义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C = . 1’用知识的最近生长点来证明: | 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD?AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == ` a b D A ( C A B ~ D b a

余弦定理证明过程

余弦定理证明过程(精选多篇) 余弦定理证明过程ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 证毕。 2 在任意△abc中,作ad⊥bc. ∠c对边为c,∠b对边为b,∠a对边为a--> bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c

勾股定理可知: ac2=ad2+dc2 b2=2+2 b2=sin2b*c2+a2+cos2b*c2-2ac*cosb b2=*c2-2ac*cosb+a2 b2=c2+a2-2ac*cosb 所以,cosb=/2ac 2 如右图,在abc中,三内角a、b、c 所对的边分别是a、b、c.以a为原点,ac 所在的直线为x轴建立直角坐标系,于是c点坐标是,由三角函数的定义得b 点坐标是.∴cb=.现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=cb∴=∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而

由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3△abc 的三边分别为a,b,c,边bc,ca,ab上的中线分别为,mc,应用余弦定理证明: mb= mc=ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 同理可得: mb= mc= 4 ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入

2021年正弦定理的几种证明方法

正弦定理的几种证明方法 欧阳光明(2021.03.07) 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角 三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有 =∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同 理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |= a b D A B C A B C D b a

c , 求边AC 的长b 解:过C 作CD^AB 交AB 于D ,则 推论: sin sin b c B C = 同理可证: sin sin sin a b c A B C == 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为D.则Rt △ADB 中,AB AD B = sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin = =. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C . 由向量的加法原则可得 AB CB AC =+, 为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j ?=+?)( 由分配律可得AB j CB j AC ?=?+. B ∴|j |AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j ∴asinC=csinA.∴ C c A a sin sin = . A 另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j D C B A C

正弦定理的三种证明

A B C c b a C B A D a b c A B C D a b △ABC 中的三个内角∠A ,∠B ,∠C 的对边,分别用,,a b c 表示. 正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即 = = sin sin sin a b c A B C 证明:按照三角形的种类,分三种情形证明之. (1) 在R t A B C ?中,如图1-1 sin = a A c ,sin = b B c 因此, = =sin sin a b c A B 有因为sin =1C ,所以 = = sin sin sin a b c A B C (2)在锐角△ABC 中,如图1-2 作C D AB ⊥于点D ,有sin =C D A b ,sin = C D B a , 因此,sin =sin b A a B ,即=sin sin a b A B 同理可证: = sin sin a c A C ,故 = = sin sin sin a b c A B C . (3)在钝角△ABC 中,如图1-3 作C D AB ⊥,交A B 的延长线于点D ,则 sin = C D A b ,sin =sin = C D A B C C B D a ∠ 因此,sin =sin b A a B ,即= sin sin a b A B 同理可证: = sin sin b c B C 故==sin sin sin a b c A B C 综上所述,在任意的三角形中,正弦定理总是成立.

B A C B 证明:如图所示,圆O 是△ABC 的外接圆,半径为R 连接A O 并延长,交圆O 于点D ,连接C D , 易知,=90ACD ∠ ,=B D ∠∠ sin = =2A C b D A D R ,即sin = 2b B R 因此 =2sin b R B 同理,延长,BO CO , 可证= =2sin sin a c R A C 故===2sin sin sin a b c R A B C 证明:过点B 作单位向量j BC ⊥ ,那么就有 j A C j A B j B C =+ cos(90)cos(90)0b C c B ?+=++ sin b C ?-=-sin sin b c B C ? =, 同理有sin sin a b A B =。 故 = = sin sin sin a b c A B C 【小技巧】 根据几何图形确定向量夹角的方法: 如果两个向量所在之间直线相交,或通过平移一个向量而相交,那么 (1) 向量夹角为锐角,很容易判断; (2) 向量夹角为钝角时,可以先判断锐角,再取补角 例如: 确定向量j 与向量AB 的夹角时,由于是钝角, 先确定向量j 与向量BA 的夹角为90B - ,再求补角,即为90B + 确定向量j 与向量A C 的夹角时,先平移j ,同上可得,夹角为90C +

相关文档
最新文档