相位编码结构光三维测量技术研究

相位编码结构光三维测量技术研究
相位编码结构光三维测量技术研究

相位编码结构光三维测量技术研究

结构光(SL)技术由于其非接触,高分辨率,高速度和全场自动化的优点而被广泛开发用于三维(3D)测量。条纹投影轮廓术(FPP)是三维测量中应用最广泛的结构光技术之一,例如逆向工程、工业检测、制造和机器人导航。FPP系统将条纹图投影到被测物体上,并记录被物体调制后的变形条纹图,然后利用特定的条纹分析方法,使用处理/分析系统从记录的图像中计算出调制相位。提取相位的准确性直接影响被测物体的三维重建结果。

本论文旨在提高基于相位编码结构光的三维测量系统的性能,力图为条纹投影轮廓术拓宽实用范围奠定理论基础。针对投影仪非线性Gamma标定和矫正、分段量化相位编码方法和基于N步相移的三维测量方法等关键问题进行如下研究工作:1、研究了传统相位编码方法及其一系列改进方法。码字在基于相位编码的相位解包裹方法中具有重要意义,每个相位编码条纹用一个唯一的码字标记,然后用于确定条纹级次。然而,传统的相位编码方法相邻码字之间的差值为1,相邻码字之间的差值过小。

由于系统的非线性效应和离焦影响,在高频条纹情况下条纹级次的计算容易产生误差,从而导致相位展开误差。传统相位编码方法受到码字数量的限制,导致条纹数量不能过大,影响其测量精度。2、数字条纹的正弦性是影响测量精度的一个主要因素。在数字投影相移法中,相位误差主要来源于条纹图像的非正弦性,而条纹图像的非正弦性是由于商用投影仪的非线性Gamma效应产生的结果。

为此,本文在研究对比分析了各种方法的基础上,采用七阶多项式对投影和成像系统进行建模,确定投影仪非线性Gamma的反函数。并以此生成待投影的预矫正正弦条纹,最终成像系统可以捕获理想正弦条纹。3、为了使相位编码方法的条纹级次计算更准确,同时也为了提高其测量精度,本文提出了一种基于分段量化相位编码的三维测量方法,在不减小相邻量化相位值之间的差异或提高量化等级的情况下实现绝对相位恢复。量化相位由特定的编码序列S“135246”进行调制,然后将其嵌入到相位编码条纹图中,这大大提高了解码的精度。

编码时将整个区域分成多个子区域,每个子区域嵌入上述编码序列S,通过相应的解码算法计算出条纹级次,最终得到绝对相位。4、减少条纹投影轮廓术的条纹图数量一直是本领域的研究热点。相位编码方法或其他时域相位展开算法通

常需要额外的条纹信息来计算条纹级次,从而导致过多数量的条纹图案。从减少条纹图数量这个角度出发,本文提出一种基于N步相移的三维测量方法。

该方法仅需要N步标准相移正弦条纹图案来完成绝对相位计算。首先,利用标准相移算法计算包裹相位和消除背景的掩膜Mask;然后,直接利用包裹相位和Mask,根据连通域标记算法计算条纹级次,进而求得绝对相位。该方法最少只需3幅条纹图,就可以完成三维测量,且数据处理速度快。

相位测量仪

辽宁工业大学 电子综合设计与制作(论文)题目:低频数字式相位测量仪 院(系):电子与信息工程学院 专业班级:电子班 学号: 学生姓名: 指导教师: 教师职称: 起止时间:2013.12.13-2014.1.10

电子综合设计与制作(论文)任务及评语

摘要 该设计是低频数字式相位测量仪,设计思路为输入一个低频正弦信号通过分支路正常输出,另一路不通过移相器输出一个相位改变频率不变的正弦波。得到上述两路频率相同相位不同的信号后就要测出两信号的相位差和频率,在做此工作前先要经过相位测量前置级信号处理电路,由阻抗变换和放大、限幅、电平转换、整形电路组成。经过相位测量前置级信号处理电路得到两路方波,通过异或门输出一个脉冲序列与晶振产生的基准脉冲波进行与操作得到调制后的波形,在一定的时间范围内对脉冲的个数进行计数通过计算得到相位差和频率。再通过单片机控制显示器显示出所需结果。 关键词:低频;正弦;移相器;异或门;整形;

目录 第1章可编程增益放大器设计方案论证 (1) 1.1可编程增益放大器的应用意义 (1) 1.2可编程增益放大器设计的要求及技术指标 (1) 1.3 设计方案论证 (2) 1.4 总体设计方案框图及分析 (3) 第2章可编程增益放大器各单元电路设计 (4) 2.1 输入调整电路设计 (5) 2.2 中间级放大电路设计 (5) 2.3 输出级电路设计 (5) 2.4 增益调整电路设计 (6) 第3章可编程增益放大器整体电路设计 (7) 3.1 整体电路图及工作原理 (7) 3.2 电路参数计算 (7) 3.3 整机电路性能分析 (8) 第4章设计总结 (9) 参考文献 (10)

相位测量方案

制信号控制两片计数器。得到的两路计数值送入单片机进行处理得相位差值。 对以上方案进行比较,方案一在所测频率较高时,受锁相环工作频率等参 数的影响会造成相位差测量的误差,采用方案二由高精度的晶振产生稳定的基 准频率,可以满足系统高精度、高稳定度的要求。 相位测量论证与选择 方案一:利用单片机实现测量相位差,实现框图如图1-1所示。 信号1整形电路方波1测频 键盘 信号2整形电路方波2异或门 测脉宽单片机 显示DFF 图1-1利用单片机实现测量相位差原理图 直接利用单片机的内部时钟以异或门的输出为闸门进行计数。理论上晶振为12M时MCS-51单片机的最窄脉宽为1us,误差即为±1us。当要实现1?的步进时,计数脉宽最少为360us,以正弦波计,最高的频率为 1 360*10-6 =2.78KHz。显然,此种方法硬件原理上难以保证测量精度,需在软 件上采用?∑技术来提高精度,增加了软件量。 方案二:采用相差-电压测量法。即通过数字鉴相器,如异或门鉴相电路 输出相差脉冲,经过低通滤波器滤出其中的直流成分(其中含有相位信息),设 计原理框图如图1-2所示。 信号输入1数字 鉴相器滤波器A/D单片机显示信号输入2异或门 图1-2数字鉴相、相位-电压法原理框图 此方案为数字方法与模拟方法相结合,数字鉴相器的设计解决了模拟鉴相器的频带限制,但精度问题依然存在。 方案三:采用相差-时间测量法。设计原理框图如图1-3所示。 信号输入A 信号输入B 数字 鉴相器 周期/脉冲 计数/锁存 单片机显示

?360O ??=n N 其中,n为方波相位差对应时间间隔内的脉冲数,N为方波一个周期内的脉冲数。 上述两种方案从对硬件的要求而言,方案一在FPGA芯片基础上需要一片CD4046和一片AD0809,而方案二则在FPGA芯片基础上只需要一片LM393;从测量性能方面来说,在低频率方面,方案一的相位差总共只能有256个量级,而采用通过FPGA记脉冲数的方法测量的精度将远远高出此量级。因此,选用方案二,采用比较器LM393和FPGA来实 现测相。 相位差测量 方案一:将被测的两路正弦波信号整成方波信号,利用异或门电路进行鉴相处理,将得到的脉冲序列经过RC平滑滤波取出其直流分量,该直流电平的幅值与两路信号的相位 差成正比,将此信号送入A/D转换器由单片机进行运算处理从而计算出相位差值。 方案二:采用脉冲填充计数法,将正弦波信号整成方波信号,其前后沿分别对应于正弦波的正相过零点与负相过零点,对两路方波信号进行异或操作之后输出脉冲序列的脉宽可以反映两列信号的相位差,以输入信号所整成的方波信号作为基频,经锁相环倍频得到的高频脉冲作为闸门电路的计数脉冲,由单片机对获取的计数值进行处理得到两路信号的相位差。 方案三:将两路被测正弦波信号整成方波信号,通过图3-5所示的鉴相器,输出一路具有不同占空比的脉冲波形。由图3-6的仿真波形可知,该脉冲信号的占空比与这两路信号 图3-5鉴相器原理图 图3-6鉴相器的仿真波形 的相位差成正比: 相位差=N1*360°/(N1+N2)(3-5)其中N1是高电平脉宽时间内的计数器,N2是低电平脉宽时间内的计数值。

基于结构光的微小物体三维测量系统的设计及应用

基于结构光的微小物体三维测量系统的设计及应用针对微小物体的三维轮廓测量是现代三维形貌测量的一个重要分支领域。自从上世纪六十年代在国外被首次提出后,国内外研究学者经过几十年的不断研究和发展,与其相关的测量技术与测量设备也获得了高速发展,进入21世纪以后,其被广泛应用于缺陷检测、精密制造、虚拟现实(VR)、机器视觉、医疗工程、影音游戏、三维打印以及现代教育等众多领域。但与国外现有的测量技术与设备相比较,国内目前还处在相对落后的局面。因此,研制出测量精度高、测量速度快、微型化以及更加智能化的微小物体三维轮廓测量系统迫在眉睫。 根据上述情况,本文针对微小物体的三维轮廓测量从两个方向展开研究。一方面,基于正弦光栅条纹投影和光学三角法的三维测量方法进行研究。另一方面,着眼于以体视显微镜和双远心镜头为主体的硬件测量系统的设计与搭建。具体研究内容如下:(1)针对微小物体的三维轮廓测量现有方法以及研究现状系统地调研。 对常规方法存在的问题进行归纳总结,明确了微小物体测量面临的困难与挑战。本文将从硬件系统搭建以及算法实现两个方面进行研究改进。(2)设计与搭建以体视显微镜和双远心镜头为主体的硬件测量系统。因体视显微镜可实现物体的立体成像,可观察区域范围大;双远心镜头因分辨率高,低畸变,景深大,在成像时能最大限度还原物体的形状信息。 因此,测量系统采用体视显微镜和双远心镜头为主体结构设计并搭建了测量系统,结合基于光学三角原理的正弦光栅条纹投影三维测量方法,在经过系统标定后,能顺利获取被测物体的三维轮廓信息,测量系统的视场范围可达 1.8cm*1.6 cm。(3)基于正弦光栅条纹投影和光学三角法的三维测量方法进行研究。本文选用无损伤、精度高、速度快、易实现的正弦光栅条纹投影结合光学三角法对微小物体表面的三维轮廓进行测量,详细阐述了其测量原理,提出了一种基于质量图引导的相位解包裹改进算法——可靠路径跟踪算法,在满足测量精度要求下,提高了系统整体测量速度;针对系统标定,基于一般成像模型引入了摄像机标定与系统标定方法,深入阐述了摄像机标定和系统标定的方法理论,完成了测量系统的整体标定。基于C++与MATLAB实现了相关算法。 进行了大量相关实验,验证了该测量方法的稳定性和有效性,实验结果表明

基于MATLAB GUI的相位测量轮廓术

Optoelectronics 光电子, 2016, 6(1), 20-25 Published Online March 2016 in Hans. https://www.360docs.net/doc/0215102468.html,/journal/oe https://www.360docs.net/doc/0215102468.html,/10.12677/oe.2016.61004 Phase Measuring Profilometry Based on GUI MATLAB Kaiying Li*, Manning Sun, Xintian Bian Jiangsu Key Construction Laboratory of Modern Measurement Technology and Intelligent System, Huaiyin Normal University, Huaian Jiangsu Received: Mar. 6th, 2016; accepted: Mar. 25th, 2016; published: Mar. 28th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/0215102468.html,/licenses/by/4.0/ Abstract According to the basic principle of Phase Measurement Profilometry, we design interactive simu-lation interface based on Phase Measuring Profilometry. Simulation result of three dimensional shape measurements was provided. This simulation can combine the 3D shape measurement and experiment well. It has a certain reference value. The theoretical analysis and computer simula-tion were shown in this article. Keywords Three Dimensional Measurement, GUI Interface, Phase Measurement Profilometry 基于MATLAB GUI的相位测量轮廓术 李凯颖*,孙漫凝,边心田 淮阴师范学院,江苏省现代检测技术与智能系统重点建设实验室,江苏淮安 收稿日期:2016年3月6日;录用日期:2016年3月25日;发布日期:2016年3月28日 *通讯作者。

数字式相位差测量仪说明书4

目录 绪论 (1) 摘要 (2) 1 结构设计与方案选择 (3) 1.1 基于过零检测法的数字式相位差测量仪方法概述 (4) 1.1.1 相位-电压法 (4) 1.1.2 相位-时间法 (5) 1.2 方案的比较与选择 (6) 2 相位-时间法单元电路的原理分析与实现方法 (6) 2.1 前置电路设计与分析 (6) 2.1.1 放大整形电路的分析与实现 (6) 2.1.2 锁相倍频电路的分析与实现 (7) 2.2 计数器及数显部分的设计与分析 (9) 2.2.1 计数器部分的分析与实现 (9) 2.2.2 译码显示部分的分析与实现 (10) 3 结论 (12) 4 参考文献 (13) 附录1:元器件名细表 (14) 附录2:相位时间法总体电路原理图 (15) 附录3:相位时间法总体电路PCB板 (16) 附录4:相位时间法总体电路PCB板3D视图 (17)

随着科学技术突飞猛进的发展,电子技术广泛的应用于工业、农业、交通运输、航空航天、国防建设等国民经济的诸多领域中,而电子测量技术又是电子技术中进行信息检测的重要手段,在现代科学技术中占有举足轻重的作用和地位。数字相位差测试仪在工业领域中是经常用到的一般测量工具,比如在电力系统中电网并网合闸时,需要两电网的电信号相同,这就需要精确的测量两工频信号之间的相位差。更有测量两列同频信号的相位差在研究网络、系统的频率特性中具备重要意义。相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。为此,我们设计了一种数字相位差测量仪,实现了两列信号相位差的自动测量及数显。近年来,随着科学技术的迅速发展,很多测量仪逐渐向“智能仪器”和“自动测试系统”发展,这使得仪器的使用比较简单,功能越来越多。 本低频数字相位测量仪主要是测量电压和电流的相位差,由整形放大电路、基本门电路、锁相倍频、计数译码等集成电路构成。测量的分辨率可达到0.1°,可测信号的频率范围为0Hz~250Hz,幅度为0.5Ⅴ,由于74HC4046的性能比较好,使得所制得的仪器精度相对较高,达到了任务书中所规定的要求。

面结构光三维测量系统的精度研究

华中科技大学 硕士学位论文 面结构光三维测量系统的精度研究 姓名:杜宪 申请学位级别:硕士 专业:材料加工工程 指导教师:王从军 20090522

华中科技大学硕士学位论文 摘要 结构光测量系统在工业检测、人体测量、文物保护和反求工程等众多领域具有广泛的应用前景。国外的面结构光三维测量技术已相对成熟,但设备价格昂贵。国内也有一些单位开展了相关研究,但普遍存在着精度不高、稳定性差等缺点。为此,本文在简要介绍结构光三维测量技术原理的基础上,系统分析了光栅条纹数和数字光栅投影装置的伽马非线性对测量精度的影响,以期进一步提高课题组前期开发的三维测量系统的精度。 面结构光三维测量系统,首先使用相移法和多频外差原理进行稳定高精度的相位计算;然后根据预先标定的系统参数,从得到的相位灰度图重构出被测物体的三维点云数据。 由三维重构过程可知,光栅周期数的增加可以降低立体匹配的误差,本文通过理论推导和实验研究,分析了不同光栅周期数对系统测量精度的影响,并为系统选择了一个最优的光栅周期数。当周期数为110~120时,系统的测量精度最高,滤波后可达0.037mm。 此外,三维重构的精度还与相位计算的精度有关,根据现有研究,投影仪的伽马非线性是相位误差的主要来源。本文分析了不同伽马值和不同条纹周期数的测量精度,发现条纹周期数抑制了伽马非线性,提高了相位计算的精度。 最后,通过分析不同距离的平面精度、拟合标准球直径及距离等测量实验,表明系统的测量精度稳定可靠,绝对测量精度可达0.05mm。 关键词:结构光;光栅周期数;误差;非线性

华中科技大学硕士学位论文 Abstract Structured Light Measurement System (SLMS) is widely used in many fields such as industrial inspection, human body measurement, Protection of Cultural Relics and reverse engineering etc. In abroad, SLMS is well developped, but they are always expensive. In China, lots of research work has been made on it, but they are poor in accuracy and stability. So, this paper, which is based on a brief introduction of the structured light measurement technology, analyzes the impact of the period number of fringe pattern and gamma non-linear of Digital Projector, attempt to further improve the precision of pre-development measurement system. In our SLMS, phase-shifting method and multi-frequency heterodyne principle were imployed to obtain phrase gray map, then 3D data could be reconstructed base on the pre-calibrated parameters. According to the process of 3D reconstruction, we found that the increase of the period number of fringe pattern can reduce the error. So this paper analyzed the relationship between period number of fringe pattern and accuracy through theoretical research and experiments. Then we can conclude that the optimal period number is 110~120 and the SLMS gets the highest precision which is up to 0.037mm after filtering. In addition, the calculated phase value can also affect the accuracy of 3D reconstruction. According to research, gamma non-linear of projector is the main error source of the phase error. This paper analyzes 3D date by using different gamma values and different the period numbers of fringe pattern, then found that the period number of fringe pattern can inhibit the effect of the gamma non-linear of projector and improved the accuracy of the phase calculation. Finally, a series of measurement experiment, such as analyses of the accuracy in different distance and fitting diameter and distance of the standard ball, shows that the accuracy of system is stable and repeatability and the absolute measurement accuracy is 0.05mm. Key words: Structured light; Period number of fringe pattern; Error; Non-linear

相位测量仪

目录 前言 (2) 一、功能特点 (3) 二、技术指标 (3) 三、结构外观 (4) 1.结构尺寸 (4) 2.面板布置 (4) 3.键盘说明 (5) 四、液晶界面 (6) 五、使用方法 (10) 六、打印功能 (13) 七、注意事项 (13) 附录:三相三线计量接线48种接线结果 (14) 差动保护正确矢量图 (16)

前言 随着电力行业的发展和微机综合自动化产品的推广应用,保护回路和计量回路的接线正确与否直接影响到电力系统工作的稳定性和电费计量的准确性,而这两点正是电力系统非常重要的两个方面。由于保护装置和高压计量装置的接线比较多,容易造成错误接线,而又不易被察觉,(尤其是差动保护的复杂接线,有时高低侧同时引入,又存在不同的联结组别,极易接错,而在平时运行中又可能不会误动或拒动,存在很大的隐患)。武汉华亿通电气有限公司根据现场测试需要,适时开发出SL型矢量分析仪。它集多功能于一身,即可做相位仪校验主变差动保护和母线差动的正确性,又可作为电参量测试仪测试电力系统必要的参数,还可用做三相三线电能计量接线检测仪器。采用dsp交流采样,可同时测量3路电压和6路电流模拟量,仪器首创9通道矢量同屏显示,人机对话界面友好,使用简便,大大方便了现场使用,是电力工作者的得力助手。

一、功能特点 1、大容量锂电池供电,连续工作长达4小时。 2、3路电压,6路电流矢量同屏显示,国内首创。 3、集保护矢量分析;相位伏安测试;电能计量接线矢量分析多种仪器于 一身。 4、大屏幕、高亮度的液晶显示,全汉字菜单及操作提示实现友好的人机 对话,触摸按键使操作更简便,宽温液晶带亮度调节,可适应冬夏各季。 5、用户可随时将测试的数据通过微型打印机将结果打印出来。 6、体积小重量轻:283×218×128,2kg 7、预留双USB接口,可外接优盘等移动存储设备。 二、技术指标 1、输入特性 电压测量范围:0~450V。 电流测量范围:0~6A。 2、准确度 电压、电流、频率:±0.2% 功率:±0.5% 3、工作温度:-15℃~ +40℃ 4、充电电源:交流160V~260V 5、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。 ⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1 分钟实验。 6、体积:32cm×28cm×13cm 7、重量:2Kg

数字式相位差测量仪

专业方向课程设计报告 课题名称:数字式相位差测试仪姓名: 学号: 班级: 专业: 归口系部: 起迄日期: 指导教师: 提交报告日期: 2015年12月18日

数字式相位差测试仪 目录 一、设计任务和目的 _________________________________ - 1 - (一)设计任务 ___________________________________ - 1 - (二)设计目的 ___________________________________ - 1 - 二、设计要求 ________________________________________ - 1 - 三、工作原理 _______________________________________ - 1 - 四、设计框图 _______________________________________ - 2 - 五、主要参考器件(软件仿真,用Proteus) ____________ - 2 - 六、各模块电路分析 _________________________________ - 3 - (一)移相电路部分_______________________________ - 3 - (二)放大整形电路部分___________________________ - 3 - (三)锁相倍频电路部分___________________________ - 4 - (四)计数器及数字显示部分_______________________ - 5 - (五)相位超前于滞后显示部分_____________________ - 6 - 六、仿真___________________________________________ - 7 - 七、心得体会 _______________________________________ - 8 - 八、参考文献 _______________________________________ - 8 - 附:数字式相位差总电路图_____________________________ - 9 -

全相位FFT相位测量方法

全相位FFT 相位测量方法 1.基本原理 全相位数据来源为()()(),11x n N n N --≤≤-,可以认为对于时间序列中的一点()0x ,存在且只存在N 个包含该点的N 维向量: ()()()()()()()()()0110,1,,11,0,,21,2,,0T T T N x x x x N x x x x N x x N x N x -=-???? =--????=-+-+???? (1) 将(1)式中每个向量进行圆周移位把样本点()0x 移到首位,则得到另外的N 个N 维向量 ()()()()()()()()()0 1 10,1,,10,1,,10,1,,1T T T N x x x x N x x x x x x x N x -'=-???? '=-????'=-+-???? (2) 对准()0x 相加得到全相位数据向量 ()()()()()()()1 0,111,,111T AP x Nx N x x N x N N x N = -+-+-+--???? (3) 根据DFT 的移位性质,式(2)中i x '的傅里叶变换()i X k '和式(1)的i x 的离散傅里叶变换()i X k 之间有很明确的关系 ()()[]2,0,1ki j N i i X k X k e i N π'=∈- (4) 当输入序列为 ()()2/,11j mn N x n e N n N πθ+=-+≤≤- (5) 其中,s f m f N =,s f 为采样频率。式(3)对i 求和的平均即为全相位FFT 的输出,

()()()()()()()()()()()()21 1 0221100 2211 222/2/2 21 11111111sin 1sin /ki N N j N ap i i i i kn ki N N j j N N i n m k i m k n N N j j j N N i n j m k j m k j j m k N j m k N j X k X k X k e N N x n i e e N e e e N e e e N e e m k e N m k N πππππθππθππθππ--==---==-----==------'= ==-=--=---????=-???? ∑∑∑∑∑∑ (6) 由(6)式可知,全相位FFT 谱的相位值为θ,即为中心样点()0x 的理论相位值,该值与频率偏离值m-k 无关。当输入序列为 ()()()()() 2/2/cos 2/,11 1 2 j mn N j mn N x n mn N N n N e e πθπθπθ+-+=+-+≤≤-=+ (7) 根据(6)式得到其全相位FFT 为 ()()()()()22 22sin sin 112sin /2sin /j j ap m k m k X k e e N m k N N m k N θθππππ----????????=+---???????? (8) 在峰值谱线k m =处,(8)式等号右侧前项远大于后项,因此k m =处的相位即为输入序列初相θ。因此,基于全相位FFT 的相位测量流程如下图所示 图1 基于全相位FFT 的相位测量流程 2.测相性能 对()0cos 260s n x n f f π??=?+? ???,()()11N n N --≤≤- 。 (1)使用apFFT 估计相位的条件 使用apFFT 进行相位测量,需要满足条件02s f f >。 (2)数据长度与相位测量准确程度的关系 当03,12s f Hz f Hz ==,得到相位估计值与N 的关系如图

位测量轮廓术中相位-高度映射系统标定的研究现状

第40卷 第7期 红 外 技 术 V ol.40 No.7 2018年7月 Infrared Technology July 2018 701 〈综述与评论〉 位测量轮廓术中相位-高度映射系统标定的研究现状 万安军1,林玉明2,赵勋杰1 (1. 苏州大学物理与光电·能源学部,江苏 苏州 215006;2. 朝阳广播电视大学,辽宁 朝阳 122000) 摘要:相位测量轮廓术在物体三维重建与检测技术中有着广泛的应用,其三维重建过程可分为3个部 分:结构光栅的产生和投影,相位提取与相位展开和相位-高度映射系统标定。相位-高度映射系统标 定对三维重建精度起到决定性的作用。因此,相位-高度映射系统标定成为相位测量轮廓术三维重建 研究中的热门课题。本文对三维重建和相位测量轮廓术的基本原理做简要介绍,然后详细介绍相位- 高度映射系统标定的研究现状。 关键词:三维重建;相位测量轮廓术;相位-高度映射;系统标定 中图分类号:TN919 文献标识码:A 文章编号:1001-8891(2018)07-0701-06 Research Status of Phase-Height Mapping System Calibration in Phase Measurement Profilometry WAN Anjun 1,LIN Yuming 2,ZHAO Xunjie 1 (1. College of Physics , Optoelectronics and Energy of Soochow University , Suzhou 215006, China ; 2. Chaoyang Radio and TV University , Chaoyang 122000, China ) Abstract :The phase measurement profilometry is widely used in three-dimensional reconstruction and detection of objects. The three-dimensional reconstruction process can be divided into three parts: generation and projection of structure grating, phase extraction and phase unwrapping, and phase-height mapping system calibration. Among them, the phase-height mapping system calibration plays an important role in the reconstruction accuracy. Therefore, it has become a hot topic in the research of three-dimensional reconstruction of phase measurement profilometry. This article briefly introduces the basic principles of three-dimensional reconstruction and phase measurement profilometry and then discusses the current research status of phase-height mapping system calibration in detail. Key words :three-dimensional reconstruction ,phase measurement profilometry ,phase-height mapping , system calibration 0 引言 三维重建技术是通过接触式和非接触式方式获得物体三维空间信息的方法和技术。根据待测物体与三维重建设备之间的位置关系可分为接触式三维重建技术[1]与非接触三维重建技术[2];根据成像照明方式的不同可分为被动三维重建技术和主动三维重建 技术。其中,接触式三维重建技术最具代表性的就是三坐标测量机,它是通过移动探头与待测物体表面接触来获取接触点的三维坐标,最后通过大量的坐标点拟合出物体的三维形状,然后进行尺寸检测。三坐标机由于检测精度高、成本低、易操作等特点而被快速 发展。但是,由于需要与物体接触,使得探头易磨损,使用时间长了会降低三维重建的精度,测量速度很慢,不适合大面积物体的检测与测量,并且还不能检测柔性的物体等缺点,无法满足大部分行业的需求。 非接触式的三维重建以速度快,精度高,成本低等优点恰好弥补接触式的缺点,使得非接触式的三维重建得到飞速发展,大有取代接触式的趋势。 非接触式三维重建又可分为电磁学三维重建(如 万方数据

数字式相位差测量仪

《电子技术》课程设计报告课题:数字式相位差测量仪 班级电气1112 学号 1111205423 学生姓名孟雷 专业电气工程及其自动化 院系电气学院电子系 指导教师专业方向课程设计指导小组 淮阴工学院 电子信息工程系 2014年12月

一、设计目的与任务 《电子信息工程专业方向》课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的、系统的、综合的工程训练。在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程、设计要求、完成的工作内容和具体的设计方法,掌握必须提交的各项工程文件。其基本目的是:培养理论联系实际的设计思想,训练综合运用电路设计和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固,加深和扩展有关电子类方面的知识。 通过课程设计,应能加强学生如下能力的培养: (1)独立工作能力和创造力; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)查阅图书资料、产品手册和各种工具书的能力; (4)工程绘图的能力; (5)编写技术报告和编制技术资料的能力。 二、设计要求 1、被测信号为正弦波(或者是方波),频率为40~60Hz,幅度大于等于0.5V;相位测量精度为1度;用数码管显示测量结果。 2、主要单元电路和元器件参数计算、选择; 3、画出总体电路图; 4、提交格式上符合要求、内容完整的设计报告

三、总体设计 在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频信号的相位差。例如,电力系统中电网并网合闸时,要求两电网的电信号之间的相位相同,这需要精确测量两列工频信号的相位差。相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。为此,我们设计一种数字式相位差测量仪,该仪以可编程逻辑器件(PLD) 和锁相环(PLL) 倍频电路为核心,实现了两列信号相位差的自动测量及数显。 相位差测量仪的原理框图(以分辨率为1°为例)如图1 所示。基准信号(相位基准) f R 经放大整形后加到锁相环的输入端,在锁相环的反馈环路中设置一个N = 360 的分频器,使锁相环的输出信号频率为360f R ,但相位与f R 相同,这个输出信号被用作计数器的计数时

相位差检测

目录 一、题目要求 ........................................................ 错误!未定义书签。 二、方案设计与论证 ............................................ 错误!未定义书签。 移相电路 ......................... 错误!未定义书签。 检测电路 ......................... 错误!未定义书签。 显示电路 ......................... 错误!未定义书签。 三、结构框图等设计步骤................. 错误!未定义书签。 设计流程图........................ 错误!未定义书签。 电路图 ........................... 错误!未定义书签。 移相电路图................... 错误!未定义书签。 检测电路图................... 错误!未定义书签。 显示电路图................... 错误!未定义书签。 四、仿真结果及相关分析................. 错误!未定义书签。 移相效果 ......................... 错误!未定义书签。 相位差波形........................ 错误!未定义书签。 相位差度数........................ 错误!未定义书签。 五、误差分析........................... 错误!未定义书签。 误差分析 ......................... 错误!未定义书签。 六、总结与体会......................... 错误!未定义书签。 七、参考文献........................... 错误!未定义书签。 八、附录............................... 错误!未定义书签。 元器件清单........................ 错误!未定义书签。

高精度相位测量仪的介绍及测量

高精度相位测量仪的介绍及测量 相位介绍 相位是与电路结构有关的参数。 相位是反映交流电任何时刻的状态的物理量。交流电的大小和方向是随时间变化的。比如正弦交流电流,它的公式是i=Isin2πft。i是交流电流的瞬时值,I是交流电流的最大值,f是交流电的频率,t是时间。随着时间的推移,交流电流可以从零变到最大值,从最大值变到零,又从零变到负的最大值,从负的最大值变到零。 相位(phase)是对于一个波,特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。是描述讯号波形变化的度量,通常以度(角度)作为单位,也称作相角。当讯号波形以周期的方式变化,波形循环一周即为360° 。常应用在科学领域,如数学、物理学等 相位调整 相位调整是指在有些超低音音箱上加装的一个控制机构。用于对超低音音箱所重放出的声音稍许加以延迟,从而让超低音音箱的输出能够和前置主音箱同相位,即具有相同的时间关系。 相位噪声 相位噪声是频率域的概念,是对信号时序变化的另一种测量方式,其结果在频率域内显示。 如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。 相位差 两个频率相同的交流电相位的差叫做相位差,或者叫做相差。这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。

实验一、三维面型测量

光学传感三维面形测量 非接触三维自动测量是随着计算机技术的发展而开展起来的新技术研究,它包括三维形体测量﹑应力形变分析和折射率梯度测量等方面。应用到的技术有莫尔条纹、散斑干涉、全息干涉和光阑投影等光学技术和计算机条纹图像处理技术。条纹投影以及各种光阑投影自动测量技术在工业生产控制与检测、医学诊断和机器人视觉等领域正占有越来越重要的地位。本实验是利用投影式相移技术,对形成的被测物面条纹进行计算机相移法自动处理的综合性实验。 【实验目的】 通过本实验了解投影光栅相位法的基本原理;了解一种充分发挥计算机特长的条纹投影相位移处理技术。对于非接触测量有一定的感性认识。 【基本原理】 投影光栅相位法是三维轮廓测量中的热点之一,其测量原理是光栅图样投射到被测物体表面,相位和振幅受到物面高度的调制使光栅像发生变形,通过解调可以得到包含高度信息的相位变化,最后根据三角法原理完成相位---高度的转换。根据相位检测方法的不同,主要有Moire 轮廓术、Fourier 变换轮廓术,相位测量轮廓术,本实验就是采用了相位测量轮廓术。 相位测量轮廓术采用正弦光栅投影相移技术。基本原理是利用条纹投影相移技术将投影到物体上的正弦光栅依次移动一定的相位,由采集到的移相变形条纹图计算得到包含物体高度信息的相位。 基于相位测量的光学三维测量技术本质上仍然是光学三角法,但与光学三角法的轮廓术有所不同,它不直接去寻找和判断由于物体高度变动后的像点,而是通过相位测量间接地实现,由于相位信息的参与,使得这类方法与单纯基于光学三角法有很大区别。 1.1相位测量轮廓术的基本原理 将规则光栅图像投射到被测物表面,从另一角度可以观察到由于受物体高度的影响而引起的条纹变形。这种变形可解释为相位和振幅均被调制的空间载波信号。采集变形条纹并对其进行解调,从中恢复出与被测物表面高度变化有关的相位信息,然后由相位与高度的关系确定出高度,这就是相位测量轮廓术的基本原理。 投影系统将一正弦分布的光场投影到被测物体表面,由于受到物面高度分布的调制, 条纹发生形变。由CCD 摄像机获取的变形条纹可表示为: (,)(,)(,)cos[(,)]n n I x y A x y B x y x y δ=+Φ+ (n=0, 1, … , N-1) (1) 其中n 表示第n 帧条纹图。(,)n I x y 、A(x,y)和B(x , y ) 分别为摄像机接收到的光强值、物面背景光强和条纹对比度。δn 附加的相移值, 如采用多步相移法采集变形条纹图,则每次相移量δn 。所求被测物面上的相位分布可表示为: 1010(,)sin(2/)(,)arctan (,)cos(2/)N n n N n n I x y N x y I x y N ππ-=-=??????Φ=??????∑∑ (2) 用相位展开算法可得物面上的连续相位分布(,)x y Φ。已知(,)r x y Φ为参考平面上的连

数字式相位差测量仪

一、设计目的与任务 《电子信息工程专业方向》课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的、系统的、综合的工程训练。在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程、设计要求、完成的工作内容和具体的设计方法,掌握必须提交的各项工程文件。其基本目的是:培养理论联系实际的设计思想,训练综合运用电路设计和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固,加深和扩展有关电子类方面的知识。 通过课程设计,应能加强学生如下能力的培养: (1)独立工作能力和创造力; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)查阅图书资料、产品手册和各种工具书的能力; (4)工程绘图的能力; (5)编写技术报告和编制技术资料的能力。 二、技术指标与要求 1、被测信号为正弦波(或者是方波),频率为40~60Hz,幅度大于等于0.5V;相位测量精度为1度;用数码管显示测量结果。 2、主要单元电路和元器件参数计算、选择; 3、画出总体电路图; 4、提交格式上符合要求、内容完整的设计报告 三、工作原理

在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频信号的相位差。例如,电力系统中电网并网合闸时,要求两电网的电信号之间的相位相同,这需要精确测量两列工频信号的相位差。相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。为此,我们设计一种数字式相位差测量仪,该仪以可编程逻辑器件(PLD) 和锁相环(PLL) 倍频电路为核心,实现了两列信号相位差的自动测量及数显。 相位差测量仪的原理框图(以分辨率为1°为例)如图1 所示。基准信号(相位基准) f R 经放大整形后加到锁相环的输入端,在锁相环的反馈环路中设置一个N = 360 的分频器,使锁相环的输出信号频率为360f R ,但相位与f R 相同,这个输出信号被用作计数器的计数时钟。被测信号f S 经放大整形再2 分频后得到的f S/ 2与f R/ 2 送入由异或门组成的相位比较电路,其输出脉冲A 的脉宽tp 反映了两列信号的相位差;利用这个信号作为计数器的闸门控制信号使计数器仅在f R 与f S的相位差tp 内计数,这样计数器计得的数即为f R 与f S 之间的相位差。于计数时钟频率为360f R ,因此,一个计数脉冲对应1°。计数的值经锁存译码后通过LED 数码管显示。这种测量方法可以从波形图图2 得到理解和说明。图中D 触发器用于判断f R 与f S 的相位关系,当Q 为1 时, f R 超前于f S ,相位取正值,符号位数码管显示全黑; 当Q 为0 时, f R 滞后于f S ,相位取负值,符号位数码管显示“ - ”。

相关文档
最新文档