电压空间矢量研究及Matlab仿真

电压空间矢量研究及Matlab仿真
电压空间矢量研究及Matlab仿真

近年来,电机的空间矢量理论被引入到逆变器及其控制中,形成和发展了空间矢量

PWM(SVPWM)控制思想。其原理就是利用逆变器各桥臂开关控制信号的不同组合,使逆变器输出电压空间矢量的运行轨迹尽可能接近圆形。空间矢量脉宽调制技术,不仅使电机脉动降低,电流波形畸变减小,且与常规正弦脉宽调制(SP-WM)技术相比,直流电压利用率有很大提高,并更易于数字化实现。

1 电压空间矢量调制(SVPWM)算法

SVPWM是以磁链跟踪控制为目标,使逆变器瞬时输出三相脉冲电压合成的空间电压矢量与期望输出三相正弦波电压合成的空间电压矢量相等。对于三相电压型逆变器而言,它有8种工作状态,用矢量表示这8种空间状态,如图1所示。

介绍SVPWM工作原理的相关文献很多,这里不再细述,以下给出算法步骤:

(1)判断参考电压矢量Vref所在扇区

引入三个中间变量A,B,C:

则扇区号:S=A+2B+4C。

(2)计算扇区的有效电压空间矢量和零矢量的作用时间Tx,Ty和T0 引入三个中间变量X,Y和Z:

对于不同的扇区,Tx,Ty按表1取值。

饱和判断:Tyout。

计算零电压矢量作用时间:T0=TPWM-Tx-Ty。

(3)开关切换时间分配

先定义空间矢量切换点分别为:

则根据空间矢量所处的扇区不同,晶体管的切换时间Tcm1,Tcm2,Tcm3分别如表2所示。

Simulink仿真环境下可以方便地利用模块和软件编程扩展进行仿真。根据上述实现方法,构造了如图2所示的Simulink仿真模型。

在模型中使用Repeating Sequence模块作为双向定时计数器,与SVPWM调制波进行比较,其输出作为滞环比较器的输入。Matlab语言编写的S函数则作为比较值的计算与分配单元。

2 仿真与分析

仿真对象:SVPWM与永磁同步电机。通过Matlab仿真得到的波形如图3所示。

3 结语

通过仿真研究,SVPWM矢量控制变频调速系统的结构简单,容易实现数字化。扇区判断正确,占空比对应的时间准确,转矩输出波形较平稳。其逆变器直流电压利用率比用SPWM高,谐波成分小,采用矢量控制技术的电机调速系统动静态性能非常优良。

https://www.360docs.net/doc/0216923224.html,/EDA/V oltage_space_vector_research_and_Matlab_simulation.htm

电压空间矢量资料

电压空间矢量

电气空间矢量PWM 自动1202 熊立波 20121799 什么是电气空间矢量PWM ,以及怎样用于变频器V/F 控制? 空间矢量的定义:交流电动机绕组的电压、电流、磁链等物理量都是随时间变化的,分析时常用时间向量来表示,但如果考虑到他们所在的空间位置,也可以定义为空间矢量。 在图中,A ,B ,C 分别表示在空间静止的电动机定子三相绕组的轴线,它们在空间互差 120,三相定子正弦波相电压0A U 、0B U 、 C U 分别加在三相绕组上。可以定义三个定子 电压空间矢量0A u 、0B u 、0C u ,使它们的方向始终处于各相绕组的轴线上,而大小则随时 间按正弦规律波动,时间相位互相错开的角度也是0 120。 0s A B C u u u u =++ 当定子相电压为三相平衡正弦电压时,三相合成矢量 0s A B C u u u u =++ 1 1 2111224[cos()cos()cos()]333 23 j j m m m j t j t m s t t t U U e U e U e U e γγππωωωωω= +-+-== 合成空间矢量表示的定子电压方程式 s s s s d dt u i R ψ =+ 忽略定子电阻压降,定子合成电压与合成磁链空间矢量的近似关系为

s d dt ψ 或 s s dt u ψ ≈? 三相逆变电路每相上下桥臂开关动作相反,将上桥臂导通而下桥臂关断的状态记为1,反之记为0,则三相逆变电路共对应8种输出电压状态。 PWM 逆变器共有8种工作状态 当 (A S B S C S )=(1 0 0) (A u B u C u )=(2d U 2d U - 2d U -) 242331 22(1)(1) 32 32j j j j d d U U u e e e e ππ γγ = --=-- 224242 [(1cos cos )(sin sin )]323333 3d d j U U ππππ = ---+= 当 (A S B S C S )=(1 1 0) (A u B u C u )=(2d U 2d U 2d U - ) 2423 322(1)(1) 322j j j j d d U U u e e e e ππ γγ=+-=+- 22424[(1cos cos )(sin sin )]323333d j U ππππ = +-+- 322(13)323j d d j U U e π= += 依次类推,可得8个基本空间矢量。 6个有效工作矢量 1 u ~6 u

电压空间矢量

电气空间矢量PWM 自动1202 熊立波 20121799 什么是电气空间矢量PWM ,以及怎样用于变频器V/F 控制? 空间矢量的定义:交流电动机绕组的电压、电流、磁链等物理量都是随时间变化的,分析时常用时间向量来表示,但如果考虑到他们所在的空间位置,也可以定义为空间矢量。 在图中,A ,B ,C 分别表示在空间静止的电动机定子三 相绕组的轴线,它们在空间互差0 120 ,三相定子正弦 波相电压0A U 、0B U 、0C U 分别加在三相绕组上。可以定义三个定子电压空间矢量 A u 、 B u 、 0C u ,使 它们的方向始终处于各相绕组的轴线上,而大小则随时间按正弦规律波动,时间相位互相错开的角度也是 120。 0s A B C u u u u =++ 当定子相电压为三相平衡正弦电压时,三相合成矢量 0s A B C u u u u =++ 112111224[cos()cos()cos()]33323 j j m m m j t j t m s t t t U U e U e U e U e γγππωωωωω=+-+-= = 合成空间矢量表示的定子电压方程式 s s s s d dt u i R ψ =+ 忽略定子电阻压降,定子合成电压与合成磁链空间矢量的近似关系为 s d dt ψ 或 s s dt u ψ ≈? 三相逆变电路每相上下桥臂开关动作相反,将上桥臂导通而下桥臂关断的状态记为1,反之 记为0,则三相逆变电路共对应8种输出电压状态。 PWM 逆变器共有8种工作状态 当 (A S B S C S )=(1 0 0) (A u B u C u )=(2d U 2d U - 2d U -)

空间矢量算法计算

啊一直以来对SVPWM原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。未敢私藏,故公之于众。其中难免有误,请大家指正,谢谢! 此文的讲解是非常清楚,但是还是存在一些错误,本人做了一些修正,为了更好的理解整个推导过程,对部分过程进行分解,并加入加入7段和5段时调制区别。 1 空间电压矢量调制SVPWM 技术 SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。下面将对该算法进行详细分析阐述。 1.1 SVPWM基本原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。逆变电路如图2-8 示。设直流母线侧电压为Udc,逆变器输出的三相相电压为UA、UB、UC,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。假设Um为相电压有效值,f为电源频率,则有: (2-27) 其中,,则三相电压空间矢量相加的合成空间矢量U(t)就可以表示为:(2-28) 可见U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,Um为相电压峰值,且以角频率ω=2πf按逆时针方向匀速旋转的空间矢量,而空间矢量U(t)在三相坐标轴(a,b,c)上的投影就是对称的三相正弦量。 图2-8 逆变电路 由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合时逆变器输出的空间电压矢量,特定义开关函数Sx ( x = a、b、c) 为: (2-30) (Sa、Sb、Sc)的全部可能组合共有八个,包括6个非零矢量Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量 U0(000)、U7(111),下面以其中一种开关组合为例分析,假设Sx ( x=? a、b、c)= (100),此时 (2-30) 求解上述方程可得:Uan=2Ud /3、UbN=-U d/3、UcN=-Ud /3。同理可计算出其它各种组合下的空间电压矢量,列表如下: 表2-1 开关状态与相电压和线电压的对应关系

电压空间矢量研究及Matlab仿真

近年来,电机的空间矢量理论被引入到逆变器及其控制中,形成和发展了空间矢量 PWM(SVPWM)控制思想。其原理就是利用逆变器各桥臂开关控制信号的不同组合,使逆变器输出电压空间矢量的运行轨迹尽可能接近圆形。空间矢量脉宽调制技术,不仅使电机脉动降低,电流波形畸变减小,且与常规正弦脉宽调制(SP-WM)技术相比,直流电压利用率有很大提高,并更易于数字化实现。 1 电压空间矢量调制(SVPWM)算法 SVPWM是以磁链跟踪控制为目标,使逆变器瞬时输出三相脉冲电压合成的空间电压矢量与期望输出三相正弦波电压合成的空间电压矢量相等。对于三相电压型逆变器而言,它有8种工作状态,用矢量表示这8种空间状态,如图1所示。 介绍SVPWM工作原理的相关文献很多,这里不再细述,以下给出算法步骤: (1)判断参考电压矢量Vref所在扇区 引入三个中间变量A,B,C:

则扇区号:S=A+2B+4C。 (2)计算扇区的有效电压空间矢量和零矢量的作用时间Tx,Ty和T0 引入三个中间变量X,Y和Z: 对于不同的扇区,Tx,Ty按表1取值。 饱和判断:Tyout。

计算零电压矢量作用时间:T0=TPWM-Tx-Ty。 (3)开关切换时间分配 先定义空间矢量切换点分别为: 则根据空间矢量所处的扇区不同,晶体管的切换时间Tcm1,Tcm2,Tcm3分别如表2所示。

Simulink仿真环境下可以方便地利用模块和软件编程扩展进行仿真。根据上述实现方法,构造了如图2所示的Simulink仿真模型。

在模型中使用Repeating Sequence模块作为双向定时计数器,与SVPWM调制波进行比较,其输出作为滞环比较器的输入。Matlab语言编写的S函数则作为比较值的计算与分配单元。 2 仿真与分析 仿真对象:SVPWM与永磁同步电机。通过Matlab仿真得到的波形如图3所示。

三维空间矢量原理说明

三维空间矢量原理说明 0 引言 以往有很多关于不同脉宽调制技术的研究,如正弦波PWM 、跟踪型PWM 和空间矢量调制技术等。但这些只局限在αβ二维,而二维调制技术是无法解决三相四线系统中的中线电流问题。随着用户电力技术的发展,应用于三相四线系统中的UPS 和电能质量补偿器将会得到更多的重视。 本文基于中点引出式三桥臂逆变器,提出一种三维空间矢量脉宽调制(3D SVPWM )方法。这种方法不但可以使中点引出式三桥臂逆变器在应用于三相四线系统时能同时补偿三相谐波和中线电流,还具有开关频率低、补偿效果好等优点。 1 三维空间电压矢量的分布 图1所示是一个并联在三相四线系统中的中点引出式三相电压逆变器。 图1所示逆变器其直流侧零线与系统中线相连接。本文所有关于三维空间适量的讨论都将基于这种中点引出式的三桥臂逆变器结构。 图1中,同一桥臂的2个开关的导通与关断是互补的。若用1表示上半桥臂开关导通,-1表示下半桥臂导通,则可定义开关函数为: ?? ?-=下半桥臂导通 上半桥臂导通1 1j S (1) 假定上半桥臂和下半桥臂的直流电压值相等,dc dc2dc1V V V ==, 此时,每个桥臂的输出电压可以表示为: j dc S V =0U (2) 三维αβ0坐标系中的瞬时电压矢量可以利用下式给出的α-β-0变换得到:

????????????????????-- - =???? ??????c b a v v v v v v 212 12 123232 12 1001 32βα (3) 由此,αβ0座标下的瞬时电压矢量可以表示为: ()00312132dc V v n S n S n S ++=ββα α (4) 式中:2/2/c b a S S S S --=α,c b S S S -=β,c b a S S S S ++=0 表1中列出了三维系统中的电压矢量以及经过αβ0变换后在其直角坐标中的参数。 从图2所示的三维视图中可以更清楚地看出电压矢量的分布。其中矢量},,{642V V V 和},,{531V V V 分别处于不同的水平面上,而2个零矢量分别指向零轴的正方向和负方向。图3是三维空间电压矢量在αβ平面上的分布,可以看出它与传统的二维空间电压矢量的分布是一样的。 2 二维和三维电压矢量的比较 二维的αβ变换实际上是对于三维αβ0变换在不考虑零序分量时的一种简化,可以推想二维的电压脉宽调制也是一种对三维调制的简化。根据表1所给的参数和图2、图3, 传统的二维坐标系中的电压矢量分布应该就是三维电压分布的俯

电压空间矢量PWM控制

文章编号:1009-0193(1999)04-0086-05 电压空间矢量(磁链追踪)PWM控制 研究与仿真 翁颖钧,吴守箴 (上海铁道大学电气工程系,上海200331) 摘要:为了提高电机的功率因数,降低开关损耗,基于气隙磁通控制原理,以电压矢量组合来逼近圆形磁链轨迹,而电压矢量的选择对应不同开关模式,因此构成电压矢量控制PWM逆变器。利用C语言仿真,该法输出电压较一般SPWM 逆变器提高15%,每次状态切换只涉及一个元件,开关损耗降低,且模型简单,适用于各种PWM调速装置。 关键词:电机;空间矢量;PWM控制 中图分类号:TM301.2 文献标识码:A 1 基本原理 由电机学可知,在由三相对称正弦电压供电时,电机的定子磁链的幅值是恒定的,并以恒速ω 1 旋转。磁链矢量顶端运动轨迹形成圆形的空间旋转磁场(简称磁链圆),我们可以用定子磁链的矢量式来表述: 式中,λ m 为的幅值,ω 1 为旋转角速度。当转速不是很低时,定子电阻压降较 小,可以忽略不计,则定子电压与磁链的近似关系可表示成:

上式表明,电压矢量V 1的大小等于λ 1 的变化率,而其方向则与λ 1 的运动方向一 致。由式(1),(2) 可得: 由(3)式可见,当磁链幅值λ m 在运动过程中一定时,的大小与ω 1 (或供电电压 频率f 1 )成正比,其方向为磁链圆轨迹的切线方向。当磁链矢量在空间旋转一周时,电压空间矢量也连续地按磁链圆的切线方向运动经过2π弧度,其轨迹与磁链圆是重合的。这时,我们就把气隙旋转磁场的轨迹与电压空间矢量联系起来。从三相逆变器—异步电机原理图(见图1)可知,为了使电动机对称工作,必须三 相同时供电,从逆变器的拓扑结构以及式(2)来看,每个输出电势V ao ,V bo ,V co 都具有二个值,例如±V d /2,如此线性组合即可得到矢量23=8种电压类型。图(2) 表示了电压空间矢量的放射状分布。每个矢量标注了 0(000)~ 7 (111),0表 示同一桥臂的二个晶闸管的下面一个导通,1表示上侧的导通,k表示对应二进制数的十进制数。一旦开关方式确定,那么对应的k也就唯一确定。由式(4)可知: λ 为磁链矢量的初始值(4) 图1 三相逆变器—异步电动机原理图图2 电压空间矢量的分布 利用逆变器的这8种电压矢量的线性组合,就可获得更多的与V 1~V 8 相位不同的 新的电压空间矢量,最终构成一组等幅不同相的电压空间矢量,由式(4)知最终迭加形成尽可能逼近圆形旋转磁场的磁链圆,这就形成了电压空间矢量控制的PWM逆变器。由于它间接控制了电机的旋转磁场,所以也可称为磁链追踪控制的PWM逆变器。

空间矢量脉宽调制(SVPWM)的开环

采用空间矢量脉宽调制(SVPWM )的开环 VVVF 调速系统的综合实训 一、实验目的 1、理解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 2、熟悉MCKV 电机控制系统的CPU 模块、IPM 模块和机组各部分硬件模块,并确认工作正常。 3、了解SVPWM 变频器运行参数和特性。 二、实验内容: 1、熟悉CCS 编程环境,并在CCS 下编译、下载、运行DSP 软件工程。 2、观察并记录定子磁链周期和频率,并分析他们之间的关系。 3、观测并记录启动时电机定子电流和电机速度波形)(t f i v =与)(t f n =; 三、实验预习要求 1、阅读并掌握三相交流异步电机VVVF 调速系统工作原理。 2、了解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 3、阅读本次实验指导书和实验程序,写好实验预习报告。 4、在MATLAB/Simulinlk 环境中搭好仿真模型,结合本程序LEVEL1功能框图,完成电流速度双闭环系统交流异步电机矢量控制仿真。 四、实验原理 当用三相平衡的正弦电压向交流电动机供电时,电动机的定子磁链空间矢量幅值恒定,并以恒速旋转,磁链矢量的运动轨迹形成圆形的空间旋转矢量(磁链圆)。SVPWM 就是着眼于使形成的磁链轨迹跟踪由理想三相平衡正弦波电压源供电时所形成的基准磁链圆,使逆变电路能向交流电动机提供可变频电源,实现交流电动机的变频调速。 现在以实验系统中用的电压源型逆变器为例说明SVPWM 的工作原理。三相逆变器由直流电源和6个开关元件( MOSFET) 组成。图1是电压源型逆变器的示意图。 图1 电压源型逆变器示意图

对于每个桥臂而言,它的上下开关元件不能同时打开,否则会因短路而烧毁元器件。其中A 、B 、C 代表3 个桥臂的开关状态,当上桥臂开关元件为开而下桥臂开关元件为关时定义其状态为1 ,当下桥臂开关元件为开而上桥臂开关元件为关时定义其状态为0。这样A 、 B 、 C 有000 、001 、010 、011 、100 、101 、110 、111共 8种状态。逆变器每种开关状态对应不同的电压矢量,根据相位角不同分别命名为U 0(000)、U 1(100)、U 2(110)、U 3(010)、U 4(011)、U 5(001)、U 6(101)、U 7(111)如图2所示。 图2 基本电压空间矢量 其中U 0(000)和U 7(111)称为零矢量,位于坐标的原点,其他的称为非零矢量,它们幅值相等,相邻的矢量之间相隔60°。如果按照一定顺序选择这六个非零矢量的电压空间矢量进行输出,会形成正六边形的定子磁链,距离要求的圆形磁链还有很大差距,只有选择更多的非零矢量才会使磁链更接近圆形。 SVPWM 的关键在于用8个基本电压空间矢量的不同时间组合来逼近所给定的参考空间电压矢量。在图3中对于给定的输出电压U ,用它所在扇区的一对相邻基本电压x U 和60 x U 来等效。此外当逆变器单独输出零矢量时,电动机的定子磁链矢量是不动的。根据这个特点,可以在载波周期内插入零矢量,调整角频率,从而达到变频目的。 图3 电压空间的线性组合

电压空间矢量PWM仿真实现

滨江学院 题目电压空间矢量PWM仿真实现 院系自动控制系 专业电气工程与自动化 姓名 学号 指导教师 二0一三年十月三十日

目录 一、引言 (3) 二、三相逆变器电路的控制原理 (3) 三、空间电压矢量PWM 的算法 (6) 四、子系统结构图 (8) 五、系统总图 (8) 六、仿真结果 (9)

电压空间矢量PWM 仿真实现 一、引言 空间电压矢量PWM,技术源于交流电机的变频调速驱动,着眼于如何控制三相逆变器的开关动作来改变施加在电机上的端电压,使电机内部形成准圆形旋转磁场。以后的发展使得这种PWM 控制脱离了交流电机磁链轨迹控制的原意,形成了电力电子技术中一类PWM 控制方式。svpwm 技术由于其电压利用率高及控制简单u 数字化实现方便等优点而得到了广泛应用。MATLAB 的SIMULINK 工具提供了良好的仿真环境8通过模块搭建就能方便地实现系 统的动态仿真。 SVPWM 着眼于使电机获得幅值恒定的圆形磁场,当电机通以三相对称正弦电压时,交流电机内产生圆形磁链,SVPWM 以此圆形磁链为基准,通过逆变器功率期间的不同开关模式产生有效矢量来逼近基准圆,在此过程中,逆变器的开关模式作适当的切换,从而形成PWM 调制波。 三、三相逆变器电路的控制原理 1、三相逆变器电路的主结构图 U dc S 1 S 4 D 1 D 4 S 3D 3S 5 D 5 S 6D 6 D 2 S 2 u a u b u c i a i b i c FSPM 电机

2、电压开关电压空间矢量图 三、空间电压矢量PWM 的算法 1、扇区选择 Ua 、Ub 和Uc 的投影值为: 利用上式做如下的判断: 由此可以计算N 为: N=A+2B+4C 2、基本电压矢量作用时间 令 αβ (100) (110) (010)(011)(001)(101) θt ωI II III IV V VI (000)(111)T 1/T s T 2/T s 1U 2U 3 U 4U 5U 6U 0U 7U ???? ???--=-==2 /)3(2/)3(βαβαβU U U U U U U U c b a ?? ? ??==? >==?>==?>; 0;10:; 0;10:;0;10:C else C then U if B else B then U if A else A then U if c b a s dc T U V X 22β= )3(2βαV V U T Y dc s += )3(2βαV V U T Z dc s -=

相关文档
最新文档