液压缸结构设计

液压缸结构设计
液压缸结构设计

摘要

液压缸是液压系统中最广泛应用的一种液压执行元件。液压缸是将液压泵输出的压力能转换为机械能的执行元件,它主要是用来输出直线运动。

液压传动和液力传动均是以液体作为工作介质来进行能量传递的传动方式。液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。由于液压传动有许多突出的优点,因此,它被广泛地应用于机械制造、工程建筑、石油化工、交通运输、军事器械、矿山冶金、轻工、农机、渔业、林业等各方面。同时,也被应用到航天航空、海洋开发、核能工程和地震预测等各个工程技术领域。

本文对液压缸参数化设计方法进行深入系统的研究,建立液压缸CAD原型软件系统,主要研究成果如下: 1.系统分析液压缸工作原理的基础上,归纳了液压缸的工作形式及主要安装形式。在分析液压缸主要部件结构特点的基础上,建立了基于装配的面向对象液压缸产品设计模型; 2.研究面向制造的产品特征建模技术,基于产品建模方法和面向对象技术,建立了基于特征的液压缸产品模型。研究了适用于液压缸参数化设计的标准件库建模方法及数据库建模技术,并据此建立了液压缸参数化数据库模型及基于装配的液压缸参数化模型; 3.建立液压缸参数化CAD系统模型,基于商用CAD软件,开发了液压缸参数化CAD软件原型系统。

关键词:液压缸;液压泵;液压传动;液力传动

Hydraulic cylinders are one of the hydraulic action components, which are widely used to transfer hydraulic power produced by pump to mechanical power with the manner of straight movement.

Hydraulic transmission hydraulic transmission and are based on the liquid as energy transfer medium to the drive. Mainly the use of hydraulic fluid to transmit pressure to energy; and hydraulic transmission is mainly used to transfer the kinetic energy of liquid energy. As a result of hydraulic many prominent advantages, therefore, it is widely used in machine building, construction, petrochemical, transportation, military equipment, mine metallurgy, light industry, agricultural, fisheries, forestry and so on. At the same time, also be applied to aerospace, marine development, nuclear engineering and earthquake prediction in various fields of engineering and technology.

In this paper, the parameters of the hydraulic cylinder design of the system to conduct

in-depth research, the establishment of hydraulic cylinder CAD prototype software system, the main research results are as follows: 1. The working principle of hydraulic cylinder systems analysis on the basis of summed up the work of the form of hydraulic cylinder and the major form of installation. Analysis of hydraulic cylinders in the structural characteristics of the main components on the basis of the assembly based on object-oriented model of product design of hydraulic cylinder; 2. Research-oriented products feature modeling, product modeling based on object-oriented methods and technology, based on the characteristics of the hydraulic cylinder product model. Studied for parametric design of hydraulic cylinder of standard parts library and database modeling modeling techniques, and accordingly established a database of hydraulic cylinder model parameters and the hydraulic cylinder assembly based on the model parameters; 3. To establish fluid pressure cylinder of CAD system model parameters, based on the commercial CAD software, has developed a hydraulic cylinder Parametric CAD software prototype system.

Key words:Hydraulic cylinder; hydraulic pump; hydraulic transmission; hydraulic transmission

液压传动元件以其功率大,安装布置简便,易于受控,操作方便舒适,故障率低,便于维护等优点,非常适于结构形态多变,工作条件恶劣的农业机械的应用。液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。几十年来,液压技术不仅在农机,机床,工程机械,建筑机械,航天航空设备等得到越来越多的应用,而且形成了庞大的市场。全世界液压元件市场销售额已超过二百亿美元,我国液压行业产值已近80亿人民币而液压油缸是液压传动中将液体的压力能转换成机械能,实现往复直线运动或往复摆动的执行元件,被广泛应用于各种液压机械设备中。液压油缸的设计合理性、制造质量,直接影响整个液压机械设备的的使用状态,乃至整个生产系统的正常运行和生产的安全性。所以,液压油缸的合理化设计具有重要的现实意义。

目录

摘要...................................................................................................................... I V Abstract ......................................................................................................................... V 引言...................................................................................................................... V I 目录.................................................................................................................... VII 第1章液压传动的概述. (1)

1.1简介 (1)

1.2应用领域 (1)

1.3传动原理 (1)

1.4主要组成 (1)

1.4.1动力元件(油泵) (1)

1.4.2执行元件(油缸、液压马达) (2)

1.4.3控制元件 (2)

1.4.4辅助元件 (2)

1.4.5工作介质 (2)

1.5表达符号 (2)

1.6现状及其展望 (3)

第2章液压缸的计算依据 (4)

2.1液压缸的分类 (4)

2.2主要参数及常用计算公式 (6)

2.2.1压力 (6)

2.2.2主要尺寸及面积比 (6)

2.2.3液压缸活塞的理论推理和拉力 (8)

2.2.4效率 (9)

2.2.5液压缸负载率 (10)

2.2.6活塞瞬间线速度 (10)

2.2.7活塞作用力F (11)

2.2.8活塞加速度a (12)

2.2.9活塞加(减)速时间t a(t d) (12)

2.2.10活塞加(减)速行程S a(S d) (12)

2.2.11液压缸流量 (13)

2.2.12液压缸功率P (13)

第3章液压缸的典型结构 (14)

3.1端盖与缸筒连接方式 (14)

3.1.1拉杆型液压缸 (14)

3.1.3法兰型液压缸 (14)

3.1.4安装方式 (14)

3.2专用液压缸典型结构 (16)

3.2.1特殊结构液压缸 (16)

3.2.2电液伺服液压缸 (17)

3.2.3特殊工质液压缸 (18)

3.2.4组合液压缸 (18)

3.2.5多级液压缸 (18)

第4章液压缸主要零部件设计 (20)

4.1缸筒的设计计算 (20)

4.1.1主要技术要求 (20)

4.1.2缸筒结构 (20)

4.1.4缸筒厚度计算 (23)

4.1.5缸筒厚度验算 (24)

4.1.6缸筒底部厚度计算 (24)

4.1.8缸筒材料 (25)

4.1.9缸筒内壁表面加工公差和粗糙度ISO4394 (26)

4.2活塞件的设计计算 (26)

4.2.1活塞结构型式 (26)

4.2.2密封件沟槽尺寸,公差及粗糙度 (26)

4.2.3材料 (26)

4.2.4活塞尺寸及公差 (27)

4.3活塞杆的设计计算 (27)

4.3.1结构 (27)

4.3.2活塞杆直径计算 (28)

4.4导向环的设计计算 (31)

4.4.1导向环主要优点 (31)

4.4.2导向环的型式 (31)

4.4.3导向环的尺寸不同 (32)

4.5活塞杆导向套 (32)

4.6中隔圈的设计计算(限位圈) (33)

4.7缓冲机构设计计算 (34)

4.7.1一般技术要求 (34)

4.7.2结构型式 (34)

4.7.4调整缓冲机构尺寸 (38)

4.8辅件 (40)

第5章设计主要尺寸图纸 (44)

结论 (45)

参考文献 (46)

致谢 (47)

第一章液压传动的概述

1.1简介

液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。

液压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。

1.2应用领域

液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。

1.3传动原理

液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。

在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。

1.4主要组成

液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。

1.4.1动力元件(油泵)

它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。

1.4.2执行元件(油缸、液压马达)

它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。

1.4.3控制元件

包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。

1.4.4辅助元件

除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。

1.4.5工作介质

工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。

1.5表达符号

液压缸的主要零件材料结构和技术要求

3.5.4确定液压泵的参数 1.确定液压泵的最大工作压力 1P p p p ≥+?∑ Pa (3-5) 式中1p ——液压缸的最大工作压力,根据 1122w m F F p A p A η==- (3-6) 可以求出211 0.270F A p MPa A +== p ?∑——从液压泵出口到液压缸入口总的管路损失。初算可按经验数据选取:管路简单、流速不大的取~;管路复杂,并且进油口有调速阀的,取~ MPa 。这里取。 即700.570.5P p MPa ≥+= 2.确定液压泵的流量P Q max P Q KQ ≥ 3/m s (3-7) K ——系统泄漏系数,一般取~,这里取 max Q ——液压缸的最大流量,对于采用节流调速方式的系统,还需要加上溢流阀的最小溢流量,一般取430.510m /s -? 在前面已经初步选定车辆被顶起的速度变化量v ?0.16m /s =,那么设定车辆被顶起的最大速度0.16m/s y v =,则活塞的运动速度: )2cos y v v l θαγα -+= (3-8) 00.22=0.04m/s y v v =(这是在车辆刚刚起升状态时,5α=o ) 所以4443max 1.2(6.28100.510)8.1410/P Q KQ m s ---≥=??+?=? 3.选择液压泵的规格

根据以上求得的液压泵最大工作压力和流量,依据系统中初步选定的液压泵,从手册中选择相应的液压泵产品。为了使液压泵相比于最大工作压力有一定的额外压力储备,所选泵的额定压力一般要比最大工作压力大25~60%。 查找液压缸设计手册P37-135选择CB-A F 型齿轮泵,其参数如下表 4.确定液压泵的驱动功率 在工作中,如果液压泵的压力和流量相对比较恒定,则 310P P P p Q P kW η= (3-9) 其中P η——液压泵的总效率,参考下表选择P η= 则4 3315.88.141018.410100.7 P P P p Q P kW η-??===?,据此可选择合适的电机型号。 3.5.5管道尺寸的确定 钢管能够承受较高的压力,并且价格低廉,有助于减少设备成本,但安装时需要弯曲半径不能太小,一般用于装配条件比较好的地方。这里采用钢管连接。 管道内径计算 d /s = m (3-10) 式中 Q ——通过管道内的流量3m /s v ——管道内允许流速 m /s ,推荐取值如下: 允许流速推荐值 取v 吸0.8m/s =,v 压4m /s =, v 回2m /s.=分别应用上述公式得 d 吸20.2mm =,d 压10.7mm =,d 回15.2mm =。根据钢管内径按标准系列选取相应的直径钢 管。经过圆整后分别选取d 吸20mm =,d 压10.7mm =, d 回15mm =。对应钢管壁厚 16.mm δ=。 3.5.6本系统油箱容量的确定 在确定液压系统油箱尺寸时,首先要满足系统供油的需求,然后保证执行元件即使在全部排油工况时,油箱也不能溢出,与此同时应满足系统处于最大可能充满油工况时,油箱的油位也不能低于最低限度。初设计时,按经验公式 4V P V aQ Q ==(3m ) (3-11)

液压缸技术标准

液压缸维修技术标准 编 张业建、赵春涛 制: 审 樊建成 核: 批 魏成文 准: 上海宝钢集团设备部 二OO八年八月

目录 1 总则 2 引用标准 3 各部分常用材料及技术要求3.1 缸筒的材料和技术要求3.2 活塞的材料和技术要求3.3 活塞杆的材料和技术要求 3.4 端盖的材料和技术要求 4 液压缸的检查 4.1 缸筒内表面 4.2 活塞杆的滑动面 4.3 密封 4.4 活塞杆导向套的内表面4.5 活塞的表面 4.6 其它

5 液压缸的装配 6 液压缸实验 附表1 检查项目和质量分等(摘录 JB/JQ20301-88) (16) 附表2 螺栓和螺母最大紧固力矩(仅供参考) (17) 附表3 螺纹的传动力和拧紧力矩................................ (18) 液压缸维修技术标准

1 总则 1.1 适用范围本维修技术标准 规定了液压缸各组成部分的常 用材料和技术要求、液压缸的 检查、装配以及试验,适用于 宝钢股份公司宝钢分公司范围 内液压缸的维修,维修单位按 本标准执行; 1.2 密封选择密封件应选择宝 钢股份公司指定生产厂家的标 准产品,特殊情况需得到宝钢 相关技术部门审核同意; 1.3 螺纹防松液压缸的螺纹连 接在安装时应涂上宝钢股份公 司指定生产厂家的螺纹紧固 胶; 1.4 液压缸防腐修理好的液压 缸,若在仓库或现场存放时间 超过半年时间,需采用适当的 防腐措施;

1.5 螺栓选择 10.9级(包括 10.9级)以下的高强度螺栓可 以采用国内著名生产厂的产 品,10.9级(不包括10.9级)以上的高强度螺栓应采用国外 著名生产厂的产品; 1.6 本标准的解释权属宝钢股份 公司宝钢分公司设备部。

液压缸零部件技术要求

(1) 缸体采用H8、H9配合。表面粗糙并:当活塞采用橡胶密封圈密封时,Ra为~μm,当活塞用活塞环密封时, Ra为~μm。 (2) 缸体内径D的圆度公差值可按9、10或11级精度选取,圆柱度公差值可按8能精度选取。 (3) 缸体端面T的垂直度公差值可按7级精度选取。 (4) 当缸体与缸头采用螺纹联接时,螺纹应取为6级精度的米制螺纹。 (5) 当缸体带有耳环或销轴时,孔径D1或轴径d2的中心线对缸体内孔轴线的垂直度公差应按9级精度选取。 (6) 为了防止腐蚀和提高寿命,缸体内应镀以厚度为30~40μm的铬层,镀后进行珩磨或抛光。 (7)缸筒的材料:一般要求有足够的强度和冲击韧性,对焊接的缸筒还要求有良好的焊接性能。根据液压缸的参数、用途和毛坯的来源等可选用以下各种材料:25、S35、S45、2CrMo、35CrMo、38CrMoAl、 ZG200-400、ZG230-450、1Cr18Ni9、ZL105、LF3、LF6、ZQA19-4、等. 二、缸体端部联接型式 1.对于固定机械,若尺寸与质量没有特殊要求时,建议采用法兰联接或拉杆联接。 2.对于活动机械,若尺寸和质量有特殊要求时,推荐采用外螺纹联接或外半环联接。 三、缸盖

缸盖的材料 液压缸缸盖的常用材料为35、45号锻钢或ZG35、ZG45铸钢或HT200、HT300、HT350铸铁等材料。 缸盖的技术要求 1)直径D、D2、D3的圆柱度公差应按9、10、11级精度选取; 2)D2、D3与d同轴度公差值为; 3)端面A、B与直径d轴心线的垂直度公差值按7级精度选取; 4)导向孔的表面粗糙度Ra=μm 四、活塞的材料 液压缸活塞常用的材料为耐磨铸铁、灰铸铁(HT300、HT350)、钢(有的在外径上套有尼龙66、尼龙1010或夹布酚醛塑料的耐磨环)及铝合金等。 活塞的技术要求 1)活塞外径D对内径D1的径向跳动公差值,按7、8级精度选取。 2)端面T对内孔D1轴线的垂直度公差值,应按7级精度选取。 3)外径D的圆柱度公差值,按9、10或11级精度选取。 五、活塞杆 端部结构

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

液压缸零部件应用技术要求

一、缸体的技术要求 (1) 缸体采用H8、H9配合。表面粗糙并:当活塞采用橡胶密封圈密封时,Ra为0.1~0.4μm,当活塞用活塞环密封时, Ra为0.2~0.4μm。 (2) 缸体内径D的圆度公差值可按9、10或11级精度选取,圆柱度公差值可按8能精度选取。 (3) 缸体端面T的垂直度公差值可按7级精度选取。 (4) 当缸体与缸头采用螺纹联接时,螺纹应取为6级精度的米制螺纹。 (5) 当缸体带有耳环或销轴时,孔径D1或轴径d2的中心线对缸体内孔轴线的垂直度公差应按9级精度选取。 (6) 为了防止腐蚀和提高寿命,缸体内应镀以厚度为30~40μm的铬层,镀后进行珩磨或抛光。 (7)缸筒的材料:一般要求有足够的强度和冲击韧性,对焊接的缸筒还要求有良好的焊接性能。根据液压缸的参数、用途和毛坯的来源等可选用以下各种材料:25、S35、S45、2CrMo、35CrMo、38CrMoAl、 ZG200-400、ZG230-450、1Cr18Ni9、ZL105、LF3、LF6、ZQA19-4、ZQA10-3-1.5等.

二、缸体端部联接型式 1.对于固定机械,若尺寸与质量没有特殊要求时,建议采用法兰联接或拉杆联接。 2.对于活动机械,若尺寸和质量有特殊要求时,推荐采用外螺纹联接或外半环联接。 三、缸盖 缸盖的材料 液压缸缸盖的常用材料为35、45号锻钢或ZG35、ZG45铸钢或HT200、HT300、HT350铸铁等材料。 缸盖的技术要求 1)直径D、D2、D3的圆柱度公差应按9、10、11级精度选取; 2)D2、D3与d同轴度公差值为0.03mm; 3)端面A、B与直径d轴心线的垂直度公差值按7级精度选取; 4)导向孔的表面粗糙度Ra=1.25μm 四、活塞的材料 液压缸活塞常用的材料为耐磨铸铁、灰铸铁(HT300、HT350)、钢(有的在外径上套有尼龙66、尼龙1010或夹布酚醛塑料的耐磨环)及铝合金等。 活塞的技术要求 1)活塞外径D对内径D1的径向跳动公差值,按7、8级精度选取。 2)端面T对内孔D1轴线的垂直度公差值,应按7级精度选取。 3)外径D的圆柱度公差值,按9、10或11级精度选取。

JBT10205液压缸技术条件

液压缸技术条件 (GJB/T10205-2000) 前言 本标准修改采用《JB/T10205-2000 液压缸技术条件》 本标准归口单位: 本标准起草单位: 本标准主要起草人: 本标准批准人: 液压缸技术条件 1 范围 本标准规定了单、双作用液压缸技术条件。 本标准适用于以液压油或性能相当的其它矿物油为工作介质的双作用或单作用液压缸。 2规范性引用文件 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均 为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2346—1988 液压气动系统及元件公称压力系列 GB/T 2348—1993 液压气动系统及元件缸内径及活塞杆外径

GB/T 2350—1980 液压气动系统及元件—活塞杆螺纹型式和尺寸系列 GB/T 2828—1987 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 2878—1993 液压元件螺纹连接油口型式和尺寸 GB/T 2879—1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差 GB/T 2880—1981 液压缸活塞和活塞杆窄断面动密封沟槽尺寸系列和公差 GB/T 6577—1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差 GB/T 6578—1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差 GB/T 7935—1987 液压元件通用技术条件 GB/T 15622—1995 液压缸试验方法 GB/T 17446—1998 流体传动系统及元件术语 JB/T 7858—1995 液压元件清洁度评定方法及液压元件清洁度指标 3 定义 GB/T 17446 中所列定义及下列定义适用于本标准。 公称压力 液压缸工作压力的名义值。即在规定条件下连续运行,并能保证设计寿命的工作压力。 最低起动压力 使液压缸起动的最低压力。 理论出力 作用在活塞或柱塞有效面积上的力,即油液压力和活塞或柱塞有效面积的乘积。 实际出力 液压缸实际输出的推(或拉)力。 负载效率 液压缸的实际出力和理论出力的百分比。 4 技术要求 一般要求 4. 1. 1 公称压力系列应符合GB/T 2346 的规定。 4. 1. 2 缸内径及活塞杆(柱塞杆)外径系列应符合GB/T 2348 的规定。 4. 1. 3 油口连接螺纹尺寸应符合GB/T 2878 的规定,活塞杆螺纹应符合GB/T 2350 的规定。 4. 1. 4 密封应符合GB/T 2879、GB/T 2880、GB/T 6577、GB/T 6578 的规定。 4. 1. 5 其它方面应符合GB/T 7935—1987 中~ 的规定。 4. 1. 6 有特殊要求的产品,由用户和制造厂商定。 4. 2 使用性能 4. 2. 1 最低起动压力 4. 2. 1. 1 双作用液压缸 双作用液压缸的最低起动压力不得大于表1 的规定。 表1 Mpa 4. 2. 1. 2 单作用液压缸 a) 活塞式单作用液压缸的最低起动压力不得大于表2 的规定。 表2 MP b) 柱塞式单作用液压缸的最低起动压力不得大于表3 的规定。 表3

液压缸计算公式

液压缸计算公式 1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: 4,F4== D,3.14,,p F:负载力 (N) 2A:无杆腔面积 () mm P:供油压力 (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算 π×,??ηδσψμ 1)当δ/D?0.08时 pDmax,,(mm) 02,p 2)当δ/D=0.08~0.3时 pDmax,,(mm) 02.3,-3ppmax 3)当δ/D?0.3时 ,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,, ,b,, pn δ:缸筒壁厚(mm) ,:缸筒材料强度要求的最小值(mm) 0 :缸筒内最高工作压力(MPa) pmax :缸筒材料的许用应力(MPa) ,p :缸筒材料的抗拉强度(MPa) ,b :缸筒材料屈服点(MPa) ,s

n:安全系数 3 缸筒壁厚验算 22,(D,D)s1(MPa) PN,0.352D1 D1P,2.3,lg rLsD PN:额定压力 :缸筒发生完全塑性变形的压力(MPa) PrL :缸筒耐压试验压力(MPa) Pr E:缸筒材料弹性模量(MPa) :缸筒材料泊松比 =0.3 , 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免 塑性变形的发生,即: ,,(MPa) PN,0.35~0.42PrL 4 缸筒径向变形量 22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压力 D1PE,2.3,lg(MPa) bD 6 缸筒底部厚度 Pmax,(mm) ,0.433D12,P :计算厚度处直径(mm) D2 7 缸筒头部法兰厚度 4Fbh,(mm) ,(r,d),aLP F:法兰在缸筒最大内压下所承受轴向力(N) b:连接螺钉孔的中心到法兰内圆的距离(mm) :法兰外圆的半径(mm) ra

油缸装配工艺规范

xxxxx有限公司 工艺规范 编号:xxxxxx 名称:液压油缸装配工艺规范(通用) 受控状态: 有效性: 持有部门: 日期:

一、准备 1、配套:按装配图上的“零件明细表”领取合格的零件成品、密封件标件等。未经检查合格的零配件不得进入装配。 2、清理: 检查并最终清除所有机加工零件、标准件上的飞边、毛刺、锈迹。清除时,零件不能有损伤,同时复查各零件外观是否合格; 3、清洁: A:用压缩空气吹净工作台及待装配零件各部位的异物,并用毛巾擦拭干净。要注意清除缸筒、沟槽、以及油口的铁屑、焊渣等细小异物; B:清洗后要用压缩空气将零件吹干; D:所有待装配的零件清理、清洁后都要放置在装配点的干净工位器具上; E:清理、清洗所有装配工具、工装。 4、零件检验 装配钳工做好自检工作,再向检验员提请检查。装配检验员必须按上述要求进行巡检和完工检查。 二、组装 1、组装活塞杆: A:活塞杆小端为卡键式:将活塞杆小端装上O型圈,然后装配活塞组件,再按图纸要求装轴用卡键、卡键帽、轴用挡圈及其它零件。整体焊接式活塞 杆,须先装导向套组件,再装活塞组件。 B:活塞杆小端为螺纹式:将活塞组件旋入活塞杆上拧紧到位,注意不能损伤O 形圈,然后装锁紧螺母压紧(装配前清除紧定螺钉孔的油脂),装钢球、紧定螺钉(装配前涂紧固胶)。整体焊接式活塞杆,须先装导向套组件,再装活塞组件。C:活塞杆杆端为叉头时,最后装叉头。 2、缸体组装: A:缸体为卡键式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、孔用卡键、挡环、轴用挡圈及其它零件(注意装配导向套时若O型圈过油口,必须用堵塞堵住油口以免损坏密封件)。 B:缸体为法兰式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、弹

液压缸技术标准

攀钢液压中心 二O一0年一月 目录 1、总则 2、引用标准 3、各部分常用材料及技术要求 3.1、缸筒的材料和技术要求 3.2、活塞的材料和技术要求 3.3、活塞杆的材料和技术要求 3.4、端盖的材料和技术要求 4、液压缸维修工艺流程 5、液压缸的检查 5.1、缸筒内表面 5.2、活塞杆的滑动面 5.3、密封

5.4、活塞杆导向套的内表面 5.5、活塞的表面 5.6、其它 6、液压缸的装配 7、液压缸试验 附表1:检查项目和质量分等(摘录JB/T10205-2000) 附表2:液压缸、气缸铭牌编号 附表3:螺栓和螺母最大紧固力矩(仅供参考) 附表4:螺纹的传动力和拧紧力矩 液压缸维修技术标准 1、总则 1.1 适用范围本维修技术标准规定了液压缸各组成部分的常用材料和技术要求、液压缸的检查、装配以及试验,适用于攀钢液压中心范围内液压缸的维修,维修用户单位按本标准执行。

1.2 密封选择密封件应选择攀钢液压中心指定生产厂家的标准产品,特殊情况需得到攀钢相关技术部门审核同意。 1.3 螺纹防松液压缸的螺纹连接在安装时应采用攀钢液压中心联接螺纹的防松结构型式,不能从结构上采取防松措施的,应涂上攀钢液压中心指定的螺纹紧固胶。 1.4 液压缸防腐修理好的液压缸,若在仓库或现场存放时间超过3个月时间,需采用适当的防腐措施。 1.5 螺栓选择一般采用8.8级、10.9级、1 2.9级的高强度螺栓(钉),应采用国内著名生产厂的产品。 1.6 气缸维修标准参照本标准执行。 1.7 本标准的解释权属攀钢液压中心。 2、引用标准 液压缸的维修应执行下列国家标准,允许采用要求更高的标准。

液压缸尺寸计算

液压缸尺寸计算 The following text is amended on 12 November 2020.

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷F F=59036N(活塞杆在抬腿过程中始终受压) 2、惯性载荷F F=0(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载荷) 3、密封阻力F F=(1?F F)F,其中F是作用于活塞上的载 荷,且F=F F ,F F是外载荷,F F=F F+F F,其中F F是 F F 液压缸的机械效率,取F F=0.95 综上可得:外载荷F F=59036N,密封阻力F F=2952N,总 载荷F=61988N。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为F=12MPa1(由于 总载荷为61988N大于50000N,故根据手册选取工作压力 为12MPa) 2、选择执行元件液压缸的背压力为F2=1MPa(由于回油路 带有调速阀,且回油路的不太复杂,故根据手册选取被压 压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: F=F1F1?F2F2 F1----------液压缸工作腔压力(Pa)

F 2----------液压缸回油腔压力(Pa ) F 1----------无杆腔活塞有效作用面积,F 1= πD 24,D 为活塞直径(m ) F 2----------有杆腔活塞有效作用面积,F 2= π4(D 2?d 2),d 为活塞杆直径 (m ) 选取d/D=(由于工作压力为12MPa 大于5MPa ,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm , d=60mm 。 校核活塞杆的强度,其中活塞杆的材料为45钢,故[σ]=100MPa。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩 强度即可。σ= F 14πd 2=21.9MPa<[σ]=100MPa,故满足强度要求。 即d=60mm ,则D=90mm 。 由此计算得工作压力为: F 1=10.3MPa 根据所选取的活塞直径D=90mm ,可根据手册选的液压缸的外径为 108mm ,即可得液压缸壁厚为δ =9mm。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故[σ]= 100MPa。 由于该缸处于低压系统,故先按薄壁筒计算,σ=F F F 2δ,其中工作压 力P =F =12MPa ≤16MPa 1,可取F F =1.5F 1,则σ=90MPa<[σ]= 100MPa,故满足强度要求。 又由于D /δ=10,故可将该缸筒视为厚壁,则δ的校核应按下面公式 进行。

液压缸装配出厂试验规范

工程液压缸装配 试验出厂工艺规范 一、设备及工量具、装配工装: 1、粗、精洗工作台;外滑环加热装置;无水空压机;烘干机等。 2、各引进套、装配器、整形器等装配工装。 3、各类清洗工具、去毛刺工具、砂纸、油石、抛光膏(粉)、面粉等。 二、准备 1、配套:按装配图上的“零件明细表”领取合格的零件成品、密封件标件等。未经检查合格的零配件不得进入装配。 2、清理: A:检查并最终清除所有机加工零件、标准件、塑料件、橡胶件飞边、毛刺、锈迹。活塞杆应擦拭干净并检查是否有掉铬、碰伤现象,缸筒油口倒角及毛刺应特别注意。清除时,零件不能有损伤,同时复查各零件外观是否合格; B:密封件应小心拆除保护装置; 3、清洁: A:清洗前用压缩空气吹净工作台及待装配零件各部位的异物,再用煤油(密封件不用燃油清洗)或清洗剂清洗干净。要注意缸筒内孔、缸头各内孔、活塞、导向套各油槽的细小异物;有螺纹的零件应用和好的面团进行粘连去除污物。B:清洗后要用压缩空气将零件吹干或烘干; C:采用干式装配的零件进行干燥处理; D:所有待装配的零件清洗、清理后都要放置在装配点的干净工位器具上; E:清理、清洗所有装配工具、工装。 4、要求: A:部装前、自检时严禁带线手套、帆布手套;部装中允许带绵质薄手套。 B:所有零部件必须先行自检,然后通知检验进行检查,合格后方可进行下一步组装。 5、零件检验 装配钳工做好自检工作,再向检验员提请检查。装配检验员必须按上述要求进行巡检和完工检查。 三、组装 1、组装活塞:分别装配活塞密封组件和支承环;活塞密封(材料为填充PTFE

必须在50°C~60°C的油温中浸泡后才可装配)装配后必须进行整形。活塞为螺纹式时,将0形圈装入内台阶孔的O形圈槽内。 2、组装导向套: 分别装配轴用组合密封、Y型密封圈、防尘圈(或支承环)和O型圈,组装导向套必须采用干式装配。 3、组装活塞杆: A:活塞杆小端为卡键式:将活塞杆小端装上O型圈,然后装配活塞组件,再按图纸要求装轴用卡键、卡键帽、轴用挡圈及其它零件。整体焊接式活塞 杆,须先装导向套组件,再装活塞组件。 B:活塞杆小端为螺纹式:将活塞组件旋入活塞杆上拧紧到位,注意不能损伤O 形圈,然后装锁紧螺母压紧(装配前清除紧定螺钉孔的油脂),装钢球、紧定螺钉(装配前涂紧固胶)。整体焊接式活塞杆,须先装导向套组件,再装活塞组件。C:活塞杆杆端为叉头时,最后装叉头。 4、缸体组装: A:缸体为卡键式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、孔用卡键、挡环、轴用挡圈及其它零件(注意装配导向套时若O型圈过油口,必须用堵塞堵住油口以免损坏密封件)。 B:缸体为法兰式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、弹垫、螺钉(螺栓),按装配图拧紧力矩要求拧紧螺钉(螺栓)。螺钉、螺栓须按拧紧力矩表的拧紧力矩紧固。特殊油缸按图纸的技术要求执行。 C:缸体为螺纹式:将已组装好的活塞杆装入缸体,再按图纸要求装螺纹式导向套,拧紧。配钻紧定螺钉孔,清除铁屑,抹紧固胶,装紧定螺钉拧紧。 5、装配过程中的要求 A:保护零件的已加工面的尺寸精度和表面粗糙度,夹持零件要加垫软金属垫块,装拆要用规定的装配工具,在装配的全过程中,不能对零件(组件、部件)进行有损锤击和切削加工,禁止使用如锉刀、刮刀、油石等切削刀具。个别需要进行配制、配研组装的零件完工后,要在指定的工位清洁被研制零件的各表面。B:保持各密封件在装配过程中的正确位置和形状,密封件的表面不得出现划伤、拉毛、切边等损伤。 C:保证零部件的配合性质,对过盈配合的固紧零件须注意公差要求,对间隙配合的运动零件要保证运动灵活。如:关节轴承须转动灵活、衬套须紧固等。 D:配合件和紧固件所用的螺钉、螺母、定位销等在装配时须涂上机油且保证按

新版液压缸维修技术标准

液压缸维修技术标准编制:徐训忠 审核:亲国斌 批准:龚胜华 海南海航饮品有限公司工程维修部 二O一0年五月

目录 1 总则 ............................................................. 错误!未定义书签。 2 引用标准 ..................................................... 错误!未定义书签。 3 各部分常用材料及技术要求..................... 错误!未定义书签。 3.1 缸筒的材料和技术要求.......................... 错误!未定义书签。 3.2 活塞的材料和技术要求.......................... 错误!未定义书签。 3.3 活塞杆的材料和技术要求...................... 错误!未定义书签。 3.4 端盖的材料和技术要求.......................... 错误!未定义书签。 4 液压缸的检查............................................. 错误!未定义书签。 4.1 缸筒内表面 .............................................. 错误!未定义书签。 4.2 活塞杆的滑动面...................................... 错误!未定义书签。 4.3 密封 .......................................................... 错误!未定义书签。 4.4 活塞杆导向套的内表面.......................... 错误!未定义书签。 4.5 活塞的表面 .............................................. 错误!未定义书签。 4.6 其它 .......................................................... 错误!未定义书签。 5 液压缸的装配............................................. 错误!未定义书签。 6 液压缸实验 ................................................. 错误!未定义书签。附表1 检查项目和质量分等(摘录JB/JQ20301-88) . (16) 附表2 螺栓和螺母最大紧固力矩(仅供参考) (17) 附表3 螺纹的传动力和拧紧力矩 (18)

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

液压油缸的一般设计步骤手册(精选.)

液压油缸的一般设计步骤 液压油缸的一般设计步骤 1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。 2)根据主机的动作要求选择液压缸的类型和结构形式。 3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。 4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。 5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。 6)选择缸筒材料,计算外径。

7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。 8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。 9)必要时设计缓冲、排气和防尘等装置。 10)绘制液压缸装配图和零件图。 11)整理设计计算书,审定图样及其它技术文件。 液压缸工作时出现爬行现象的原因及排除方法 1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。 2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。 3)活塞与活塞杆同轴度不好,应校正、调整。 4)液压缸安装后与导轨不平行,应进行调整或重新安装。 5)活塞杆弯曲,应校直活塞杆。 6)活塞杆刚性差,加大活塞杆直径。 7)液压缸运动零件之间间隙过大,应减小配合间隙。 8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。

液压缸技术条件

Q/YXG 液压缸技术条件 (GJB/T10205-2000) 阳谷祥光铜业有限公司发布

前言 本标准修改采用《JB/T10205-2000 液压缸技术条件》本标准归口单位:技术部 本标准起草单位:设备管理科 本标准主要起草人:胡忠磊 本标准批准人:胡松 第2页共7页

液压缸技术条件 1 范围 本标准规定了单、双作用液压缸技术条件。 本标准适用于以液压油或性能相当的其它矿物油为工作介质的双作用或单作用液压缸。 2规范性引用文件 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2346—1988 液压气动系统及元件公称压力系列 GB/T 2348—1993 液压气动系统及元件缸内径及活塞杆外径 GB/T 2350—1980 液压气动系统及元件—活塞杆螺纹型式和尺寸系列 GB/T 2828—1987 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 2878—1993 液压元件螺纹连接油口型式和尺寸 GB/T 2879—1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差 GB/T 2880—1981 液压缸活塞和活塞杆窄断面动密封沟槽尺寸系列和公差 GB/T 6577—1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差 GB/T 6578—1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差 GB/T 7935—1987 液压元件通用技术条件 GB/T 15622—1995 液压缸试验方法 GB/T 17446—1998 流体传动系统及元件术语 JB/T 7858—1995 液压元件清洁度评定方法及液压元件清洁度指标 3 定义 GB/T 17446 中所列定义及下列定义适用于本标准。 3.1 公称压力 液压缸工作压力的名义值。即在规定条件下连续运行,并能保证设计寿命的工作压力。 3.2 最低起动压力 使液压缸起动的最低压力。 3.3 理论出力 作用在活塞或柱塞有效面积上的力,即油液压力和活塞或柱塞有效面积的乘积。 3.4 实际出力 液压缸实际输出的推(或拉)力。 3.5 负载效率 液压缸的实际出力和理论出力的百分比。 4 技术要求 4.1 一般要求 4. 1. 1 公称压力系列应符合GB/T 2346 的规定。 4. 1. 2 缸内径及活塞杆(柱塞杆)外径系列应符合GB/T 2348 的规定。 4. 1. 3 油口连接螺纹尺寸应符合GB/T 2878 的规定,活塞杆螺纹应符合GB/T 2350 的规定。 4. 1. 4 密封应符合GB/T 2879、GB/T 2880、GB/T 6577、GB/T 6578 的规定。

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

JBT10205液压缸技术条件

1.1.1.1.1.3 WORD格式可编辑 液压缸技术条件 (GJB/T10205-2000)

前言 本标准修改采用《JB/T10205-2000 液压缸技术条件》本标准归口单位: 本标准起草单位: 本标准主要起草人: 本标准批准人:

液压缸技术条件 1 范围 本标准规定了单、双作用液压缸技术条件。 本标准适用于以液压油或性能相当的其它矿物油为工作介质的双作用或单作用液压缸。 2规范性引用文件 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2346—1988 液压气动系统及元件公称压力系列 GB/T 2348—1993 液压气动系统及元件缸内径及活塞杆外径 GB/T 2350—1980 液压气动系统及元件—活塞杆螺纹型式和尺寸系列 GB/T 2828—1987 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 2878—1993 液压元件螺纹连接油口型式和尺寸 GB/T 2879—1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差 GB/T 2880—1981 液压缸活塞和活塞杆窄断面动密封沟槽尺寸系列和公差 GB/T 6577—1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差 GB/T 6578—1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差 GB/T 7935—1987 液压元件通用技术条件 GB/T 15622—1995 液压缸试验方法 GB/T 17446—1998 流体传动系统及元件术语 JB/T 7858—1995 液压元件清洁度评定方法及液压元件清洁度指标 3 定义 GB/T 17446 中所列定义及下列定义适用于本标准。 3.1 公称压力 液压缸工作压力的名义值。即在规定条件下连续运行,并能保证设计寿命的工作压力。 3.2 最低起动压力 使液压缸起动的最低压力。 3.3 理论出力 作用在活塞或柱塞有效面积上的力,即油液压力和活塞或柱塞有效面积的乘积。 3.4 实际出力 液压缸实际输出的推(或拉)力。 3.5 负载效率 液压缸的实际出力和理论出力的百分比。 4 技术要求 4.1 一般要求 4. 1. 1 公称压力系列应符合GB/T 2346 的规定。 4. 1. 2 缸内径及活塞杆(柱塞杆)外径系列应符合GB/T 2348 的规定。 4. 1. 3 油口连接螺纹尺寸应符合GB/T 2878 的规定,活塞杆螺纹应符合GB/T 2350 的规定。 4. 1. 4 密封应符合GB/T 2879、GB/T 2880、GB/T 6577、GB/T 6578 的规定。 4. 1. 5 其它方面应符合GB/T 7935—1987 中1.2~1.6 的规定。

液压缸的主要零件材料结构和技术要求

液压缸的主要零件材料结 构和技术要求 The following text is amended on 12 November 2020.

3.5.4确定液压泵的参数 1.确定液压泵的最大工作压力 1P p p p ≥+?∑ Pa (3-5) 式中1p ——液压缸的最大工作压力,根据 1122w m F F p A p A η==- (3-6) 可以求出211 0.270F A p MPa A +== p ?∑——从液压泵出口到液压缸入口总的管路损失。初算可按经验数据选取:管路简单、流速不大的取~;管路复杂,并且进油口有调速阀的,取~ MPa 。这里取。 即700.570.5P p MPa ≥+= 2.确定液压泵的流量P Q max P Q KQ ≥ 3/m s (3-7) K ——系统泄漏系数,一般取~,这里取 max Q ——液压缸的最大流量,对于采用节流调速方式的系统,还需要加上溢流阀的最小溢流量,一般取430.510m /s -? 在前面已经初步选定车辆被顶起的速度变化量v ?0.16m /s =,那么设定车辆被顶起的最大速度0.16m/s y v =,则活塞的运动速度: y v = (3-8) 00.22=0.04m/s y v v =(这是在车辆刚刚起升状态时,5α=) 所以4443max 1.2(6.28100.510)8.1410/P Q KQ m s ---≥=??+?=? 3.选择液压泵的规格 根据以上求得的液压泵最大工作压力和流量,依据系统中初步选定的液压泵,从手册中选择相应的液压泵产品。为了使液压泵相比于最大工作压力有一定的额外压力储备,所选泵的额定压力一般要比最大工作压力大25~60%。

相关文档
最新文档