奥氏体不锈钢的焊接缺陷及防止措施

奥氏体不锈钢的焊接缺陷及防止措施
奥氏体不锈钢的焊接缺陷及防止措施

奥氏体不锈钢的焊接缺陷及防止措施

不锈钢是指主加元素Cr高于12%,能使钢处于钝化状态、又具有不锈钢特性的钢。不锈钢根据其显微组织分为铁素体型、马氏体型、奥氏体型、奥氏体+铁素体型和沉淀硬化型不锈钢。奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体,这种少量铁素体有助于防止热裂纹。

一、奥氏体不锈钢的焊接特点:

1、容易出现热裂纹。

防止措施:

(1)尽量使焊缝金属呈双相组织,铁素体的含量控制在3-5%以下。因为铁素体能大量溶解有害的S、P杂质。

(2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。

2、晶间腐蚀

根据贫铬理论,焊缝和热影响区在加热到450-850℃敏化温度区时在晶界上析出碳化铬,造成贫铬的晶界,不足以抵抗腐蚀的程度。

防止措施:

(1)采用低碳或超低碳的焊材,如A002等;采用含钛、铌等稳定化元素的焊条,如A137、A132等。

奥氏体不锈钢的焊接工艺

奥氏体不锈钢的焊接工艺 奥氏体不锈钢的焊接工艺 一、焊接方法 由于奥氏体不锈钢具有优良的焊接性,几乎所有的熔焊方法和部分压焊方法都可以焊接。但从经济、实用和技术性能方面考虑,最好采用焊条电弧焊、惰性气体保护焊、埋弧焊和等离子焊等。 1. 焊条电弧焊 厚度在2mm以上的不锈钢板仍以焊条电弧焊为主,因为焊条电弧焊热量比较集中,热影响区小,焊接变形小;能适应各种焊接位置与不同板厚工艺要求;所用[wiki]设备[/wiki]简单。但是,焊条电弧焊对清渣要求高,易产生气孔、夹渣等缺陷。合金元素过度系数较小,与氧亲和力强的元素,如钛、硼、铝等易烧损。 2. 氩弧焊 有钨极弧焊和熔化极氩弧焊两种,是焊接奥氏体不锈钢较为理想的焊接方法。因氩气保护效果好,合金元素过度系数高,焊缝成分易于控制;由于热源较集中,又有氩气冷却作用,其焊接热影响区较窄,晶粒长大倾向小,焊后不需要清渣,可以全位置焊接和[wiki]机械[/wiki]化焊接。缺点是设备较复杂,一般须使用直流弧焊电源,成本较高。 TIG有手工和自动两种,前者较后者熔敷率低些。TIG最适于3mm以下薄板不锈钢焊接,在奥氏体不锈钢[wiki]压力容器[/wiki]和管道的对接和封底焊等广为应用。对于厚度小于0.5mm的超薄板,要求用10~15A电流焊接,此时电弧不稳,宜用脉冲TIG焊。厚度大于3mm有时须开坡口和采用多层多道焊,通常厚度大于13mm,考虑制造成本,不宜再用TIG焊。 3. 等离子弧焊 是焊接厚度在10~12mm以下的奥氏体不锈钢的理想方法。对于0.5mm以下的薄板,采用微束等离子弧焊尤为合适。因为等离子弧热量集中,利用小孔效应技术可以不开坡口,不加填充金属单面焊一次成形,很适合于不锈钢管的纵缝焊接。 焊接工艺参数的选择 焊接时,为保证焊接质量,必须选择合理的工艺参数,所选定的焊接工艺参数总称为焊接工艺规范。例如,手工电弧焊的焊接工艺规范包括:焊接电流、焊条直径、焊接速度、电弧长

焊接的六大缺陷,产生原因、危害

焊接的六大缺陷,产生原因、危害、预防措施都在这了 一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。C、凹坑

凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。 防治措施:选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。 F、其他表面缺陷 (1)成形不良指焊缝的外观几何尺寸不符合要求。有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。 (2)错边指两个工件在厚度方向上错开一定位置,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。 (3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落, 成形后焊缝背面突起,正面下塌。 (4)表面气孔及弧坑缩孔。 (5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。 二、气孔和夹渣

焊接缺陷分类及预防措施

一、焊接缺陷的分类 焊接缺陷可分为外部缺陷和内部缺陷两种 1.外部缺陷 1)外观形状和尺寸不符合要求; 2)表面裂纹; 3)表面气孔; 4)咬边; 5)凹陷; 6)满溢; 7)焊瘤; 8)弧坑; 9)电弧擦伤; 10)明冷缩孔; 11)烧穿; 12)过烧。 2.内部缺陷 1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。 2)气孔; 3)夹渣; 4)未焊透; 5)未熔合; 6)夹钨; 7)夹珠。 二、各种焊接缺陷产生原因、危害及防止措施 1、外表面形状和尺寸不符合要求 表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。 危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。 防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。 2、焊接裂纹 表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。 危害:裂纹是所有的焊接缺陷里危害最严重的一种。它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。 产生原因及防止措施: (1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。这是由于焊接接头的金相组织和应力状态及氢的含量决定的。(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。 产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。 产生原因: a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。钢的淬硬倾向越大,越易产生冷裂纹。 b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。 c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

奥氏体不锈钢管道焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP401-2004 奥氏体不锈钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、刘浩、王新宇 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

奥氏体不锈钢管道焊接工艺规程 1 范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50235—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件

焊接缺陷及产生的原因

常见的气焊焊接缺陷及产生的原因 字体: 小中大| 打印发布: 2009-04-29 12:00 作者: webmaster 来源: 本站原创查看: 58次 常见的气焊焊接缺陷可分为外部缺陷和内部缺陷两大类。外部缺陷位于焊缝的外表面,一般用肉眼或低倍放大镜即可以发现。常见的外部缺陷包括焊缝尺寸不符合要求、表面气孔、裂纹、咬边、未焊满、凹坑、烧穿和焊瘤等;内部缺陷位于焊缝内部,需用破坏性试验或无损探伤等方法才能发现,如内部气孔、裂纹、夹渣、未焊透、未熔合等。 一、焊缝尺寸不符合要求 焊缝的尺寸与设计上规定的尺寸不符,或者焊缝成型不良,出现高低、宽窄不一、焊波粗劣等现象。焊缝尺寸不符合要求,不仅影响焊缝的美观,还会影响焊缝金属与母材的结合,造成应力集中,影响焊件的安全使用。 焊缝尺寸不符合要求产生的原因主要有:接头边缘加工不整齐、坡口角度或装配间隙不均匀;焊接工艺参数不正确,如火焰能率过大或过小、焊丝和焊嘴的倾角配合不当、气焊焊接速度不均匀等;操作技术不当,如焊嘴或焊丝横向摆动不一致等。 防止焊缝高低、宽窄不一、焊波粗劣的措施有:正确调整火焰能率:将焊件接头边缘调整齐;气焊过程中焊嘴、焊丝的横向摆动要一致;焊接速度要均匀且不要向熔池内填充过多的焊丝。 二、未焊透 焊接时接头根部未完全熔透的现象称为未焊透,详见图7—1。 未焊透不仅降低了焊接接头的机械性能,而且在未焊透的缺口及末端处形成应力集中,进一步引起裂纹的产生。在重要的焊缝中,若发现有未焊透缺陷,必须铲除,重新补焊。 产生未焊透的原因较多,通常有焊接接头在气焊前未经清理干净,如存在氧化物、油污等;坡口角度过小、接头间隙太小或钝边过厚;焊嘴号码过小,火焰能率不够或焊接速度过快;焊件的散热速度过快,使得熔池存在的时间短,以致填充金属与母材之间不能充分地熔合。 防止未焊透采取的措施,除了选择合理的坡口型式和装配间隙外,应在焊前进行清理,消除坡口两侧的氧化物和油污;根据板厚正确选用相应的焊嘴和焊丝直径;在焊接时选择合理的火焰能率和焊接速度;尤其是对导热快、散热面积大的焊件,要进行焊前预热和在焊接过程中加热焊件。 三、未熔合 熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分称为未熔 合,详见图7—2。

焊接缺陷及防止措施示范文本

焊接缺陷及防止措施示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

焊接缺陷及防止措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪 器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、 焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。 单面焊的根部未焊透等。 A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属 的充分补充所留下的缺口。产生咬边的主要原因是电弧热 量太高,即电流太大,运条速度太小所造成的。焊条与工件间 角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造 成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原 因。某些焊接位置(立、横、仰)会加剧咬边。 咬边减小了母材的有效截面积,降低结构的承载能力,同

时还会造成应力集中,发展为裂纹源。 矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑凹坑指焊缝表面或背面局部的低于母材的部

不锈钢氩弧焊接工艺特点及常见缺陷的防治措施

不锈钢氩弧焊接工艺特点及常见缺陷的防治措 施 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

304L不锈钢氩弧焊接工艺特点及常见缺陷的防治措施 摘要:304L不锈钢(ASTM标准)为奥氏体不锈钢,属于超低碳级不锈钢,具有良好的综合性能,是目前工业上应用最广泛的不锈钢;文章通过现场实践操作,研究总结了不锈钢焊接中的工艺特点,针对晶间腐蚀、层间未熔合、引弧夹钨、收缩缩孔等问题提出了具体的解决办法和注意事项,有效地解决了焊接质量问题。 关键词:奥氏体不锈钢; 晶间腐蚀; 危险温度区; 焊接线能量 0 引言 西气东输管道增输工程压缩机(组)中的润滑油系统、干气密封系统和前置加热系统工艺管道均为不锈钢管,材质为304L不锈钢(美国ASTM标准),主要管道规格为D60×6mm;本文主要以D60×6mm管道为例,分析奥氏体不锈钢管道焊接中易发生的缺陷,并介绍采取的预防措施。 1 304L不锈钢的特性和焊接工艺参数 奥氏体不锈钢304L对应我国的标准上是00Cr19Ni10,其主要化学成分和机械性能见表1: 表1 304L不锈钢的化学成分和机械性能

304L不锈钢的导热率较低,约为碳钢的1/3,电阻率约为碳钢的5倍,线膨胀系数比碳钢约大50%,密度大于碳钢;由于不锈钢存在众多与碳钢不同的特性,其焊接工艺规范也与碳钢有所不同,对于不锈钢304L钢管(60×6mm)我们采用的焊丝为ER308L,焊接工艺参数见表2: 表2 304L不锈钢的焊接工艺参数 注:焊接坡口角度为75±5° 2 304L不锈钢焊接工艺特点 晶间腐蚀及应对措施 晶间腐蚀是在腐蚀介质作用下,起源于金属表面的晶界并且沿晶粒边界深入金属内部产生在晶粒之间的一种腐蚀。晶间腐蚀是奥氏体不锈钢常见的焊接缺陷。 Cr是奥氏体不锈钢中具用耐腐蚀性的基本元素,当Cr含量低于12%时,就不再具用耐腐蚀性了。304L不锈钢在焊接过程中存在焊接危险温度区间(为450~850℃),见图1。当温度达到这一范围时,奥氏体中过饱和的碳向晶界处迅速扩散并在晶粒边界析出, 析出的碳和铬形成碳化铬(Cr 23C 6 )。同时因为铬在奥氏体中的扩散速度很慢,来不及向 晶界扩散,这样就大量消耗了晶界处的铬,使晶界处含铬量降低到小于12%,这时晶界就失去了耐腐蚀能力;相应的如果温度低于450℃,则奥氏体中的碳扩散速度不快,不能在

埋弧焊常见焊接缺陷的成因分析及对策

1. 影响焊接缺陷的因素 (1)材料因素: 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂、以及保护气体等。所有这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中母材本身的材质对热影双区好性能起音决定性的影响。显然所采用的焊接材料对焊缝金属的成份和性能也是关键的因素。好果焊接材料与母材匹配不当,则不仅可以引起焊接区内的至纹、气孔等各种缺陷,而且也可能可起脆化、软化或耐腐蚀等性能变化。所以,为保证获得良好的焊接接头,必须对材料因素予以充分的重视。 (2)工艺因素: 大量的实践证明,同一种母材在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。焊接方法对焊接质量的影响主要可能在两方面:首先是焊接热源的特点,也就是功率密度、加热最高温度、功率大小等,它们可直接改变焊接热循环的各项参数,如线能量大小、高温停留时间、相变温度区间的冷却速度等。这些当然会影响接头的组织和性能;其次是对熔池和附近区域的保护方式,如熔渣保护、气体保护、气-渣联合保护或是在真空中焊接等,这些都会影响焊接冶金过程。显然,焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。 2.常见焊接缺陷的原因分析 (1)结晶裂纹 从金属结晶理论知道,先结晶的金属纯度比较高,后结晶的金属杂质较多,

并富集在晶粒周界,而且这些杂质具有较低的熔点,例如,一般碳钢和低合金钢的焊缝含硫量较高时,能形成FeS,而FeS与Fe发生作用形成熔点只有988℃的低熔点共晶。在焊缝金属凝固过程中,低熔点共晶被排挤在晶界上,形成“液态薄膜”由于液态薄膜的存在减弱了晶间之间的结合力,晶粒间界的液态薄膜便成了薄弱地带。又因为焊缝金属在结晶的同时,体积在减小,周围金属的约束引起它的收缩而引起焊缝金属受到拉伸应力的作用下,于是相应地产生了拉伸变形。若此时产生的变形量超过了晶粒边界具有的变形塑性时,即可沿这个薄弱地带开裂而形成结晶裂纹。 可见,产生结晶裂纹的原因就在于焊缝中存在液态薄膜和在焊缝凝固过程中受到拉伸应力共同作用的结果。因此,液态薄膜是产生结晶裂纹的根源,而拉伸应力是产生结晶裂纹的必要条件。 至于近缝区的结晶裂纹,原则上与焊缝上的结晶裂纹时一致的。在焊接条件下,近缝区金属被加热到很高的温度,在熔合区附近达到半熔化状态。当母材金属含有易熔杂质时,那么在近缝区金属的晶界上,同样也会有低熔共晶存在。这时在焊接热的作用下,将会发生熔化,相当于晶粒间的液态薄膜,与此同时,在拉伸应力的作用下就会开裂。 焊缝上的结晶裂纹和近缝区的结晶有着相互依赖和相互影响的关系。近缝区的结晶裂纹可能是焊缝结晶裂纹的起源。 结晶裂纹的影响因素:通过以上分析可知,结晶裂纹的产生取决于焊缝金属在脆性温度区间的塑性和应变,前者取决于冶金因素,后者取决于力的因素。力的主作用是产生结晶裂纹的的必要条件,只有在力的作用下产生的应变超过材料的最大变形能力时,才会开裂。首先需要分析冶金因素。

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

手工焊和二保焊-焊接缺陷产生原因及防止措施

焊接缺陷产生原因及防止措施 焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。 一、气孔 (Blow Hole) 焊接方式发生原因防止措施 手工电弧 焊(1)焊条不良或潮湿. (2)焊件有水分、油污或锈. (3)焊接速度太快. (4)电流太强. (5)电弧长度不适合. (6)焊件厚度大,金属冷却过速. (1)选用适当的焊条并注意烘干. (2)焊接前清洁被焊部份. (3)降低焊接速度,使内部气体容易逸 出. (4)使用厂商建议适当电流. (5)调整适当电弧长度. (6)施行适当的预热工作.

CO2气体保护焊(1)母材不洁. (2)焊丝有锈或焊药潮湿. (3)点焊不良,焊丝选择不当. (4)干伸长度太长,CO2气体保护不 周密. (5)风速较大,无挡风装置. (6)焊接速度太快,冷却快速. (7)火花飞溅粘在喷嘴,造成气体乱 流. (8)气体纯度不良,含杂物多(特别含 水分). (1)焊接前注意清洁被焊部位. (2)选用适当的焊丝并注意保持干燥. (3)点焊焊道不得有缺陷,同时要清洁干 净,且使用焊丝尺寸要适当. (4)减小干伸长度,调整适当气体流量. (5)加装挡风设备. (6)降低速度使内部气体逸出. (7)注意清除喷嘴处焊渣,并涂以飞溅附 着防止剂,以延长喷嘴寿命. (8)CO2纯度为99.98%以上,水分为0. 005%以下. 设备不良(1)减压表冷却,气体无法流出. (2)喷嘴被火花飞溅物堵塞. (3)焊丝有油、锈. (1)气体调节器无附电热器时,要加装电 热器,同时检查表之流量. (2)经常清除喷嘴飞溅物.并且涂以飞溅 附着防止剂. (3)焊丝贮存或安装焊丝时不可触及油 类. 自保护药芯焊丝(1)电压过高. (2)焊丝突出长度过短. (3)钢板表面有锈蚀、油漆、水分. (4)焊枪拖曳角倾斜太多. (5)移行速度太快,尤其横焊. (1)降低电压. (2)依各种焊丝说明使用. (3)焊前清除干净. (4)减少拖曳角至约0-20°. (5)调整适当.

奥氏体不锈钢焊接

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。

焊接缺陷原因分析

常见焊接缺陷及防止措施 (一) 未焊透 【1】产生原因: (1)由于坡口角度小,钝边过大,装配间隙小或错口;所选用的焊条直径过大,使熔敷金属送不到根部。 (2)焊接电源小,远条角度不当或焊接电弧偏向坡口一侧;气焊时,火焰能率过小或焊速过快。 (3)由于操作不当,使熔敷金属未能送到预定位置,号者未能击穿形成尺寸一定的熔孔。(4)用碱性低氢型焊条作打底焊时,在平焊接头部位也容易产生未焊透。主要是由于接头时熔池溢度低,或采用一点法以及操作不当引起的。 【2】防止措施: (1)选择合适的坡口角度,装配间隙及钝边尺寸并防止错口。 (2)选择合适的焊接电源,焊条直径,运条角度应适当;气焊时选择合适的火焰能率。如果焊条药皮厚度不均产生偏弧时,应及时更换。 (3)掌握正确的焊接操作方法,对手工电弧焊的运条和气焊,氩弧焊丝的送进应稳,准确,熟练地击穿尺寸适宜的熔孔,应把熔敷金属送至坡口根部。 (4)用碱性低氢型焊条焊接16MN尺寸钢试板,在平焊接关时,应距离焊缝收尾弧?10~15MM的焊缝金属上引弧;便于使接头处得到预热。当焊到接头部位时,将焊条轻轻向下一压,听到击穿的声音之后再灭弧,这样可消除接头处的未焊透。如果将接头处铲成缓坡状,效果更好。 (二) 未熔合 【1】产生原因: (1)手工电弧焊时,由于运条角度不当或产生偏弧,电弧不能良好地加热坡口两侧金属,导致坡口面金属未能充分熔化。 (2)在焊接时由于上侧坡口金属熔化后产生下坠,影响下侧坡口面金属的加热熔化,造成“冷接”。 (3)横接操作时,在上、下坡口面击穿顺序不对,未能先击穿下坡口后击穿上坡口,或者在上、下坡口面上击穿熔孔位置未能错开一定的距离,使上坡口熔化金属下坠产生粘接,造成未熔合。 (4)气悍时火焰能率小,氩弧焊时电弧两侧坡口的加热不均,或者坡口面存在污物等。【2】防止措施: (1)选择适宜的运条角度,焊接电弧偏弧时应及时更换焊条。 (2)操作时注意观察坡口两侧金属熔化情况,使之熔合良好。 (3)横焊操作时,掌握好上、下坡口面的击穿顺序和保持适宜的熔孔位置和尺寸大小,气焊和氩弧悍时,焊丝的送进应熟练地从熔孔上坡口拉到下坡口。 (三) 焊瘤 【1】产生原因: (1)由于钝边薄,间隙大,击穿熔孔尺寸大。 (2)由于焊接电流过大击穿焊接时电弧燃烧,加热时间过长,造成熔池温度增高,溶池体积增大,液态金属因自身重力作用下坠而形成烛瘤,焊瘤大多存在于平焊、立焊速度过慢等。【2】防止措施: (1)选择适宜的钝边尺寸和装配间隙,控制熔孔大小并均匀一致,一般熔孔直径为0.8~1.25

奥氏体不锈钢焊接要求

奥氏体不锈钢组对及焊接要求 概述: 科莱恩17000T化工助剂项目中有304L和316奥氏体型不锈钢管道,奥氏体型不锈钢是现代化工行业中采用的比较多的材质,奥氏体不锈钢具有良好的可焊性,但是焊接材料或焊接工艺不正确时,会出现晶间腐蚀,热裂纹,应力腐蚀开裂,焊缝成形不良。 为保证焊接质量中核中原项目部所有管工以及焊工必须按照以下的《奥氏体不锈钢焊接工艺作业指导书》进行不锈钢的组对以及焊接工作。 不锈钢焊接工艺作业指导书 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:母材为304L材质和母材为316L时均采用ER316L焊丝 焊丝直径:φ1.6,φ2.0、φ2.5 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.99%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流高频电焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:焊渣锤、扁铲、锉刀、不锈钢钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数

手工电弧焊常见焊接缺陷产生的原因及预防措施

手工电弧焊常见焊接缺陷产生的原因及预防措施 缺陷名称:气孔() 1、原因 (1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 2、解决方法 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。(4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 二、缺陷名称咬边() 1、原因 (1)电流太强。 (2)焊条不适合。 (3)电弧过长。 (4)操作方法不当。

(5)母材不洁。 (6)母材过热。 2、解决方法 (1)使用较低电流。 (2)选用适当种类及大小之焊条。 (3)保持适当的弧长。 (4)采用正确的角度,较慢的速度,较短的电弧及较窄的运行法。 (5)清除母材油渍或锈。 (6)使用直径较小之焊条。 三:缺陷名称:夹渣( ) 1、原因 (1)前层焊渣未完全清除。 (2)焊接电流太低。 (3)焊接速度太慢。 (4)焊条摆动过宽。 (5)焊缝组合及设计不良。 2、解决方法 (1)彻底清除前层焊渣。 (2)采用较高电流。 (3)提高焊接速度。 (4)减少焊条摆动宽度。

(5)改正适当坡口角度及间隙。 四、缺陷名称:未焊透( ) 1、原因 (1)焊条选用不当。 (2)电流太低。 (3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所阻挡,不能给予母材。 (4)焊缝设计及组合不正确。 2、解决方法 (1)选用较具渗透力的焊条。 (2)使用适当电流。 (3)改用适当焊接速度。 (4)增加开槽度数,增加间隙,并减少根深。 五:缺陷名称:裂纹() 1、原因 (1)焊件含有过高的碳、锰等合金元素。 (2)焊条品质不良或潮湿。 (3)焊缝拘束应力过大。 (4)母条材质含硫过高不适于焊接。 (5)施工准备不足。 (6)母材厚度较大,冷却过速。 (7)电流太强。

波峰焊常见焊接缺陷原因分析及预防对策

波峰焊常见焊接缺陷原因分析及预防对策 A、焊料不足:焊点干瘪/不完整/有空洞,插装孔及导通孔焊料不饱满,焊料未爬到元件面的焊盘上 原因:a) P CB 预热和焊接温度过高,使焊料的黏度过低; b) 插装孔的孔径过大,焊料从孔中流岀; c) 插装元件细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪; d) 金属化孔质量差或阻焊剂流入孔中; e) PCB 爬坡角度偏小,不利于焊剂排气。 对策:a) 预热温度90-130 C,元件较多时取上限,锡波温度250+/-5 C,焊接时间3?5S。 b) 插装孔的孔径比引脚直径大0.15?0.4m m,细引线取下限,粗引线取上线。 c) 焊盘尺寸与引脚直径应匹配,要有利于形成弯月面; d) 反映给PCB加工厂,提高加工质量; e) PCB的爬坡角度为3?7Co B、焊料过多:元件焊端和引脚有过多的焊料包围,润湿角大于90 原因:a) 焊接温度过低或传送带速度过快,使熔融焊料的黏度过大; b) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; c) 助焊剂的活性差或比重过小; d) 焊盘、插装孔或引脚可焊性差,不能充分浸润,产生的气泡裹在焊点中; e) 焊料中锡的比例减少,或焊料中杂质Cu的成份高,使焊料黏度增加、流动性变差。 f) 焊料残渣太多。 对策:a) 锡波温度250+/-5 C,焊接时间3?5S。 b) 根据PCB 尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB 底面温度在90-130o c) 更换焊剂或调整适当的比例; d) 提高PCB 板的加工质量,元器件先到先用,不要存放在潮湿的环境中; e) 锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料; f) 每天结束工作时应清理残渣。 C、焊点桥接或短路 原因:a) PCB设计不合理,焊盘间距过窄; b) 插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经碰上; c) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; d) 焊接温度过低或传送带速度过快,使熔融焊料的黏度降低; e) 阻焊剂活性差。 对策:a) 按照PCB设计规范进行设计。两个端头Chip元件的长轴应尽量与焊接时PCB运行方向垂直,SOT、SOP的长轴应与PCB运行方向平行。将SOP最后一个引脚的焊盘加宽(设计一个窃锡焊盘)。 b) 插装元件引脚应根据PCB 的孔距及装配要求成型,如采用短插一次焊工艺,焊接面元件引 脚露岀PCB表面0.8?3mm,插装时要求元件体端正。 c) 根据PCB尺寸、板层、元件多少、有无 贴装元件等设置预热温度,PCB底面温度在90-130 o D、润湿不良、漏焊、虚焊 原因: a) 元件焊端、引脚、印制板基板的焊盘氧化或污染,或PCB受潮。 b) Chip元件端头金属电极附着力差或采用单层电极,在焊接温度下产生脱帽现象。 c) PCB设计不合理,波峰焊时阴影效应造成漏焊。 d) PCB翘曲,使PCB翘起位置与波峰焊接触不良。 e) 传送带两侧不平行(尤其使用PCB传输架时),使PCB与波峰接触不平行。 f) 波峰不平滑,波峰两侧高度不平行,尤其电磁泵波峰焊机的锡波喷口,如果被氧化物堵塞时,会使波峰岀现锯齿形,容 易造成漏焊、虚焊。 g) 助焊剂活性差,造成润湿不良。

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

焊接缺陷及防止措施(最新版)

焊接缺陷及防止措施(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0541

焊接缺陷及防止措施(最新版) 1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。产生咬边的主要原因是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。 咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利

于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无 偏芯焊条,合理操作。 C、凹坑凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时 的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。 凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩

相关文档
最新文档