差压式变送器调试方法

差压式变送器调试方法
差压式变送器调试方法

差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。

现介绍一种不用拆除导压管就进行现场校准的方法。

一.准备工作:

我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。

二.常规差压变送器的校准:

先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为

20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约0.2mA,反之亦然。例如:

输入满量程压力为100Kpa,该读数为19.900mA,调量程电位器使输出为19.900+(20.000-19.900)*1.25=20.025mA.量程增加0.125mA,则零点增加1/5*

0.125=0.025.调零点电位器使输出为20.000mA.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。

三.智能差压变送器的校准

用上述的常规方法对智能变送器进行校准是不行的,因为这是由HART变送器结构原理所决定了。因为智能变送器在输入压力源和产生的4-20mA电流信号之间,除机械、电路外,还有微处理芯片对输入数据的运算工作。因此调校与常规方法有所区别。

实际上厂家对智能变送器的校准也是有说明的,如ABB的变送器,对校准就有:

“设定量程"、“重定量程"、“微调"之分。其中“设定量程"操作主要是通过LRV.URV的数字设定来完成配置工作,而“重定量程"操作则要求将变送器连接到标准压力源上,通过一系列指令引导,由变送器直接感应实际压力并对数值进行设置。而量程的初始、最终设置直接取决于真实的压力输入值。但要看到尽管变送器的模拟输出与所用的输入值关系正确,但过程值的数字读数显示的数值会略有不同,这可通过微调项来进行校准。由于各部分既要单独调校又必需要联调,因此实际校准时可按以下步骤进行:

1.先做一次4-20mA微调,用以校正变送器内部的D/A转换器,由于其不涉及传感部件,无需外部压力信号源。

2.再做一次全程微调,使4-20m

A、数字读数与实际施加的压力信号相吻合,因此需要压力信号源。

3.最后做重定量程,通过调整使模拟输出4-20mA与外加的压力信号源相吻合,其作用与变送器外壳上的调零(Z)、调量程(R)开关的作用完全相同。

问题讨论:

有的人认为,只要用HART手操器就可改变智能变送器量程,并可进行零点和量程的调整工作,而不需要输入压力源,但这种做法不能称为校准,只能称为“设定量程"。真正的校准是需要用一台标准压力源输入变送器的。因为不使用标准器而调量程(LRV、URV)不是校准,忽略输入部分(输入变送器的压力)来进行输出调节(变送器的转换电路)不是正确的校准。再者压力、差压检测部件与

A/D转换电路、电流输出的关系并不对等,校准的目的就是找准三者的变化关系。

强调一点:

只有对输入和输出(输入变送器的压力、A/D转换电路、环路电流输出电路)一齐调试,才称得上是真正意义上的校准。

四.几点建议:

调校工作结束后,要把排气、排液阀或和旋塞旋回原位,并应缠上生料带,要旋紧保证不泄漏,但旋紧前应该先进行正、负压室的排气、排液工作。此时还可利用工艺压力,进行简易的变送器静压误差检查工作。

智能

2600T

压力变送器校验步骤(±

100KP)

1.

变送器精度要求:

允许误差为±

16×

0.075=0.012mA

2.

记录压力变送器的编号,根据变送器的量程确定5个或5个

以上的检定点

3.

接线如图

4.

打开校验仪表电源,将显示调至电流输出画面

5.

当变送器上未施加压力时,热工仪表校验仪上的读数应为

4mA

。如非

4mA

,则按住零点螺丝至少2秒钟,此后读数应移

动至

4mA。

当变送器上施加量程上限值时,热工仪表校验仪上的读数应为20mA ,如非

20mA

,则按住零点螺丝至少2秒钟,此后读数

应移动至

20mA

。当施加中间点压力值时,读数应在误差允许范围内。

6.

逐次加压至各检定点,并记录各检定点对应的输出电流

7.

逐次降压至各检定点,并记录各检定点对应的输出电流

8.

计算压力变送器的示值误差是否在允许误差范围

9.

如超出允许误差,则重复5、6、7步骤,进行零位、量程调整10.

填写记录报告。

差压式流量计的静压误差成因及修正

差压式流量计的静压误差成因及修正 其差压刻度通常是负压室通大气的条件下校验的装置到现场通入实际使用静压校零时,威力巴流量计、V锥流量计以及孔板流量计等差压式流量计使用的差压变送器。往往发现零位输出与负压室通大气校验时的零位输出不一致。这种正负压室通入相同静压得到零位输出偏离通入大气校验时的零位称为静压误差。静压误差可高达±0.5%FS智能型差压变送器中,差压变送器的静压误差是由其正负压室膜盒有效面积不相等引起的DMP9051系列差压变送器中。由于装有静压传感器,通过实验的方法测出静压在规定的范围内变化时零位输出的偏离值,然后在表内的单片机中将静压误差予以校正。经过静压误差在线校正的差压变送器,其静压误差一般可降低到±0.1%以下,从而使丈量精度得到有效提高。 必将给流量计丈量流量带来误差,差压变送器的静压误差如果不进行修正。尤其是相对流量较小时,影响更可观。例如有一台DMP9051差压变送器与节流装置组成差压式流量计,常用压力条件下其静压误差为0.5%FS因未对此静压误差作调整就投入运行,则实际流量为零时,仪表的流量示值就可能达到 7.1%FS虽然小信号切除功能就将这一矛盾掩盖掉,但是其影响客观上是存在而且在全量程范围内±0.5%FS差压偏离总是起作用。 但是残存的静压误差在仪表投运时还必须在使用现场通入实际静压的静压误差再一次检查校核。其方法是向正负压室通入相同的静压,差压变送器在生产厂家出厂前零位作为一个重要指标检验过。将三阀组的高低压阀中一个打开,另一个关闭,将平衡阀打开,如果怀疑正负压室内尚未充溢被测介质,则可通过正负压室上的排气(或排液)阀排净积气(或积液)然后检查变送器的输出。

详解孔板差压式流量计的原理及公式

详解孔板差压式流量计的原理及公式-彩 差压式流量计在各个行业都应用广泛、历史悠久,在各类流量仪表中其使用量占居首位. 近年来,由于各种新型流量计的不断涌现,致使它的用量有所下降。 差压式孔板流量计由三部分组成,即由节流装置、导压管和差压计。差压式流量计是利用流体流动的节流原理来实现流量测量的.节流原理是流体在有节流装置的管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象. 1、差压孔板流量计的原理 流动流体的能量有静压能和动能两种形式.流体具有静压能是因为有压力,具有动能是因为有流动速度,在一定条件下,这两种形式的能量是可以相互转化 . 根据能量守恒定律,在没有外 加能量的前提下,流体所具有的静压能和动能,再加上用以克服流体流动阻力的能量损失,其能量总和是相等的 .

图 2 表示在节流装置前后截面Ⅰ、Ⅱ及Ⅲ处流体压力与速度的分布情况.流体在到达截面Ⅰ之前,以一定的流速v1流动,此时静压力为p1. 在接近节流装置时,由于遇到节流装置的阻碍,使靠近管壁处的流体受到节流装置的阻挡作用,使部分动能转化为静压能,使得节流装置入口端面靠近管壁处的流体静压力升高,并且远大于管径中心处的压力,因此节流装置入口端面 处产生一径向压差 .

在径向压差的作用下,流体产生径向加速度,从而使靠近管壁处的流体质点的流动方向倾斜于管道中心轴线,出现缩脉现象.由于受到惯性作用,流速的最小截面并不在节流装置的孔口处,而是经过节流装置之后仍继续收缩,到截面Ⅱ处流速达到最小,此时流速大,即v2,之后流速又逐渐扩大,至截面Ⅲ后完全恢复,流速逐渐降到原值,即v3=v1. 2、差压孔板式流量方程推导 流体流经节流装置时,不对外做功,没有外加能量,流体本身也没有温度变化 . 在管道内流动的流体,对于管道中任意两个截面都符合伯努利方程,现选截面Ⅰ和Ⅱ(见图2)进行分析。流体的伯努利方程:

压力和差压变送器详细使用说明

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

(详细)罗斯蒙特1056双通道变送器中文说明书

(详细)罗斯蒙特1056双通道变送器中文说明 书 -CAL-FENGHAI.-(YICAI)-Company One1

使用说明书 Model 1056 双通道智能分析仪

目录 快速启动指南 (2) 快速启动指南树形图 (3) 快速参考指南树形图 (5) 一、通用技术规格 (6) ①接触式电导率 (7) ② pH/ORP/ISE (8) 二、安装 (9) 三、接线 (14) 四、变送器的操作 (19)

快速启动指南 1.安装方式,请参见章节。 2.传感器与信号板之间的接线,请参见章节和有关传感器的说明。同时,要求准确连接电源线和输出信号线。 3.只有在检查分析仪接线准确无误的情况下,才能给分析仪供电。 4.分析器第一次通电,快速启动(Quick Start)画面就会出现。快速启动程序的使用非常简单。 A.闪烁区表示光标当前所在位置。 B.使用“左”、“右”箭头键,可以左右移动光标或改变小数点的位置。使用“上”、“下”箭头键,可以上下移动光标或增加、减少数字。 C.按ENTER键,保存组态设置;按EXIT键,退出且不保存变更设置。在快速启动过程中,按EXIT键也可以使显示器回到初始画面(选择语言)。 5.按照快速启动指南的组态树形菜单结构图(图A),完成仪器组态。 6.在完成最后一步组态后,仪器出现主显示屏幕,此时输出为默认值。 7.如果要改变输出和温度设置,请回到主菜单,选择程序“Program”,然后,按照快速参考指南的树形菜单结构图(图B),完成修改。 8.如果要使分析仪恢复到默认设置,请在Program下选择Reset Analyzer(分析仪复位)。

压力变送器说明书

一、1151压力变送器工作原理 被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔膜片和δ 1151压力变送器原理图 元件内的填充液传到预张紧的测量腊片两侧,测量膜片与两侧绝缘体上的电极各组成一个电容器,在无压力通入或两压力均等时测量膜片处于中间位置,两侧两电容器的电容量相等,当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容就不等,通过检测,放大转换成4-2OmA的二线制电流信号。压力交送器和绝对压力交送器的工作原理和差压变送器相同,所不同的是低压室压力是大气压或真空元份结构图见右图 二、电气原理图 1151压力变松电气原理图 三、主要特点 电容式变送器有下列特点 1.品种齐全、精度高、稳定性好,价格比同类进口仪表便宜 2.采用二线制工作方式 3.敏感元件采用固体化结构,小型坚固,抗振能力强 4.主要部件可与1151同类产品进行互换, 5.关键零部件、电子元件及接插件均采用国际上高质量产品。本系列产品可靠性好,质量稳定,故障率少。 6.正迁移可达500%,负迁移可达600%(最小量程时) 7.阻尼可调 电容式变送器品种齐全,用户可按不同需要任意选用,自微差压至大差压,从低压力至高压力、绝对压力、高静压差压。DP/GP型变送器带上各种远传装置后,就成为远传式差压、压力变送器。采用ANSI标准,管道尺寸3",法兰等级150磅(2.5MPa),插入筒式远传装置后,插入筒长度一般

结构尺寸 八、1151变送器典型安装 变送器可以直接安装在测量点处,可以安装在墙上,或者使用安装板(变送器附件)夹拼在2''(约φ50mm)的管道上。 变送器压力容室上的导压连接孔为1/4-18NPT螺纹孔,接头上的导压接孔为1/2-14NPT内锥管螺纹(或M2OXl.5-18外螺纹),根据需要可选择与引压接头1/2-14NPT锥管螺纹的过渡接头。变送器可以轻而易举地从流程1艺管道上拆下,万法是拧下紧固接头的两个螺栓。转动接头,可以改变其接孔的中心距离为5lmm,54mm,57mm三种尺寸。 为了确保接头密封,在固紧时应按下面步骤操作:两只紧固螺栓应交替用板手均匀拧紧,其最后拧紧力距大约为40N.m(29fs-bs),切勿一次拧紧某一只螺栓。有时为了安装上的方便,变送器本体上的压力容室可转动。只要压力容室处于垂直面,则变送器木体的转动不会产生零位的变化。如果压力容室水平安装时(例如在垂直管道上测量流量时),则必须消除由于导压管高度不同而引起的液柱压力的影响。即重新调零位。 九、变送器的型号命名

系列差压变送器说明书

1151系列差压变送器说明书 简介: 1151系列电容式变送器有一可变电容敏感元件,它能将测量膜片与电容极板之间的电容差经振荡器振荡、调制解调、放大器放大、电压电流转换成标准信号。可用于气体、液体、蒸气的测量。 主要技术参数: 输 出:4-20mA 电 源:24VDC ;无负载,变送器可以工作在12VDC ;最大为45VDC 精 度:调校量程的±0.2%,±0.25%,±0.5%,包括线性、变性和 重复性的综合误差。 温度范围:放大器工作在-29℃-+93℃; 敏感元件工作在-40℃-+104℃; 储存温度:-50℃-+120℃; 相对湿度:0-85%; 正负迁移:不管输出如何,正负迁移后,其量程上、下限均不得超过量 程的极限。最大负迁移为最小校量程的600%,最大正迁移为 最小调校量程的500%。 外形尺寸: 安 装: 1、变送器应尽量安装在温度梯度和温度波动小的地方,同时要避免振动和冲击。 2、安装位置的选择: (1) 腐蚀性的或过热的介质不应与变送器接触。 (2) 防止渣子在引压管内沉淀。 (3) 两引压管里的液压头应保持平衡。 (4) 引压管应尽可能短些。 (5) 引压管应装在温度梯度和温度波动小的地方。 外形图

(6)测量液体流量:取压口应开在流程管道的侧面,以避免渣子沉淀。变送器应装在侧面或取压口的下方,以便气体排入流程管道。 (7)测量气体流量:取压口应开在流程管道的顶部或侧面,而变送器应装在取压口的下方,以便液体排入流程管道。 (8)测量蒸气流量:取压口应开在流程管道的顶部或侧面,而变送器则装在取压口的下方,以便冷凝液流入引压管。 (9)使用侧面有排气/排液阀的变送器时,取压口应开在流程管道的侧面。工作介质为液体时,排气/排液阀在上面,以便排除气体;工作介质为气体时,阀应在下面,以排 除积液,将法兰转180°可以改变排气/排液阀的上、下位置。 3、安装: 1151变送器如果直接安装在测量点上,可由连接管支撑,也可以安装在表盘上或者用安装支架把它安装在2″管子上。变送器法兰连接孔是1/4-18NPT(锥管螺纹);法兰接头是1/2-14NPT。拧下法兰头的螺钉,变送器会很容易从流程管道上拆下。两法兰连接孔的中心距离为51mm(2?”),其连接管可直接装在法兰上,转动法兰接头就可改变中心孔的距离为51、54、57mm(2”、2?”、2?”)三种尺寸。为确保法兰接头密封,应按下面步骤装:先用手拧紧两个螺钉,然后用板手拧紧第一个螺钉,再拧紧第二个螺钉,最后再拧紧第上一个螺钉。变送器本体可在法兰里转动;只要保持法兰是垂直的,转动变送器本体不会引起零点变化。如果水平安装法兰,必须消除由于连接管高度不同而引起液压头影响,这须再调零点。 4、安装方式选择 接线方法: 电源—信号端子位于电气壳体内的接线侧。接线时,将铭牌上标有“接线侧”那边的盖子拧开,上部端子是电源—信号端子,下部端子为测试或指示表的端子,也可用做毫伏输出端子。测试端子有与电源-信号端子相同的电流信号4-20mADC,它用于连接指示仪表或测试用。电源是经过信号线送到变送器的,不需要附加线。注意,不要把电源-信号线接到测试端子上。信号线不需要屏蔽,但用两根扭在一起的线效果最好。信号线不要与其他电源线一起通过导线管或明线槽,也不可以在大功率设备附近穿过。电气壳体上的接线孔应当密封或塞住,以防在电气壳体内积水。如果接线孔不能密封,电气壳体应朝下安装,以便函排液。 具体的接线见下图

智能变送器说明书

电容式智能变送器 使用说明书 安徽埃克森科技集团有限公司

目录 简介 第一节工作原理 (1) 第二节调校 (3) 第三节技术指标 (7) 第四节安装 (9) 第五节绝对压力/压力变送器 (24) 第六节单法兰隔离膜变送器安装 (26) 第七节双法兰隔离膜变送器安装 (27) 第八节维护 (30) 第九节选型指南 (34) 第十节开箱和产品成套性 (35) 附录A HART快捷键操作步骤 (36) 附录B HART通讯器菜单树 (37) 2088HART协议通讯器菜单树 (38)

简介 电容式智能变送器(以下简称变送器)采用先进的集成电路和表面安装工艺,在模拟式变送器的基础上增加了通信、查询、测试、组态等功能,它可提高标定精度,改善环境温度补偿效果,大大提高变送器的质量。 1、变送器应用了先进的数字技术及频率相移键控(FSK)技术,提高了整机性能及可靠性,方便了现场和控制室之间的连接。 2、变送器除具有远程通讯能力外,它还具有本机调量程,调零点按钮,便于现场安装后的就地调整。 3、变送器电子部件采用先进的集成电路和表面安装工艺,具有通信、查询、测试、组态等功能。 第一节工作原理 1. 工作原理 图1-1是变送器的基本工作原理,下面将叙述其工作原理和各部件的功能。 图1-1 变送器工作原理方块图 1.1 “δ”室传感器(敏感元件) 图1-2“δ”室 变送器的核心是一个电容式压力传感器,称为“δ”室(见图1-2)。传感器是一个完全密封的组件,过程压力通过隔离膜片和灌充液硅油传到感压膜片引起位移。传感膜片和两电容极板之间的电容差由电子部件转换成4~20mA DC的二线制输出的电信号。

LVDT变送器说明书

RDP-LVDT 位移传感器说明书 一、概述 RDP-LVDT 位移传感器分为两个部分,第一部分为前置器部分,它与被测量物相连,根据被测物体位移,产生的频率幅值相应改变;第二部分为变送器单元,它把频率信号转化成两路1-5V 信号和两路4-20mA 信号。 二、功能指标 RDP-LVDT 为英国产的五线制位移传感器,所采用的LVDT 行程一般为0-50mm 、0-100mm 和0-150mm 。其出线图见下图: LVDT 位移传感器的变送器安装在DEH 机柜内,它接受两路24VDC 直流电源,形成冗余配置,一路失电不影响其正常工作,它的接线图和元件布置图见下图: LVDT 位移传感器的变送器大致可以分成三部分,电源部分(24VDC 转化成±15V ,两个绿色发光二极管分别表示±15V 是否工作正常);转换电路部分(提供LVDT 激励信号,把检测到的频率变化信号转化成1-5V 和4-20毫安信号);输入输出端子部分。 LVDT 位移传感器的变送器有四个可调电位器,分别是:调零电位器、调幅电位器、电流I 调整电位器和电流II 调整电位器。LVDT 调整的顺序为:电压输出的调零调幅最后调整电流的输出(RDP-ACT 系列五线位移传感器的红线接输入的1端子、黄线接2端子、蓝线接3端子、绿线接4端子、黑线悬空)。 功能指标 ● 接受两路24VDC 容量0.3安培 ● RDP-ACT 系列五线位移传感器信号 红 黄 LVDT出线图 黑

●输出1-5V两路 ●输出4-20mA两路 ●精度为0.1% 三、LVDT零点满度的调整 1、把LVDT位移传感器的红、黄、蓝、绿四线接到位移变送器输入端子的1、 2、 3、4 端子上(陡河#3机调试在红黄线圈和蓝绿线圈里分别串接了一个220欧姆电阻,GV 变送器中的R12由原来的10K改为17K),把LVDT位移传感器的黑线悬空;LVDT 位移传感器到DEH机柜的接线应是屏蔽电缆,屏蔽线应和LVDT位移传感器出线的屏蔽线短接,并在DEH机柜内接地;GV2、GV4和IV1的屏蔽电缆有现场接地的现象。 2、把攻放板拔掉,在DEH机柜内用一号电池给每个MOG阀加电,在位移变送器的输 出端子上用四位半万用表电压档观察阀门由关到开的过程中,电压是否是增大的过程,如不是对调位移变送器输入端子的蓝绿接线;LVDT的调零:MOG阀不加电,调整W1电位器使OUT1输出为1.0XXV,MOG阀加电,该调门全开,调整W2电位器使OUT1输出为5V;再使MOG阀失电,调门全关,调整W1电位器使OUT1输出为1.0XXV,重新使MOG阀加电,该调门全开,调整W2电位器使OUT1输出为5V,反复几次这样调整使LVDT的零点为1.0XXV,满度为5V。

仪表自动化第三章习题:流量检测

第三章流量检测 1.某差压式流量计的流量刻度上限为320m3/h ,差压上限2500Pa。当仪表指针指在160m3/h时,求相应的差压是多少 (流量计不带开方器)? 解:由流量基本方程式可知 流量是与差压的平方根成正比的。当测量的所有条件都不变时,可以认为式中的α、ε、F0、ρ1均为不变的数。如果假定上题中的 Q1 = 320m3/h ;Δp1 = 2500Pa ; Q2 = 160m3/h ;所求的差压为Δp2 ,则存在下述关系 代入上述数据,得 该例说明了差压式流量计的标尺如以差压刻度,则是均匀的,但以流量刻度时,如果不加开方器,则流量标尺刻度是不均匀的。当流量值是满刻度的1/2时,指针却指在标尺满刻度的1/4处。 2.通常认为差压式流量计是属于定节流面积变压降式流量计,而转子流量计是属于变节流面积定压降式流量计,为什么? 解:这可以从它们的工作原理上来分析。

差压式流量计在工作过程中,只要节流元件结构已定,则其尺寸是不变的,因此它是属于定节流面积的。当流量变化时,在节流元件两侧的压降也随之而改变,差压式流量计就是根据这个压降的变化来测量流量的,因此是属于变压降式的。 转子流量计在工作过程中转子是随着流量变化而上下移动的,由于锥形管上部的直径较下部的大,所以转子在锥形管内上下移动时,转子与锥形管间的环隙是变化的,即流体流通面积是变化的,因此它是属于变节流面积的。 由于转子在工作过程中截面积不变,重力也不变,而转子两端的静压差作用于转子上的力恒等于转子的重力,转子才能平衡在一定的高度上,所以在工作过程中,尽管转子随着流量的变化上下移动,但作用在转子两侧的静压差却是恒定不变的,所以它是属于定压降式流量计。 3.流量检测方法有哪些?有哪些常用的流量检测仪表? (1)节流差压法 在管路内安装上节流元件,使流体在此处流动状态发生变化,造成节流元件的上、下游间产生压力差。由于此压力差和流量间有一定函数关系,因此,检测此压差,即可变换出流量。常用的节流元件有:孔板、喷嘴等。 (2)容积法 按一定的容积空间输送流体,容积空间的运动次数(或运动速度)与流量成正比。记录运动次数或速度,则可得出一段时间内的累积流量。容积式流量计,有椭园齿轮式流量计、膜式煤气表及旋转叶轮式水表

差压式流量计的原理及设计

差压式流量计的原理及设计 今天为大家介绍一项国家实用新型专利——一种差压式流量计。该专利由力合科技(湖南)股份有限公司申请,并于2018年11月30日获得授权公告。 内容说明本发明涉及流量测量技术领域,尤其涉及一种差压式流量计。 发明背景目前流量测量技术在工业生产,能源计量,环境保护等领域具有不可或缺的作用,与国民经济、科学研究等有密切的联系。流量计有差压式流量计、转子流量计等。其中,差压式流量计是根据安装于管道中流量检测件在不同点产生的差压、已知的流体条件和检测件与管道的几何尺寸来测量流量的仪表。 专利公告号为CN103424149A的发明专利,公开了一种橄榄形差压式流量计,该专利中的差压式流量计结构较复杂,不易安装;正压压力小,压差变化小,灵敏度不够高;节流元件构造复杂,不宜加工。 此外,现有流量计多采用金属材质,易腐蚀。因此,针对以上不足,需要对现有流量计进行改进设计。 发明内容本发明要解决的技术问题是提供一种差压式流量计,以解决现有差压式流量计结构复杂,所测压差变化小,灵敏度不够高,节流元件不易加工安装,流量计易腐蚀的问题。 为了解决上述技术问题,本发明提供了一种差压式流量计,包括测量管,设置在测量管内的节流元件,其具有与测量管内壁适配的贴合面,以及前后隔离并穿过测量管一侧管壁伸入到测量管腔内的第一采压管和第二采压管,便于压力采集,并能获得测量管中较大的稳定压差,使得流量计具有更高的响应灵敏度和精度。 优选地,所述节流元件是一个与所述测量管内壁形成一个流体窄道的柱体。所述第一采压管在所述测量管腔内折弯后垂直于所述测量管的贴合侧管壁伸向壁外。所述第一采压管与所述第二采压管分别设置在所述节流元件的两侧,所述第一采压管的进管口轴线与所述测量管的轴线平行。 所述第二采压管与所述节流元件一侧的径向端面紧密贴合。所述第二采压管穿过所述节流

压力变送器通用说明书

BP800/BP801 系列压力(液位)变送器使用说明书BP800系列变送器主要由测压元件传感器(也称作压力传感器)、测量电路和过程连接件三部分组成。它能将测压元件传感器感受到的气体、液体等物理压力参数转变成标准的电信号(如4~20mADC等),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 技术指标 测量范围:-0.1~60MPa 精度:0.2 、0.5级介质温度:0~70℃(高温需要定制)输出信号:二线制4~20mADC 电压:标准24VDC 负载能力:0-500Ω 不灵敏区:≤±1.0[%]FS防护等级:IP68 电气连接方式 调零位和调满度 用户在对变送器有重新检测的需求且具备检验设备的时候,可按以下步骤实施检验及调整。 打开接线盒可看到电路板上调零电位器Z及调满电位器S。接好24VDC标准电源,接进能测量4-20mADC的标准电流表(精度0.2级以上)即可进行调整。具体步骤如下: 1 零点调节:变送器置于零点压力下,调节零位电位器,使输出电流为4mA。 2 满度调节:变送器置于满点压力下,调节满度电位器,使输出电流为20mA。 3 反复1、2次步骤直到符合要求。 注意事项 1凡供货产品均带有产品合格证及使用说明书,请认真查对其中技术参数以免出错。 2拧紧螺纹时应慢速拧紧,注意密封,不能把转矩直接加到变送器壳体上,只能加在压力接口的六角上。 3接线应严格按照我公司使用说明要求进行。 4本产品禁止随意拆卸、碰撞、跌落、用力甩打、用尖锐器具捅引压孔等有可能损坏产品外表及内部线路的一切行为。

5通电后即可工作,但预热30分钟后输出稳定。 6使用中若发现异常,应关掉电源,停止使用,进行检查或向我公司技术部门联系。 7运输、储存时应恢复包装,存放在阴凉、干燥、通风的库房内。 8产品本身质量问题(人为或者安装、选型不当而导致的产品损坏除外)12个月之内免费维修. 9任何产品都有正常使用寿命,工程设计者在使用本产品时请同时设计备用方案,以免产品出现故障引起用户不必要的损失。 常见问题及解答: ①问题:压力上去后变送器输出上不去怎么办? 回答:此种情况,先应检查压力接口是否漏气或者被堵住,如果确认不是,检查接线方式,如接线无误再检查电源,如电源正常再察看传感器零位是否有输出,或者进行简单加压看输出是否变化,有变化证明传感器没有损坏,如果无变化传感器即已经损坏。出现这种情况的其他原因还可能是仪表损坏,或者整个系统的其他环节的问题。 ②问题:加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去。 回答:产生此现象的原因极有可能是压力传感器密封圈引起的,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原因的最佳方法是将传感器卸下,直接察看零位是否正常,如果正常更换密封圈再试。 ③问题:变送器输出信号不稳信号不稳的原因有以下几种:? 回答:压力源本身是一个不稳定的压力,仪表或压力传感器抗干扰能力不强? 传感器接线不牢、传感器本身振动很厉害、传感器故障。 ④问题:变送器接电无输出可能的原因有哪些? 回答:接错线(仪表和传感器都要检查)、导线本身的断路或短路、电源无输出或电源不匹配、仪表损坏或仪表不匹配、传感器损坏。 ⑤变送器与指针式压力表对照偏差大 回答:首先,出现偏差是正常的现象。其次,确认正常的偏差范围确认正常误差范围的方法:计算出压力表的误差值例如:压力表量程为 30bar ,精度 1.5% ,最小刻度为 0.2bar 正常的误差为:30bar*1.5%+ 0.2*0.5 (视觉误差) =0. 55bar 压力变送器的误差值。例如:压力传感器量程为 20bar ,精度 0.5% ,仪表精度为 0.2% ,正常的误差为: 20bar*0.5%+20bar*0.2%=0.18bar 整体对照时出现的可能性误差范围应以大误差值的设备的误差范围为准,以上例来说,传感器与变送器偏差值在 0.55bar 内可视为正常。如果偏差非常大,应使用高精度仪表(至少此仪表高于压力表和传感器)进行参照。微差压变送器安装位置对零位输出的影响微差压变送器由于其测量范围很小,变送器中传感元件的自重即会影响到微差压变送器的输出,因此在安装微差压变送器出现的零位变化情况属正常情况。安装时应使变送器的压力敏感件轴向垂直于重力方向,如果安装条件限制,则应安装固定后调整变送器零位到标准值。 其他问题可与本公司或者本公司各地代理商联系。 山东潍坊飞电测控设备有限公司

差压式流量计正确的安装方法

差压式流量计正确的安装方法 一:应用差压式流量计在安装导压管时的要求如下。 (1)引压导管应按最短距离敷设,一般情况下它的总长度应大于50m,以免阻力过大,反应滞后;但不小于3m。因为对流量变化太快的场合指示波动频繁,对于高温介质可能造成差压计的温度过高。管线的弯曲处应该是均匀的圆角。 (2)应设法排除引压导管管路中可能积存有气体、水分、液体或固体微粒等影响压差精确而可靠地传送的其他成分。为此引压导管的装设应保持垂直或水平面之间成不小于1∶10的倾斜度,并加装气体、冷凝液、微粒的收集器和沉降器,定期进行排放。 (3)引压导管应不受外界热源的影响,为防止冻结的可能,应有伴热装置。 (4)对于粘性和有腐蚀性的介质,为了防堵防腐,应加装充有隔离液的隔离罐。 (5)全部引压管路应保证密封而无渗漏现象。 (6)引压管路中应装有必要的切断、冲洗、灌封液、排污等所需要的阀门。江阴塔南二:差压式流量计常见故障、原因及排除方法。 1、指示零或移动很小。其原因为:(1)平衡阀未全部关闭或泄漏;(2)节流装置根部高低压阀未打开;(3)节流装置至差压计间阀门、管路堵塞;(4)蒸气导压管未完全冷凝;(5)节流装置和工艺管道间衬垫不严密;(6)差压计内部故障。 其对应处理方法为:(1)关闭平衡阀,修理或换新;(2)打开;(3)冲洗管路,修复或换阀;(4)待完全冷凝后开表;(5)拧紧螺栓或换垫;(6)检查、修复。 2、指示在零下。其原因为:(1)高低压管路反接;(2)信号线路反接;(3)高压侧管路严重泄漏或破裂。 其对应处理方法为:(1)检查并正确连接好;(2)检查并正确连接好;(3)换件或换管道。 3、指示偏低。其原因为:(1)高压侧管路不严密;(2)平衡阀不严或未关紧;(3)高压侧管路中空气未排净;(4)差压计或二次仪表零位失调或变位;(5)节流装置和差压计不配套,不符合设计规定。

变送器使用说明书样本

目录 一、技术参数............... 错误!未定义书签。 二、安装前注意事项......... 错误!未定义书签。 三、安装................... 错误!未定义书签。 四、接线说明............... 错误!未定义书签。 4.1接线端子图............. 错误!未定义书签。 4.2仪器接线功能图......... 错误!未定义书签。 4.3接线端子说明........... 错误!未定义书签。 4.4电极接线示意图......... 错误!未定义书签。 五、按键和界面说明......... 错误!未定义书签。 5.1按键说明............... 错误!未定义书签。 5.2界面说明............... 错误!未定义书签。 六、操作说明............... 错误!未定义书签。 6.1参数设置操作........... 错误!未定义书签。 6.2校正操作............... 错误!未定义书签。 七、电极保养说明........... 错误!未定义书签。 八、操作密码............... 错误!未定义书签。

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删 除。 8.1、参数设置密码......... 错误!未定义书签。 8.2、校正密码............. 错误!未定义书签。

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 一、技术参数

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 二、安装前注意事项 1、请选择通风良好的位置安装pH计( 以下简称仪 器) , 并避免仪器直接受到阳光照射。 2、安装前请阅读本说明书, 以免接线不正确导致仪 器损坏。 3、在所有接线未完成前, 请勿给仪器上电, 以免发 生危险。 4、pH或ORP电极信号传输须采用专用电极电缆, 不 能随便用一般电缆代替, 否则将产生错误的测量结果。 5、使用220VAC的电源时, 请避免使用三相电源, 以 免造成电源突波干扰。( 若有电源突波干扰现象发生, 可将仪器用的电源与动力装置电源分开, 即仪器采用单独电源, 或在所有动力装置的电源端接突波吸收器来消除突波, 如加药机、搅拌机等) 。 6、仪器内部的继电器为小电流继电器, 若要控制较 大动力的附属装置时, 请外接电流容量较大的继

常用测量仪表的检定周期和检定规程

附件2 常用测量仪表的检定周期和检定规程 计量检定规程测量 仪表名称规程编号 计量检定规程适用范围 或有关检定周期适用范围的说明 最长检 定周期 弹簧管式精密压力表JJG49 弹簧管式精密压力表和真空表1年弹簧管式一般压力表JJG52 弹簧管式一般压力表、压力表真空表和真空表半年工作用玻璃液体温度计JJG 130 (工业和实验)普通温度计和精密温度计1年 速度式流量计JJG198 0.1,0.2,0.5级流量计和分流旋翼式流量计1年低于0.5级涡轮、涡街、旋进旋涡和电磁流量计2年低于0.5级超声波和激光多普勒流量计3年 双金属温度计JJG226 1年工业铀、铜热电阻JJG229 优于0.5级的1年工作用廉金属热电偶JJG351 K、N、E和J型热电偶半年氧化锆氧分析器(试行) JJG535 结合氧化错探头性能自定检定周期未规定压力控制器JJG544 压力控制器(开关)和真空控制器(开关) 1年数字温度指示调节仪JJG617 也适用于直流模拟电信号输入的数字指示调节仪1年 差压式流量计JJG640 用几何检验法和系数法检定节流装置或传感器2年用几何检验法检定测量单相清洁流体的标准喷嘴4年差压式流量计中的差压计或差压变送器1年 液体容积式流量计JJG667 用于贸易结算的腰轮、齿轮、刮扳等流量计半年使用条件恶劣且优于0.5级的流量计半年 其他流量计1年 可燃气体检测报警器JJG693 1年电动温度变送器JJG829 也适用于直流模拟电信号输入的其他电动变送器1年压力变送器JJG882 正、负压力,差压和绝对压力变送器1年液位计JJG971 浮力式、压力式、电容式、反射式和射线式液位计1年 浮子式钢带液位计 维护检修规程 Q/SHGD0044-2000 浮子式钢带液位计维护检修1年轴流式气动调节阀运行 调校及维护保养规程 Q/SHGD0080-2003 轴流式气动调节阀运行调校及维护保养1年FISHER泄压阀调校 及维护规程 Q/SHGD0079-2003 FISHER泄压阀调校及维护1年气动球型调节阀调校 及维护规程 Q/SHGD0071-2003 气动球型调节阀调校及维护1年电液联动调节阀操作 维护保养与检修规程 Q/SHGD0057-2001 电液联动调节阀操作维护保养与检修1年 压力变送器校准与维护规程Q/SHGD0009-2005 压力变送器校准与维护,进出站压力、涉及联锁 的压变压力变送器校准与维护,其它压变 1年 双金属温度计使用 与维护规程 Q/SHGD0034-2003 双金属温度计使用与维护1年

压力变送器说明书样本

一、 1151压力变送器工作原理 被测介质的两种压力通入高、低两压力室, 作用在δ元件(即敏感元件)的两侧隔离膜片上, 经过隔膜片和δ 1151压力变送器原理图 元件内的填充液传到预张紧的测量腊片两侧, 测量膜片与两侧绝缘体上的电极各组成一个电容器, 在无压力通入或两压力均等时测量膜片处于中间位置, 两侧两电容器的电容量相等, 当两侧压力不一致时, 致使测量膜片产生位移, 其位移量和压力差成正比, 故两侧电容就不等, 经过检测, 放大转换成4-2OmA的二线制电流信号。压力交送器和绝对压力交送器的工作原理和差压变送器相同, 所不同的是低压室压力是大气压或真空元份结构图见右图 二、电气原理图 1151压力变松电气原理图 三、主要特点 电容式变送器有下列特点 1.品种齐全、精度高、稳定性好, 价格比同类进口仪表便宜 2.采用二线制工作方式 3.敏感元件采用固体化结构, 小型坚固, 抗振能力强 4.主要部件可与1151同类产品进行互换,

5.关键零部件、电子元件及接插件均采用国际上高质量产品。本系列产品可靠性好, 质量稳定, 故障率少。 6.正迁移可达500%, 负迁移可达600%(最小量程时) 7.阻尼可调 电容式变送器品种齐全, 用户可按不同需要任意选用, 自微差压至大差压, 从低压力至高压力、绝对压力、高静压差压。DP/GP型变送器带上各种远传装置后, 就成为远传式差压、压力变送器。采用ANSI标准, 管道尺寸3", 法兰等级150磅(2.5MPa), 插入筒式远传装置后, 插入筒长度一般为50、 100,150mm用户可根据需要选择其长度。法兰式掖位交送器一般是整体体工, 只要用户需要也可提供远传结构, 同样对远传差压变送器用户也右选用一侧远传装置, 毛细管单根长度为1.5、 3、 4.5、 6、 7.5m 供用户选择。接液材料除316L不锈钢外, 还有哈氏C合金, 蒙耐尔合金、钽, 可使用于各种腐蚀介质场合。 1151DP/GP系列变送器设计精巧, 安装使用和调校都很方便简单, 电气外壳采用二腔结构, 即接线端子和放大器线路各占一腔, 密闭性较好, 具有防爆和全天候结构, 放大器线路有反向极性保护, 防止因电源极性接错而损坏变送器。曲于该变送器工作的容积变化小于0·16cm3。因此不需为补偿容积化而增加冷涣器或液位筒。

变送器说明书样本

第一章概述 重量变送器适用于有模拟输出接口要求的衡器, 也适用对控制精度、速度要求不高的定量输出功能的衡器。 1.1 特点 本仪表主要特点如下: ☆ 数字校准: 能够有两点非线性校准。 ☆ 丰富的接口功能:RS-232C —个、0/4~20mA模拟输出接口一个、定值输出点2 个。 第二章安装 2.1 安装要求:应符合第一章中1.2.2 工作环境的要求。 2.1.1 请不要将本仪表安装在如下条件环境中: 1) 阳光直射处 2) 靠近热源、水源处 3) 暴露在雨环境下 4) 温差变化较大 5) 粉尘严重或存在易燃、易爆、腐蚀性气体 2.1.2最好的工作条件为室温20C,湿度为50% RH 2.1.3 本仪表电源接地应确保良好( 小于4 欧姆) 且不得与其它用电设备共地。 2.1.4 请不要将传感器信号线与电力电缆一同铺设。

2.1.5 供电电源应稳定, 否则需加装电源净化设备。

2.2传感器的连接(见表1) 如果传感器与仪表间电缆很短(小于4米),能够使用4线制连接(图6)但1、2和6、7管脚必须短接。 避免传感器信号线靠近仪表电源线和通讯线,否则会引起附加的电噪声。 接线盒 激励电压 信号正S 屏蔽 激励电压 信号负S 图1 四线制连接

接线盒 激励电压 信号正S 屏蔽激励电压 信号负S 图2 六线制连接 表1 传感器连接表 管脚;1234567 定义:激励电压正:反馈电压正信号正屏敝信号负反馈电压负激励电压负符号 E + F + S + P S - F - E -

第三章基本操作 3.1 正常工作 1.仪表可根据传感器的输出信号的输出相应的电流值 2. 该仪表能够设定两个定量值, 且可根据设定的两个定量值输出定量点控制信号。当仪表输出值大于” HH 设定值时,贝HH定量点开关量输出<当仪表输出值小于” LL” 设定值时, 则” LL” 定量点开关量输出。 3.2 定值输出功能 在称重状态下,按〖设定〗键,仪表进入用户编程状态,将” CoP-ES设为1X, 仪表前面板上的”定值”标志指示, 贝仪表可根据” -HH-”、” -LL- ” 2 个定值点的设定数值大小输出定值点信号。如不需定值输出, 贝将” CoP-En” 设为0X。 X可设定为(0~2 ) 3 种工作方式。 0 时:小于等于”-LL- ” 设定值、大于等于”HH”设定值有定量点开关量输出。 1 时:大于等于”-LL- ” 设定值、大于等于”HH”设定值有定量点开关量输出。 2 时:小于等于”-LL- ” 设定值、小于等于”HH”设定值有定量点开关量输出

差压式流量计型式评价大纲1范围

差压式流量计型式评价大纲 1 范围 本大纲适用于分类编码为的差压式流量计的型式评价,适用于DN50~DN1000口径的孔板、均速管、楔形流量计、弯管流量计、矩形流量计、V锥流量计、文丘里管、文丘里喷嘴、喷嘴等差压式流量计。 2 引用文件 JJG 640 差压式流量计 GB/T 2624.1-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求 GB/T 2624.2-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第2部分:孔板 GB/T 2624.3-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第3部分:喷嘴和文丘里喷嘴 GB/T 2624.4-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第4部分:文丘里管 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3 术语 3.1 压力测量 3.1.1管壁取压口(wall pressure tapping) 管壁上钻出的环状缝隙或圆孔,其边缘与管道内表面平齐。 3.1.2静压(p)(static pressure) 由连接到管壁取压口的压力测量装置测得的压力。 3.1.3差压(Δp)(differential pressure) 当已考虑上下游取压口之间任何高度差时,在两个管壁取压口处获得的静压差。管壁取压口一个位于一次装置的上游侧,另一个位于一次装置的下游侧。

(精选文档)因斯特YST3051型差压变送器使用说明书

前言 非常感谢您选择本公司仪器! 在使用本产品前,请详细阅读本说明书,请遵守本说明书操作规程及注意事项,并保存以供参考。 ◆由于不遵守本说明书中规定的注意事项,所引起的任何故障和损失均不在厂家的保修范 围内,厂家亦不承担任何相关责任。请妥善保管好所有文件。如有疑问,请联系我公司售后服务部门。 ◆如果您需要电子版说明书,请登陆本公司网站下载,或拨打服务热线,联系我公司售后 服务部门。 ◆在收到仪器时,请小心打开包装,检查仪器及配件是否因运送而损坏,如有发现损坏, 请联系我公司售后服务部门,并保留包装物,以便寄回处理。 ◆当仪器发生故障,请勿自行修理,请联系我公司售后服务部门。 以下标识将会在本手册或者仪器上出现: 注意保险丝接地端

公司简介 大连因斯特科技有限公司是专注于自动化领域的仪器仪表设计、制造、销售、安装、售后服务为一体的现代化高新技术企业,公司与国内外知名仪表企业精诚合作,采用进口原件研制生产具有国内领先、国际先进的自控仪表产品,开发“因斯特”品牌系列分析、流量、液位、压力等在线监测产品,长期与国外诸多知名仪表企业进行技术交流合作,产品不但性能品质过硬,还融入了符合中国思维模式的操作菜单界面。产品不断更新换代,自投入市场以来,广泛应用于自来水、污水处理、石油、化工、电力、冶金、环保、制药等行业,得到了广大用户的一致好评。公司拥有高级职称技术人员十余名,并长期与大连工业大学等高校合作,为企业不断输入技术、销售等多方面人才,确保满足不同客户的服务需求。 公司自主研发、生产、营销:PH计、ORP仪、化学膜溶解氧(DO)、荧光法溶解氧(DO)、浊度计(SS)、余氯检测仪、电导率、光电污泥浓度计(MLSS)、超声波污泥浓度计、超声波泥水界面仪、超声波液位计、超声波液位差计、超声波明渠流量计、电磁流量计(DN15-DN2000)、超声波流量计、COD在线监测仪、氨氮在线监测仪、总磷(TP)在线监测仪、总氮(TN)在线监测仪、总磷总氮一体机、六价铬在线检测仪、总铜在线分析仪、总镍在线分析仪、总铬在线分析仪、总镉在线分析仪、总砷在线分析仪、总铅在线分析仪、总汞在线分析仪、总锰在线分析仪、挥发酚在线分析仪、氰化物在线分析仪、氟化物在线分析仪。配套营销:有毒气体检测仪、压力变送器、投入式液位计、压差变送器、气体质量流量计等水处理行业在线分析仪表。

相关文档
最新文档