数列求和高考专题

数列求和高考专题
数列求和高考专题

数列求和高考专题

1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;

(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328

433

n n n T +-=?+. 【解析】

(II )解:设数列221{}n n a b -的前n 项和为n T ,

由262n a n =-, 12124n n b --=?,有()221314n

n n a b n -=-?,

故()23

245484314n n T n =?+?+?+

+-?,

()()23414245484344314n n n T n n +=?+?+?+

+-?+-?,

上述两式相减,得()2

3

1324343434314n n n T n +-=?+?+?+

+?--?

(

)()()1

112144314

14

3248.n

n n n n ++?-=

---?-=--?-

得1328

433

n n n T +-=

?+. 所以,数列221{}n n a b -的前n 项和为

1328

433

n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++

++

2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;

(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析

(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,①

当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③

2314n n n a a a ++++=- ()1n n a a -+,④

将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,,

a a a 是等差数列,设其公差为'd .

在①中,取4n =,则235644a a a a a +++=,所以23'a a d =-, 在①中,取3n =,则124534a a a a a +++=,所以122'a a d =-, 所以数列{}n a 是等差数列.

3.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;

(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .

【答案】(I)1

2.n n x -=(II )(21)21

.2

n n n T -?+=

(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +, 由(I)得111222.n n n n n x x --+-=-= 记梯形11n n n n P P Q Q ++的面积为n b . 由题意1

2(1)2(21)22

n n n n n b n --++=?=+?, 所以

123n T b b b =+++……+n b

=101325272-?+?+?+……+32

(21)2(21)2n n n n ---?++? ①

又0122325272n T =?+?+?+……+2

1(21)2

(21)2n n n n ---?++? ②

①-②得

121132(22......2)(21)2n n n T n ----=?++++-+?

=1132(12)

(21)2.212n n n ---+

-+?- 所以(21)21

.2

n n n T -?+=

4.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.

(Ⅰ)设2

2

*

1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;

(Ⅱ)设

()

22

*

11

,1,n

n

n n k a d T b n N ===

-∈∑,求证:2111.2n

k k

T d =<∑

【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】

(Ⅰ)证明:由题意得21n n n b a a +=,有22

112112n n n n n n n n c b b a a a a da +++++=-=-=,

因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.

(Ⅱ)证明:()()()2222

22

1234212n n n T b b b b b b -=-++-++

+-+

()

()

()242222222

21,n n d a a a n a a d d n n =++++=?

=+

所以()2222

111111111111

12121212n

n n k k k k T d k k d k k d n d ===????==-=?-< ? ?+++?

???∑∑∑. 5.【2016高考新课标3理数】已知数列{}n a 错误!未找到引用源。的前n 项和1n n S a λ=+错误!未找到引用源。,错误!未找到引用源。其中0λ≠.

(I )证明{}n a 错误!未找到引用源。是等比数列,并求其通项公式; (II )若531

32

S =

错误!未找到引用源。 ,求λ. 【答案】(Ⅰ)1

)1

(11---=

n n a λλλ;(Ⅱ)1λ=-.

【解析】

(Ⅰ)由题意得1111a S a λ+==,故1≠λ,λ

-=

11

1a ,01≠a . 由n n a S λ+=1,111+++=n n a S λ得n n n a a a λλ-=++11,即n n a a λλ=-+)1(1. 由01≠a ,0≠λ得0≠n a ,所以1

1-=+λλ

n n a a . 因此}{n a 是首项为

λ-11,公比为1-λλ的等比数列,于是1

)1

(11---=

n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1

(1--=λλ,由32315=

S 得3231

)1(15=--λλ,即=-5)1

(λλ321,

解得1λ=-.

6.【2016高考浙江理数】设数列{}n a 满足1

12

n n a a +-≤,n *∈N . (I )证明:()1

1

2

2n n a a

-≥-,n *∈N ;

(II )若32n

n a ??≤ ???

,n *∈N ,证明:2n a ≤,n *

∈N .

【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由1

12

n n a a +-

≤得1112n n a a +-≤,故

111222

n n n n n

a a ++-≤,n *

∈N , 所以

1122311

122312222222

2n

n n n n n a a a a a a a a --??????

-

=-+-+???+- ? ? ??????? 121

111222n -≤

++???+ 1<,

因此

()1122n n a a -≥-.

(II )任取n *

∈N ,由(I )知,对于任意m n >,

11211

12

12222222

2n m

n n n n m m n

m n n n n m m a a a a a a a a +++-+++-??????

-

=-+-+???+-

? ? ???????

11111

222n n m +-≤

++???+ 11

2

n -<, 故

1122

2m n

n n m a a -??<+? ??? 111322

22m

n n m

-????≤+???? ???

????

3224m

n ??

=+? ???

从而对于任意m n >,均有

3224m

n n a ??

<+? ???

由m 的任意性得2n a ≤. ①

否则,存在0n *

∈N ,有02n a >,取正整数00

03

4

2log 2n n a m ->且00m n >,则

003

4

002log 23322244n n a m m n n a -?????

????

与①式矛盾.

综上,对于任意n *

∈N ,均有2n a ≤. 7.【2016年高考北京理数】(本小题13分)

设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则?≠)(A G ;

(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析. 【解析】

(Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知?≠)(A G .

设{}

p p n n n n n n A G

对p i ,,1,0???=,记{

}

,i i i k n G k n k N a a *

=∈<≤>N .

如果?≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .

又因为p n 是)(A G 中的最大元素,所以?=p G . 从而对任意p n k N ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-???=-+11,1,,1,0.

因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a .

所以p a a

a a a a i i

p n p

i n n N ≤-=

-≤--∑=)(11

11.

因此)(A G 的元素个数p 不小于1N a a -. 8.【2016年高考四川理数】(本小题满分12分)

已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;

(Ⅱ)设双曲线22

21n y x a -= 的离心率为n e ,且253e = ,证明:121

433n n n n e e e --++???+>.

【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析.

【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n 3都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.

由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q +q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .

(Ⅱ)由(Ⅰ)可知,1n n a q -=.

所以双曲线2

2

21n

y x a -=的离心率

n e =

由53q =解得43

q =. 因为2(1)2(1)1+k k q q -->

1

*k q k -?N ()

. 于是1

121

1+1

n n n q e e e q q q --++鬃

?>+鬃?=-, 故1231

433n n

n e e e --++鬃?>

. 9.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,

第3小题满分8分.

若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;

(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,

n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;

(3)设{}n b 是无穷数列,已知*

1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.

【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. 【解析】(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =.

(3)[证]充分性:

当{}n b 为常数列时,11sin n n a b a +=+.

对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:

用反证法证明.假设{}n b 不是常数列,则存在k *

∈N ,

使得12k b b b b ==???==,而1k b b +≠.

下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==???=,但21k k a a ++≠. 设()sin f x x x b =--,取m *

∈N ,使得m b π>,则

()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.

取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==???==.

但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.

综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.

10.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]

x 表示不超过x 的最大整数,如[][]

0.9=0lg99=1,. (Ⅰ)求111101b b b ,,;

(Ⅱ)求数列{}n b 的前1 000项和.

【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】

(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =

111101[lg1]0,[lg11]1,[lg101] 2.b b b ======

(Ⅱ)因为0,

110,

1,10100,

2,1001000,

3,

1000.

n n n b n n ≤

=?

所以数列{}n b 的前1000项和为1902900311893.?+?+?=

易错起源1、分组转化求和

例1、等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.

(1)求数列{a n }的通项公式;

(2)若数列{b n }满足:b n =a n +(-1)n

ln a n ,求数列{b n }的前n 项和S n .

(2)因为b n =a n +(-1)n

ln a n =2·3n -1

+(-1)n ln(2·3

n -1

)

=2·3n -1

+(-1)n

[ln 2+(n -1)ln 3] =2·3

n -1

+(-1)n

(ln2-ln3)+(-1)n

n ln3,

所以S n =2(1+3+…+3n -1

)+[-1+1-1+…+(-1)n ]·(ln2-ln3)+[-1+2-3+…+(-1)n

n ]ln3.

当n 为偶数时, S n =2×1-3n

1-3+n

2ln3

=3n

+n

2ln3-1;

当n 为奇数时,

S n =2×1-3n

1-3-(ln2-ln3)+? ????n -12-n ln3

=3n

n -1

2

ln3-ln2-1.

综上所述,S n

=?????

3n

+n

2

ln3-1, n 为偶数,

3n

-n -1

2ln3-ln2-1,n 为奇数.

【变式探究】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *

. (1)证明:a n +2=3a n ; (2)求S n .

(1)证明 由条件,对任意n ∈N *

, 有a n +2=3S n -S n +1+3,

因而对任意n ∈N *

,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2. 又a 1=1,a 2=2,

所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *

,a n +2=3a n . (2)解 由(1)知,a n ≠0,所以

a n +2

a n

=3.于是数列{a 2n -1}是首项a 1=1,公比为3等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1.

于是S 2n =a 1+a 2+…+a 2n

=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3

n -1

)+2(1+3+…+3n -1

)

=3(1+3+…+3

n -1

)

n

-2

.

从而S 2n -1=S 2n -a 2n =n

-2

-2×3

n -1

=32

(5×3n -2

-1).

综上所述,3

223

(531),23(31)2n n n

n S n -??-??

=??-??是奇数,,是偶数.

【名师点睛】

在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式.

【锦囊妙计,战胜自我】

有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. 易错起源2、错位相减法求和

例2、已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =5a n -a n -1+3S n -1(n ≥2). (1)求数列{a n }的通项公式;

(2)若b n =(2n -1)a n ,求数列{b n }的前n 项和T n . 解 (1)3S n -3S n -1=5a n -a n -1(n ≥2), ∴2a n =a n -1,a n a n -1=1

2

, 又∵a 1=2,

∴{a n }是首项为2,公比为1

2的等比数列,

∴a n =2×(12)n -1=(12

)n -2=22-n

.

【变式探究】已知正项数列{a n}的前n项和S n满足:4S n=(a n-1)(a n+3)(n∈N*).

(1)求a n;

(2)若b n=2n·a n,求数列{b n}的前n项和T n.

解(1)∵4S n=(a n-1)(a n+3)=a2n+2a n-3,

∴当n≥2时,4S n-1=a2n-1+2a n-1-3,

两式相减得,4a n=a2n-a2n-1+2a n-2a n-1,

化简得,(a n+a n-1)(a n-a n-1-2)=0,

∵{a n}是正项数列,∴a n+a n-1≠0,

∴a n-a n-1-2=0,对任意n≥2,n∈N*都有a n-a n-1=2,

又由4S1=a21+2a1-3得,a21-2a1-3=0,

解得a1=3或a1=-1(舍去),

∴{a n}是首项为3,公差为2的等差数列,

∴a n=3+2(n-1)=2n+1.

(2)由已知及(1)知,

b n=(2n+1)·2n,

T n=3·21+5·22+7·23+…+(2n-1)·2n-1+(2n+1)·2n,①

2T n=3·22+5·23+7·24+…+(2n-1)·2n+(2n+1)·2n+1,②

②-①得,T n=-3×21-2(22+23+24+…+2n)+(2n+1)·2n+1=-6-2×

-2n-1

1-2

+(2n+1)·2n+1

=2+(2n -1)·2n +1

.

【名师点睛】

(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列;(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证. 【锦囊妙计,战胜自我】

错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列. 易错起源3、裂项相消法求和

例3 设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2

,S 2-3,S 3成等比数列,n ∈N *.

(1)求数列{a n }的通项公式; (2)令b n =

2

a n a n +2

,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有8T n <2λ2

+5λ成立,求实数λ的

取值范围.

解 (1)设等差数列{a n }的公差为d ,

由?

????

a 22-3a 7=2,S 2-32

=1a 2·S 3

????

?

?

a 1+21d -a 1+6d =2,

a 1+d -

a 1+d =3a 1+3d ,

即?

??

??

-2a 1+3d =2,

a 1+d a 1+d -=0,

解得???

??

a 1=2,d =2

或?????

a 1

=-2

5,d =2

5.

当a 1=-25,d =2

5时,S 2-3=

-17

5

没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n .

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

文科数学2010-2018高考真题分类专题六 数列 第十七讲 递推数列与数列求和答案

专题六数列 第十七讲 递推数列与数列求和 答案部分 1.C 【解析】∵113 n n a a +=-,∴{}n a 是等比数列 又243a =-,∴14a =,∴()1010101413313113 S -????-- ? ? ?????==-+ ,故选C . 2.D 【解析】【法1】有题设知 21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9, 76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=, …… ∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…, ∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,… 是首项为8,公差为16的等差数列, ∴{n a }的前60项和为1 1521581615142 ?+?+???=1830. 【法2】可证明: 14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 11234151514 1010151618302 b a a a a S ?=+++=?=?+ ?= 【法3】不妨设11a =,得23572,1a a a a ====???=,466,10a a ==,所以当n 为奇数时,1n a =,当n 为偶数时,构成以2a 为首项,以4为公差的等差数列,所以得 601830S = 3.A 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+=???=+=,故1210a a a ++???+=3515?=.故选A. 4.6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

高三数学总复习综合专题数列求和(学生版)

数列求和 概述:先分析数列通项的结构特征,再利用数列通项揭示的规律来求数列的前n 项和,即求和抓通项。 1、直接(或转化)由等差数列、等比数列的求和公式求和 思路:利用下列常用求和公式求和是数列求和的最基本最重要的方法。 ①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; ②等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ; ③)1(211+==∑=n n k S n k n ; ④)12)(1(6112++==∑=n n n k S n k n ; ⑤21 3)]1(21[+==∑=n n k S n k n 。 2、逆序相加法 思路:把数列正着写和倒着写再相加。(即等差数列求和公式的推导过程的推广) 例1:设函数2 22)(+=x x x f 的图象上有两点),(),,(211121y x P y x P ,若)(2121OP OP OP +=,且点P 的横坐标为2 1。 (1)求证:P 点的纵坐标为定值,并求出这个定值; (2)若; 求,),()3()2()1(*n n S N n n n f n f n f n f S ∈+?+++= 3、错位相减法

思路:设数列{}n a 是等差数列,{}n b 是等比数列,则求{}n n b a 的前n 项和n S 可用错位相减法。 例2:在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>。 (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 。 4、裂项相消法 思路:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。一般地,数列{}n a 为等差数列,且公差不为 0,首项也不为0,∑∑∑=++==+-?=-=n i i i i i n i n i i i a a d a a d a a 111111)11(1)11(11。 常见的通项分解(裂项)如下: ①)11(1)(1k n n k k n n a n +-?=+=,(当1≠k 时,通项裂项后求和是隔项相消的,注意观察剩余项) 1 11)1(1+-=+=n n n n a n ;(通项裂项后求和是逐项相消的,剩余的是所裂项的首项和末项) ②)1 21121(211)12)(12()2(2+--+=+-=n n n n n a n ; ③]) 2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n 等。 例3:求数列 ???++???++,11 ,,321 ,211 n n 的前n 项和。 补充练习:已知二次函数()y f x =的图象经过坐标原点,其导函数为26)('-=x x f ,数列{}n a 的前n 项

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

高三数学一轮复习 数列求和巩固与练习

高三数学一轮复习 数列求和巩固与练习 A .64 B .100 C .110 D .120 解析:选B.设等差数列公差为d ,则由已知得 ? ???? a 1+a 1+d =4a 1+6d +a 1+7d =28, 即????? 2a 1+d =42a 1+13d =28 , 解得a 1=1,d =2, ∴S 10=10a 1+10×92d =10×1+10×9 2 ×2=100. 2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{S n n }的前10项的和为( ) A .120 B .70 C .75 D .100 解析:选C.S n =n (a 1+a n )2=n (n +2),∴S n n =n +2. 故S 11+S 22+…+S 10 10 =75. 3.(原创题)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{ 1f (n ) }(n ∈N * )的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析:选A.f ′(x )=mx m -1 +a =2x +1,∴a =1,m =2,∴f (x )=x (x +1), 1f (n )= 1 n (n +1) =1n -1n +1,用裂项相消法求和得S n =n n +1 .故选A. 4.若S n =1-2+3-4+…+(-1)n -1 ·n ,S 17+S 33+S 50等于________. 解析:由题意知S n =????? n +12(n 为奇数), -n 2(n 为偶数). ∴S 17=9,S 33=17,S 50=-25, ∴S 17+S 33+S 50=1. 答案:1 5.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2 +3n (n ∈N * ),则a 12+a 23+…+ a n n +1 =________. 解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2 +3(n -1)]=2n +2,所以a n =4(n +1)2 ,当n =1时,也适合,所以a n =4(n +1)2 (n ∈N * ).于是 a n n +1 =

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高三数学高考数列求和(裂项及错位)

考点十二 数列求和(裂项及错位) [真题1] (2009山东卷)等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记1()4n n n b n N a + += ∈,求数列{}n b 的前n 项和n T . [命题探究] 创新是高考命题的要求,《考试大纲》提出命题要“创设比较新颖的问题情境”,同时,“在知识的交汇点处设计命题”是近年来高考命题的一种趋势。本题将数列的递推关系式以点在函数图像上的方式给出,体现了这种命题理念,也渗透了数列是定义在正整数集上的函数观念。第(2)问中对b 的赋值,旨在使问题变得简捷,也使设置的数列求和问题降低难度,达成“不求在细节上人为地设置障碍,而是在大方向上考查考生的数学能力”的命题指导思想。 [命题探源] 本题在设置等比数列的递推关系时,以点(,)n n S 在函数(0x y b r b =+>的图像上的方式给出,这种命题方式与2008年福建一道文科有相似之处:“已知{a n }是正数组成的数列,a 1=1 1n a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a ,求证:b n ·b n +2<b 2 n +1.”本题中增加了对参数r 的求解,因此,如何正确求出r 的值,成为本题的解题思考点,这恰好需要对递推 关系式{ 11,(1) ,(2) n n n S n a S S n -==-≥的正确理解(理角题目的条件:数列{n a }是等比数列,则11S a =满足数列递推式)。第(2)问求数列{}n b 的前n 项和n T , 所用的方法是错位相减法,也是课本中推导等比数列前n 项和公式时所用的方法。高考复习历来提倡回归课本,理解教材,例题的求解方法、公式的推导方法,都需要我们在回归课本中积累知识,提炼方法,形成能力。 [知识链接] 数列求和的几种常见题型与求解方法 (1)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ① 111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③ )(1 )0(1 n k n k k k n n -+= >++ **④ 2 1 1 1 1 1 1 1 1(1)(1)1k k k k k k k k k - = < < = - ++--. (2)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 设{a n }是等差数列,且公差为d,{b n }是等比数列,且公比为q,记S n =a 1b 1+a 2b 2+…+a n b n n n n n n n n b a b a b a b a b a b a S ++++++=----1122332211... ① =n qS 1112233221...+-----++++++n n n n n n n n b a b a b a b a b a b a ② =-n S q )1(+11b a 11232)...(+---+++++n n n n n b a b b b b b d (3)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. (4)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 《规范解答》 广东省汕头市高三数学复习系列 等差数列、等比数列的性质及应用 新人教A 版 一.课题:等差数列、等比数列的性质及应用 二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力. 三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识:

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

高考数学专题复习数列求和

第4讲数列求和 一、选择题 1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( ) A.n[1n-1] 2 B. 1n-1+1 2 C.1n+1 2 D. 1n-1 2 解析∵数列{(-1)n}是首项与公比均为-1的等比数列, ∴S n=11n1 11 = 1n-1 2 . 答案 D 2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65 C.61 D.56 解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1| +|a2|+…+|a10|=1+1+81+15 2 =2+64=66. 答案 A 3.在数列{a n}中,a n= 1 n n +1 ,若{a n}的前n项和为 2 013 2 014 ,则项数n为( ). A.2 011 B.2 012 C.2 013 D.2 014 解析∵a n=1 n n +1= 1 n - 1 n+1 ,∴S n=1- 1 n+1 = n n+1 = 2 013 2 014 ,解得n=2 013. 答案 C 4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830 解析当n=2k时,a2k+1+a2k=4k-1, 当n=2k-1时,a2k-a2k-1=4k-3,

∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61. ∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30 3+119 2 =30×61=1 830. 答案 D 5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100 这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676 D .1 300 解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252 ×13=676. 答案 C 6.数列{a n }满足a n +a n +1=1 2(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21 = ( ). A.21 2 B .6 C .10 D .11 解析 依题意得a n +a n +1=a n +1+a n +2=1 2,则a n +2=a n ,即数列{a n }中的奇数项、 偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×1 2+1=6,故选B. 答案 B 二、填空题 7.在等比数列{a n }中,若a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+… +|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以

高考数列求和解题方法大全

高考数列求和解题方法大全 数列求和问题是数列的基本内容之一,也是高考的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 4、 )12)(1(61 1 2++==∑=n n n k S n k n 5、 21 3)]1(21 [+==∑=n n k S n k n 例1. 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x , 由等比数列求和公式得 n n x x x x S +???+++=32= x x x n --1)1(=2 11)21 1(21--n =1-n 21 二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2. 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 当时1=x ,()()[]22 121127531n n n n S n =-+=-+++++= 当时1≠x 设 n n x n x x x x xS )12(7531432-+???++++=……………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得: n n n x n x x x S x )12(1121)1(1----?+=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ 例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令 )(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。 解析: a na a a a aS a na a a a S a a n b a a n n n n n n n n lg )32(lg )32(lg ,143232+++++=++++=∴?==

相关文档
最新文档