现代化猪分子育种技术

现代化猪分子育种技术
现代化猪分子育种技术

现代化猪分子育种技术

伴随着遗传学理论的发展,猪育种技术也经历了表型选择→育种值选择→基因型选择的过程。表型选择是依据性状表型值的高低进行选择,虽能获得一定进展,但速度慢,效果不稳定。育种值选择是借助一定的统计学方法,将性状的表型值进行剖分,并从中估计出可以真实遗传的部分,即育种值,从而提高了选种的准确性和效率。尤其是动物模型BLUP方法使得可以充分利用不同亲属的信息,预测出个体的育种值,是实际生产中广泛采用的方法。基因型选择是通过确定性状所对应的基因型进行选种,即分子育种。这种方法获得遗传进展的速度快,效果稳定。从目前的发展情况来看,分子育种主要是以分子标记为基础进行标记辅助选择,然后以转基因技术为基础进行转基因育种。这项工作的前提是检测影响猪经济性状的主效基因,并进行QTL精细定位。

1影响猪经济性状的主效基因和QTL

1.1影响猪产仔数的主效基因

1.1.1雌激素受体estrogenreceptor,ESR基因

1.1.2促卵泡素(FSH自亚基基因)

1.2影响肉质性状的主效基因

1.2.1氟烷基因Hal

1.2.2RN基因

1.2.3抑激素基因

1.3已发现的其他QTL

2标记辅助选择

标记辅助选择就是利用DNA水平的选择来补充以表型值或育种值为基础的选择。一般有两种情况:其一,对已知基因,通过测定其基因型进行选择,又叫基因辅助选择;其二,基因本身不知,但已知与之连锁的标记,可通过标记信息来间接选择与之连锁的基因。由于标记辅助选择不受环境的影响,且无性别的限制,因而允许进行早期选种。可缩短世代间隔,提高选择强度,从而提高选种的效率和选种的准确性。据此,可在QTL检测和定位的基础上,利用标记的信息来辅助基因的导入,尤其是对于低遗传力的性状,如繁殖性状,有助于加快其遗传进展。基因诊断盒技术,从广义上讲,也是标记辅助选择的一部分。基因诊断盒的应用可以说是当前猪标记辅助选择最成功的例子,如利用高温应激综合症MHS 基因诊断盒检测猪的高温应激综合症,利用雌激素受体ESR基因诊断盒固定猪的高产仔数基因等。

3基因敲除

基因敲除geneknockout又称基因打靶,是通过外源DNA与染色体DNA之间的同源重组,精细地定位修饰和改造基因DNA片段的技术。它是在胚胎干细胞技术和同源重组技术基础上发展起来的,具有位点专一性强,打靶后目的片段可以与染色体DNA共同稳定遗传

的特点。

3.1基因打靶在猪育种上的意义

用基因打靶的方式对猪的基因进行修饰和改造,可产生一些人类需要的新品种。如动物的myostatinMSTN基因,对肌纤维的形成具有负调控作用。实验证明,双肌牛即是由于MSTN基因外显子3的个别碱基突变造成的。若能在猪上敲除MSTN基因,将可产生骨骼肌明显增大的双肌品种,提高生产性能。

3.2基因打靶技术的优点

与传统的转基因技术相比,基因打靶技术所要求的动物数量大大减少。从PPL公司的研究报告看,采用传统转基因技术每获得一个转基因羊后代,需要51.4只羊,而采用基因打靶技术,每获得1头转基因羊后代只需要20.8只羊。并且采用基因打靶技术,可以对后代动物的性别预先进行控制。基因敲除技术在调节和改进转基因动物的表达方面也有重要作用。显微注射法生产的转基因动物存在着随机整合,这种整合容易造成染色体沉默效应,抑制转基因的表达。此外,处于或靠近插入位点的染色体序列也会产生这种沉默效应,如果在特定位点引入单拷贝的突变,即基因敲除,就可克服这种负效应。

4中国“超级猪”计划

中国“超级猪”生产性能目标:计划经过8~10年的改进,实现每头母猪年产瘦肉量1400kg,生产猪日增重1250g,每窝仔猪上市14头,饲料转化率2.6。计划采取的分子育种措施:1利用猪高产仔数优良基因诊断盒,将高产仔数基因固定在中国“超级猪”品种中;2利用猪早期增重优良基因的DNA标记,提高中国“超级猪”父系的日增重和饲料利用率;3利用猪双肌基因的DNA标记和“肥胖”基因的DNA标记增加中国“超级猪”的瘦肉率;4利用猪高温应激综合症MHS基因诊断盒,将中国“超级猪”的高温应激综合症基因加以控制;5利用猪基因组扫描技术预测最佳的杂种优势,选择最优配套组合。

5结束语

虽然分子育种离实际应用还有一定距离,已发现的主基因有可能还存在不为人知的有害作用,但我们相信,随着分子生物技术、计算机技术的发展,以及猪高密度基因图谱的构建,猪的分子育种必将使养猪业生产突飞猛进。

种猪育种方案

恒利源种猪有限公司育种方案 遗传育种工作是公司生产经营的重要工作之一,公司各部门都要树立为育种工作服务的观念。种猪选育是遗传育种工作的重要组成部分,为确保公司选种工作有序进行,特制订下列种猪选育方案。 一、种猪选种方案的有关说明 1、目的:为了规范曾祖代、祖代和父母代种猪的选种程 序与选种标准;加强各猪场的选留标准工作,使选留的后代产生最大的生产和经济效益,特制订本方案。 2、适用范围:荣昌恒利源原种猪场。 3、人员分工:恒利源公司育种部门管理负责本方案的拟 定以及执行情况的监督、检查与指导。猪场场长带领本场员工严格执行方案,若执行过程中产生疑问或遇到困难时,须及时向集团公司养殖事业部咨询。 4、选留程序: 猪的性状是在其个体发育过程中逐渐显现的,因此要求按“周上产节律”安排工作,对各阶段进行严格选留,以求适时选择生产性能高的种猪。 5、记录管理: 所有记录由育种录入员存档管理,并将收集的数据核对无误后在1周内录入计算机保存。负责向公司引种客户提供详细准确的原种档案,将一些与育种相关的数据录入

Headsman软件。 6、去势: 曾祖代、祖代猪场,每次选种不合格的公猪及时去势。父母代猪场对所有公猪一律进 行去势处理。 7、罚责 凡违反以上相关管理规定,使其情节轻重,处以100—500元罚款,由育种部门管理监督执行。 二、种猪测定选育原则 (1)、严格测定、准确评估、强度选择: (2)、育种值和表观性状相结合; (3)、父、母品系分开选择 (4)、与国内顶尖猪场交换血缘,加强合作,进行联合育种,走出去请进来的方式进行合作交流联络 (5) 与全国著名高牧和科研院所合作进行肉质选育,选育符合具有中国特色的新品系。 三、种猪测定选育流程 (1)、第一阶段选留与淘汰(初生初选,含:LP5选择) A、对1—3日龄初生仔猪进行初选,合格种猪编耳号,(窝号+个体号)+场别+年号+品种字母(15位)有中国剪耳法和美国剪耳法二种。 B、初生重小于0.9千克的仔猪和畸形应计入总产仔活仔数

现代化猪分子育种技术

现代化猪分子育种技术 伴随着遗传学理论的发展,猪育种技术也经历了表型选择→育种值选择→基因型选择的过程。表型选择是依据性状表型值的高低进行选择,虽能获得一定进展,但速度慢,效果不稳定。育种值选择是借助一定的统计学方法,将性状的表型值进行剖分,并从中估计出可以真实遗传的部分,即育种值,从而提高了选种的准确性和效率。尤其是动物模型BLUP方法使得可以充分利用不同亲属的信息,预测出个体的育种值,是实际生产中广泛采用的方法。基因型选择是通过确定性状所对应的基因型进行选种,即分子育种。这种方法获得遗传进展的速度快,效果稳定。从目前的发展情况来看,分子育种主要是以分子标记为基础进行标记辅助选择,然后以转基因技术为基础进行转基因育种。这项工作的前提是检测影响猪经济性状的主效基因,并进行QTL精细定位。 1影响猪经济性状的主效基因和QTL 1.1影响猪产仔数的主效基因 1.1.1雌激素受体estrogenreceptor,ESR基因 1.1.2促卵泡素(FSH自亚基基因) 1.2影响肉质性状的主效基因 1.2.1氟烷基因Hal 1.2.2RN基因 1.2.3抑激素基因 1.3已发现的其他QTL 2标记辅助选择 标记辅助选择就是利用DNA水平的选择来补充以表型值或育种值为基础的选择。一般有两种情况:其一,对已知基因,通过测定其基因型进行选择,又叫基因辅助选择;其二,基因本身不知,但已知与之连锁的标记,可通过标记信息来间接选择与之连锁的基因。由于标记辅助选择不受环境的影响,且无性别的限制,因而允许进行早期选种。可缩短世代间隔,提高选择强度,从而提高选种的效率和选种的准确性。据此,可在QTL检测和定位的基础上,利用标记的信息来辅助基因的导入,尤其是对于低遗传力的性状,如繁殖性状,有助于加快其遗传进展。基因诊断盒技术,从广义上讲,也是标记辅助选择的一部分。基因诊断盒的应用可以说是当前猪标记辅助选择最成功的例子,如利用高温应激综合症MHS 基因诊断盒检测猪的高温应激综合症,利用雌激素受体ESR基因诊断盒固定猪的高产仔数基因等。 3基因敲除 基因敲除geneknockout又称基因打靶,是通过外源DNA与染色体DNA之间的同源重组,精细地定位修饰和改造基因DNA片段的技术。它是在胚胎干细胞技术和同源重组技术基础上发展起来的,具有位点专一性强,打靶后目的片段可以与染色体DNA共同稳定遗传

作物分子设计育种(精)

目前,对大多数作物的育种来说,育种家可供利用的亲本材料有几百甚至上千份,可供选择的杂交组合有上万甚至更多。由于试验规模的限制,一个育种项目所能配置的组合一般只有数百或上千,育种家每年花费大量的时间去选择究竟选用哪些亲本材料进行杂交;对配制的杂交组合,一般要产生2000个以上的 F2 分离后代群体,然后从中选择1%~2%的理想基因型,中选的 F2 个体在遗传上是杂合体,需要做进一步的自交和选择,每个中选的 F2 个体一般需产生100个左右的重组近交家系才能从中选择到存在比例低于1%的理想重组基因型。育种早期选择一般建立在目测基础上,由于环境对性状的影响,选择到优良基因型的可能性极低,统计表明,在配制的杂交组合中,一般只有1%左右的组合有希望选出符合生产需求的品种,考虑到上述分离群体的规模,最终育种效率一般不到百万分之一。因此常规育种存在很大的盲目性和不可预测性,育种工作很大程度上依赖于经验和机遇。 生物个体的表型是基因型和环境共同作用的结果,植物育种的主要任务是寻找控制目标性状的基因,研究这些基因在不同目标环境群体下的表达形式,聚合存在于不同材料中的有利基因,从而为农业生产提供适宜的品种。生物数据可以来自生物的不同水平,如群体水平、个体水平、孟德尔基因水平和 DNA 分子水平等,各类生物数据为作物育种提供了大量的信息。尤其随着分子生物学和基因组学的飞速发展,生物信息数据库积累的数据量极其庞大,但由于缺乏必要的数据整合技术,可资育种工作者利用的信息却非常有限,作物重要农艺性状基因( quantitative trait locus,QTL )的定位结果也难以用于指导作物育种实践。作物分子设计育种将在庞大的生物信息和育种家的需求之间搭起一座桥梁,在育种家的田间试验之前,对育种程序中的各种因素进行模拟筛选和优化,提出最佳的亲本选配和后代选择策略,从而大幅度提高育种效率。 1 作物分子设计育种相关基础研究现状及发展趋势

全国种猪遗传评估方案

全国畜牧兽医总站文件 牧站(种)[2000]60号 关于印发《全国种猪遗传评估方案(试行)》的通知 各有关单位: 根据我国目前种猪生产发展的实际情况,组织区域性乃至全国性的种猪联合育种工作势在必行。而统一的种猪遗传评估是联合育种工作的基础。为此,我站在实际调研的基础上,组织全国有关种猪遗传育种专家制定了《全国种猪遗传评估方案(试行)》,该方案经过三年多广泛征求国内外有关专家的意见,几经讨论修改,已基本成熟,现印发你们试行。 附件:全国种猪遗传评估方案(试行) 二000年五月三十一日

全国种猪遗传评估方案 (试行) 一、目的和意义 改革开放以来,由于政策得当和科技投入不断提高,使我国养猪业得到了高速发展,成为世界猪肉生产第一大国。猪肉是我国人民动物蛋白的主要来源,在肉食品消费中占67%左右。猪肉生产直接影响到我国人民的生活水平,同时随着农业结构调整,养猪业已成为增加农民收入和广大农民致富的重要手段,逐步成为农村经济的支柱产业。随着社会与经济的发展,我国养猪业发展面临着良好的机遇和严峻的挑战,在相当长的时期内主要表现为"三个不可逆转",即人口增长的不可逆转;耕地减少的不可逆转;人民生活水平提高,对畜产品的需求日益增多的不可逆转。国家农业发展纲要提出,到2010年肉类产量达到7000万吨(其中猪肉占70%左右)。要在我国人均粮食产量不可能有明显增加,即精饲料资源不充足的条件下,达到这一目标十分艰巨。出路只有一条,即大幅度提高畜牧生产的科技水平,向科技要效率,向科技要产量。 在影响养猪业生产效率的诸多因素中,猪种的遗传素质起主导作用,只有充分利用现有的猪种资源,培育出具有高生产性能的品种、品系或种群,才能在同样饲养条件和投入下,获得养猪生产最大的产出和效益。因此,猪品种的遗传改良非常重要。建国以来,特别是改革开放以来,我国猪的育种技术水平有了很大的提高,并为养猪业发展做出了重要贡献。但从总体上看,仍落后于发达国家,主要表现在:育种技术水平低、良种繁育体系不够完善、种猪质量不高和良种率低等。目前所普遍应用的传统和常规育种技术历史上曾对我国猪的遗传改良起了重要作用,但若再继续下去,要实现21世纪初养猪业的飞跃,将十分困难。为了增强我国养猪业可持续发展的能力,大力开展猪育种新技术的研究与推广工作很有必要。 对我国养猪行业调查表明,我国的外种猪场大多数都在不同程度地进行育种

(完整版)高中生物育种方法原理汇总

一多倍体育种 定义:通过增加染色体组数以改造生物遗传基础,从而培育出符合人类需要新品种的方法。 多倍体是指由受精卵发育而来并且体细胞中含有三个或三个以上染色体组的个体。 多倍体育种利用人工诱变或自然变异等,通过细胞染色体组加倍获得多倍体育种材料,用以选育符合人们需要的优良品种。 最常用、最有效的多倍体育种方法是用秋水仙素或低温诱导来处理萌发的种子或幼苗。秋水仙素能抑制细胞有丝分裂时形成纺锤体,但不影响染色体的复制,使细胞不能形成两个子细胞,而染色数目加倍。 多倍体产生机制:通过卵细胞第二极体的保留或受精卵早期有丝分裂的抑制而实现。 多倍化后,多个等位基因互作产生了更多的组合和更多样的功能变化,从而比二倍体亲本拥有更高的杂合性和更迅速的环境适应力,表现为抗逆性增强及克服远缘杂交的不育性等特点 经典理论认为,植物天然多倍体基因组主要起源于体细胞有丝分裂异常、未减数分裂配子融合和种间杂交三个途径。 诱变方法: 人工诱变染色体加倍的方法很多,可分为物理诱变法、化学诱变法和生物诱变法。 物理法包括:机械损伤、高低温和射线照射等 生物学诱导途径包括:不同倍性材料间杂交育种,胚乳培养,细胞杂交等 化学诱变:主要利用化学诱变剂与细胞发生一系列生化反应阻止有丝分裂的正常进行,使分裂后期的染色体全部进入一个子代细胞中而产生多倍体。化学药剂包括秋水仙素、萘乙烷、异生长素、吲哚乙酸、氨磺灵...... 二杂交育种 1.概念:是将两个或多个品种的优良性状通过交配集中一起,再经过选择和培育,获得新品种的方法。 2.原理:基因重组。通过基因重组产生新的基因型,从而产生新的优良性状。 3.优点:可以将两个或多个优良性状集中在一起。 4.缺点:不会产生新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。 原则 ①亲本应有较多优点和较少缺点,亲本间优缺点力求达到互补。 ②亲本中至少有一个是适应当地条件的优良品种,在条件严酷的地区,亲本最好都是适应环境的品种。 ③亲本之一的目标性状应有足够的遗传强度,并无难以克服的不良性状。 ④生态类型、亲缘关系上存在一定差异,或在地理上相距较远。 三诱变育种

作物分子育种

一、作物分子育种 作物育种基本任务:1.在研究和掌握作物形状遗传变异规律的基础上,发掘研究和利用作物种植资源;2.选育优良品种或杂种以及新作物;3.繁殖生产用种。 作物分子育种:即在经典遗传学和分子生物学等理论指导下,将现代生物技术手段整合于传统育种方法中,实现表现型和基因型选择的有机结合,培育优良新品种。 分子标记育种:又称为分子标记辅助选择,是利用与目标基因紧密连锁的分子标记,在杂交后代中准确鉴别不同个体基因型,从而进行辅助选择育种。特点:能有效结合基因型与表现型鉴定,显著提高选择的准确性。转基因育种:利用基因重组DNA技术,将功能明确的基因通过遗传转化手段导入受体品种的基因组,并使其表达期望形状的育种方法。特点:能打破基因不同物种交流障碍,克服传统育种的困难问题。 分子设计育种(刚起步):目的——通过各种技术的集成与整合,在育种家的田间试验之前,对育种程序中的各种因素进行模拟、筛选和优化,确立目标基因型,提出最佳亲本选配和后代选择策略,提高育种试验可见性。我国作物分子育种中存在的问题:1.基因资源挖掘力度有待加强;2.实用分子标记和具重要育种价值的基因十分贫乏;3.作物分子育种技术尚待突破;4.通过分子育种培育的突破性品种不多,产业化程度不高;5.作物分子育种的组织体系和实施机制需要创新。 作物分子育种意义:1.发展作物分子育种是保障国家安全的重大需求;2.全面实现作物分子育种相关技术突破;3.加速作物分子育种研发和产业化。 常规育种和分子育种比较:1.常规育种表现型选择时,会受时空因素影响,而分子育种不会;2.常规育种来源广,育种亲本贫乏;分子育种基因来源广,基因资源丰富。3.常规育种基因局限于种内,少数局限于亚种间;分子育种基因交流不受物种限制。4.常规育种目标性状有不明确性;分子育种目的基因功能已知,目标性状明确。5.最明显特征:常规育种选择时间长;分子育种选择时间短,可调控基因及其产物的功能、表达。 分子育种与传统育种关系:分是传的延伸和发展,二者是互补、嫁接、结合的关系,常规育种与分子育种形成了现代作物育种。 二、作物分子标记育种 遗传标记:指可追踪染色体,染色体某一节段,某个基因座在家系中传递的任何一种遗传特性。两个特点:可遗传性、可识别性。 在植物遗传育种研究中可被应用的遗传标记应具备以下四个条件:1.多态性高;2.最好表现为共显性,能够鉴别出纯合基因型和杂合基因型;3.对主要农艺性状影响小;4.经济方便,容易观察记载。 植物中常用的遗传标记: 形态学标记:即植物的外部形态特征,主要包括肉眼可见的外部特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。 细胞学标记:即植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。生化标记:利用电泳技术对蛋白质、酶等生物大分子进行鉴定。主要包括同工酶和等位酶标记。 分子标记 分子标记的类型:RFLP、RAPD、AFLP、SSR 分子标记:在生物系统和进化研究中,每个能反应遗传变异的,能提供系统学信息的多态位点称为一个分子标记,在遗传育种研究中每个与感兴趣的性状或目的基因链锁的多态性位点也称为一个分子标记。特点:1.表现稳定(DNA形式);2.数量多;3.多态性高;4.表现中性,不影响目标性状表达;5.区别Aa和AA;6.成本不太高。 分子标记技术:能提供分子标记的分子生物学技术。特点(优点):1.分子标记技术选用的分子信息比较稳定;2.提供遗传信息量是无限的;3.能很好区分同源性和相似性;4.能提供物种间比较共同的尺度;5.打开了遗传学研究的大门。 三、DNA PEX(异基磺原甲酸)提取方法的具体步骤包括:1.研磨:加入液氮研磨后,放入液氮预冷的离心管,尽量用2ml管,研碎材料不超过离心管一半;2.水浴:加800ul的PEX提取液,充分混匀,65℃水浴45分钟,期间混匀3次,动作不能剧烈;3.离心:12000rpm室温离心10分钟,取灭过菌管,将上清液转入,再次离心;4.沉淀DNA:离心后上清液再次转移,在装有转入上清液的离心管中加1/10体积的3mol/l醋酸钠和1倍体积的异丙醇,混匀,放入-20℃的冰箱中至少沉淀30分钟;5.洗DNA:离心15分钟,倒掉上清液,70%酒精洗所得的DNA,分两次进行;6.室温干燥:用适量的TE溶解DNA;7.再次离心:DNA中的杂质和不溶物会 沉于离心管底部,将上清转移到5ml的离心管中,管壁标记材料名称; 8.检测DNA质量及浓度,放入冰箱。 DNA提取注意事项:1.提取材料尽量要幼嫩叶片;2.整个提取过程应低温, 一般利用液氮、冰浴;3.当DNA处于溶解状态,尽量减弱溶液涡旋,动 作要柔缓。 DNA降解的外源因素:1.外界物理因素:温度、湿度;2.化学因素:PH 值、水解反应、氧化反应;3.生物因素:酶解及微生物侵染等作用。这些 因素都直接与DNA的构型分子组成有关。 四、植物DNA的分子和检测 在琼脂糖凝胶电泳中影响DNA迁移的因素:DNA分子质量、DNA分子 构型、琼脂糖、凝胶浓度、电场强度、EB影响。 聚丙烯酰胺凝胶电泳电泳板的制备:①清洗电泳板②处理电泳板③组装 电泳板④电泳板灌胶。电泳板灌胶是最关键的一步。 影响泳动速度的因素:①电场强度②缓冲溶液的PH③缓冲溶液的离子强 度④电渗⑤焦耳热⑥筛孔 五、RAPD标记 RAPD标记技术的实验原理: RAPD标记技术的应用:①RAPD标记可用于植物亲缘关系及种质资源遗 传多样性分析②RAPD标记构建分子标记遗传连锁图谱③对优异基因定 位及优异性状的选择④构建DNA指纹图谱及品种鉴定⑤鉴定及标记外援 染色体片段⑥分子标记辅助育种 RAPD标记技术的特点:1.优点:①RAPD标记技术中使用的随机引物, 不需要预先了解目的基因和相应的序列,引物价格便宜,成本较低;② RAPD标记技术操作技术简单,试验周期短、能在较短时间筛选大量样品 ③选用引物没有种属限制④需要模板量较少⑤无需借助于有伤害性的同 位素,耗费的人力物力少⑥灵敏度高⑦可以覆盖整个基因组⑧RAPD产物 有大于50%的条带扩增于单拷贝区。2.缺点:①用于二倍体生物时,不能 很好的区别杂合子和纯合子②在某种情况下,实验重复性不高,实验结果 可靠性低③使用效果受生物种类的影响 如何简单设计一个实验,运用RAPD标记分析植物间的遗传多样性? 六、SSR标记 SSR标记技术实验原理:SSR即简单重复序列,又称微卫星DNA,根据 微卫星DNA两端的单拷贝序列设计一堆特异引物,利用PCR技术,扩 增每个位点的微卫星序列,通过电泳分析核心序列的长度多态性。一般的, 同一类微卫星DNA可分布于整个基因组的不同位置上,而通过其重复的 次数不同以及重复程度的不完全而造成每个座位的多态性。SSR标记的 多态性丰富,重复性好,其标记呈共显性,且在基因组中分散分布,因此 可作为遗传标记。 SSR标记技术的应用:SSR标记技术已被广泛用于遗传图谱构建,品种 指纹图谱绘制及品种纯度检测,以及目标性状基因标记等领域。特别在人 类和哺乳动物的分子连锁图谱中,微卫星标记已成为取代RFLP标记的第 二代分子标记。 SSR标记技术特点:1.优点:①数量丰富,覆盖整个基因组,揭示的多态 性高②具有多等位基因的特性,提供的信息量高③以孟德尔方式遗传,呈 共显性,可鉴别出杂合子和纯合子④每个位点由设计的引物顺序决定⑤结 果重复性高,稳定可靠⑥DNA用量少,对DNA质量要求不高,操作简 单⑦SSR标记一般检测到的是一个单一的多等位基因位点⑧SRR序列的 两侧序列常较保守,在同种而不同遗传型间多相同⑨需要事先知道重复序 列两侧的DNA序列的信息来设计引物,因此引物开发成本高,但一旦开 发,同行受益无穷。2.缺点:①开发和合成新的SRR引物投入高、难度 大②现有的SSR标记数量有限,不能标记所有的功能基因,不能构建饱 和的SRR遗传图谱③SSR多态性的检测和应用很大程度上依赖PCR扩增 的效果④SSR座位突变率高,对变异反应非常敏感等。 SSR标记如何设计引物:①建立基因组DNA的质粒文库②根据欲得到的 SRR类型设计并合成寡聚核苷酸探针,通过菌落杂交筛选所需重组克隆 ③对阳性克隆DNA插入序列测序④根据SSR两侧序列设计并合成引物⑤ 以待研究的植物DNA为模板,用合成的引物进行PCR扩增反应⑥高浓 度琼脂糖凝胶,非变性或变性聚丙烯酰胺凝胶电泳检测其多态性。 七、AFLP AFLP标记技术的原理:AFLP技术是基于PCR反应的一种选择性扩增限 制性片段的方法。由于不同物种的基因组DNA大小不同,基因组DNA 经限制性内切酶完全消化后,在限制性片段两端连接上人工接头作为扩增 的模板。实际的引物与接头和酶切位点互补,并在3’加上2~3个选择性 碱基,因此在基因组被酶切后的无数片段中,只有一小部分限制性片段被 扩增,即只有那些与引物3’端互补的片段才能进行扩增,称为选择性扩 增。为了对扩增片段的大小进行灵活的调节,一般采用两个限制性内切酶。 扩增产物经放射性同位素标记、聚丙烯酰胺凝胶电泳分离,可产生数量丰 富的带型标记,然后根据凝胶上DNA指纹的有无来检测多态性。分辨率 高,是一种十分理想和高效的遗传标记。 所用的两种酶:酶切频率较高的限制性酶,酶切频率较低的稀有酶;(4 个识别位点的Mse I,6个识别位点的EcoR I) AFLP引物包括3部分:5’端的与人工接头序列互补的核心序列,限制性 内切酶特定序列和3’端的选择性碱基。 AFLP的应用:①可用于构建分子遗传连锁图谱②可用于构建指纹图谱, 进行品种鉴定③可用于种内和种间的遗传多样性研究④可用于分子标记 辅助选择育种⑤可用于基因定位基因克隆的研究。 AFLP标记技术特点;1.优点:AFLP不需要预先知道DNA序列的信息, 因此可以用于没有任何分子生物学研究基础的物种,概括其特点如下:① 用于AFLP分析的限制性内切酶与选择性碱基组合的数目和种类很多② AFLP多态性远远超过其他分子标记③多数表现孟德尔方式遗传④模板 用量少,且对模板浓度的变化不敏感⑤AFLP标记中由于扩增片段较短, 其分辨率很高⑥由于利用特定引物扩增,退火温度高,因而假阳性低,可 靠性高⑦AFLP分析的大多数扩增片段与基因组的单一位置相对应,可用 于分析基因组DNA及克隆相应的DNA片段,可作为遗传图谱和物理图 谱的位标和联系两者的桥梁。2.缺点:①AFLP标记技术试验中对样品 DNA的质量要求较高②内切酶质量要求比较高③技术难度高,成本比较 昂贵④很难鉴别等位基因⑤受专利保护,目前用于分析的试剂盒价格昂 贵,分析成本高⑥实验中产生的大量谱带,对其分析和解释有时存在困难, 需要借助计算机软件的帮助。 DNA甲基化:是由DNA甲基化酶催化的一种天然修饰方式。甲基化是 基因组DNA的一种主要的表观遗传修饰方式,是调控基因组功能的重要 手段。本质上只影响表型而不影响基因型改变。 RFLP标记:限制性片段长度多态性标记 PCR:聚合酶链式反应 RAPD标记:随机扩增多态性DNA标记 AFLP标记:扩增片段长度多态性标记 SSR标记:简单序列重复标记

现代生物技术在育种中的应用及展望

现代生物技术在育种中的应用及展望。 现代生物技术也称生物工程是在分子生物学基础上建立的创建新的生物类 型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。现代 生物技术综合基因工程、分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、有机化学、无机化学、物理化学、物理学、信息学及计算机科学 等多学科技术,可用于研究生命活动的规律和提供产品为社会服务等。随着基 因组计划的成功,在系统生物学的基础上发展了合成生物学与系统生物工程学,开发生物资源,涉及农业生物技术、环境生物技术、工业生物技术、医药生物 技术与海洋生物技术,乃至空间生物技术等领域,将在21世纪开发细胞制药厂、细胞计算机、生物太阳能技术等发挥关键作用。 现代生物技术在农业育种上的应用主要有:作物组织培养技术、体细胞杂 交技术、农作物人工种子、转基因育种技术、分子标记育种技术等。农作物组 织培养技术主要用于品种培育和良种繁育,其次用于无性繁殖作物的脱毒和快 速繁育以及种质资源的保存;体细胞杂交可以创造出更有经济价值或更广泛适 应性的作物新品种;人工种子可对一些自然条件下不结实或种子昂贵的作物进 行繁殖,缩短育种年限,并可人为控制作物生长发育和抗性,防止种性退化;转基因育种是对农作物进行基因转移,使其获得新的优良品性,培育出具有抗寒、抗旱、抗盐、抗病虫害等抗逆特性及品质优良的作物新品系;分子标记辅 助育种技术是利用与目的性状基因紧密连锁的的分子标记,鉴定和筛选具有目 的性状的种质资源和育种后代,或分析和评价种质资源、亲本之间的亲缘关系 的一种方法,与传统育种依表现型进行选择相比,该项技术具有选择效率高, 结果准确等特点,特别是对隐性基因控制的性状选择更为有效。 现代生物技术在棉花育种中已经广泛应用。细胞工程中, 通过胚珠培养、 体细胞培养等技术获得了一些新种质材料;基因工程方面, 随着农杆菌介导法、 基因枪轰击法及花粉管通道法等技术的突破, 在棉花抗病虫害和及抗除草剂等 方面的育种获得成功, 相应的新品种已开始了商业化生产。我国棉花生物技术 在抗棉铃虫等方面达到世界领先水平,其他方面尚有差距。 现代生物技术中的单倍体育种技术、基因工程育种、分子标记辅助育种等 生物技术手段与常规育种技术的有机结合提高了玉米育种的效率, 开辟了玉米 育种的新途径。利用单倍体育种技术选育自交系已经成为自交系选育的重要手段、利用分子标记划分玉米杂种优势群和杂种优势模式已经得到了大家的认可 并在育种实践中加以应用, 转基因玉米已经逐步从实验室走向田间, 并将很快实 现产业化。而高成本、掌握难、重复性和通用性差等问题仍然制约着生物技术 在玉米育种中应用。 现代生物技术在育种中的应用,大大加快了育种速度,缩短了育种年限, 同时也为品种改良开辟了新的道路,是现代育种中不可或缺的技术手段。应加 大对现代生物技术的投入与研究力度,因为我国的生物技术水平,在现阶段,

GBS猪育种手册范本

目录 一、系统简介 (1) 二、个体号规范 (1) 三、测定性状 (2) 四、选择指数的计算公式 (2) 五、遗传进展分析 (3) 六、BLUP模型定义 (3) 七、某些性状的定义及计算方法 (6)

一、系统简介 现代家畜育种的主要特征是 ●全面采用现代动物遗传育种的理论和方法来指导实际育种工作; ●广泛应用计算机进行信息管理与分析。 这二者是互相依存的,现代动物遗传育种的理论和方法的实施离不开计算机的支持,而计算机的应用如不与前者相结合就不能充分发挥其作用。将这二者相结合的最佳媒介就是计算机软件,也就是说,将现代动物遗传育种的理论、方法和技术软件化,再通过计算机(结合计算机的信息管理功能)将其体现出来。 种猪育种数据管理与分析系统集种猪个体基本资料和生产性能测定数据的采集、管理与遗传统计分析为一体,应用现代遗传育种理论和方法,将猪育种过程规范化、程序化、定量化。本软件即是实施育种措施的必备工具,又是开展现代育种工作的指南。适用于大中型种猪场或地域性联合育种组织。 本系统可完成种猪个体遗传评定、种猪选配方案制定、群体遗传进展分析、群体遗传参数估计等基本育种工作,还可根据需要打印多种用于育种分析的报表和种猪卡。 二、个体号规范 ●耳号是场内猪只的编号,由6位阿拉伯数字组成,由各场自行设定,例如可以将前四 位设为窝号,后两位设为窝内个体序号。对小于6位数的数字,系统会自动在其前面 加0,以补齐6位数。 在同一场(子公司)、同一年度和同一品种内,耳号不可重复。 ●一个个体的个体号(ID)由15个字符组成,其结构如下:

XX-XXXXX-XX-XXXXXX 耳号 出生年份 出生场代码 品种代码 其中场代码和品种代码需由系统管理员事先设定,应符合国家统一规定。 一个个体的个体号应是全国唯一的。 三、测定性状 系统中目前有7种模型可供选择,均为个体动物模型,分别是: - 日龄-背膘厚两性状模型:用于对目标体重日龄和背膘厚同时进行育种值估计; - 总产仔数模型:用于对总产仔进行育种值估计; - 目标体重日龄模型:用于对目标体重日龄进行育种值估计; - 背膘厚模型:用于对背膘厚进行育种值估计; - 饲料转化率模型:用于对饲料转化率进行育种值估计; - 日增重模型:用于对日增重进行育种值估计; - 瘦肉率模型:用于对瘦肉率进行育种值估计。 四、选择指数的计算公式 ∑=+=n i i i A w I 1 ?100

现代猪育种技术

现代猪育种技术

现代猪育种技术 摘要:随着遗传学理论的发展,猪的选种由表型选择发展到育种值选择,再到基因型选择(即标记辅助选择和基因诊断盒),计算机及网络技术的飞速发展和应用,使得性能测定的形式也发生着巨大的变化。猪育种技术的进步直接导致了选种准确性和育种效率的提高。可以说,现代猪的育种已经不再是某一单项技术的应用,而是遗传学理论、计算机技术、系统工程和育种学家实践经验的一个集合。 其中,“超级猪”生产计划的提出与实施便是现代猪育种技术应用于生产的一个示例。关键词:畜牧学;育种;综述;性能测定;基因诊断盒;超级猪中国分类号:S828.2 文献标识码:A 文章编号:0258-7033(2003)01-0041-02 1 猪主要经济性状的选择 1.l内用性状 1.1.1 生长与食欲:生长速度是猪育种中的重要性状。由于日增重遗传力高,且容易度量,因此个体选择的效果较好。同时由于日增重与耗料比之间有较高的负遗传相关,选择日增重可使两者都受益。一些研究表明,猪的食欲对生长速度和饲料转化率都有一定影响。食欲的下降可能会限制日增重和饲料转化率的长期选择进展,低食欲还会使哺乳母猪不能获得足够的能量而影响泌乳。因此在猪的育种实践中,食欲也是一个应该予以考虑的性状。 1.1.2 瘦肉:用瘦肉率或瘦肉量表示。虽然瘦肉率是一个高遗传力性状,但因其在活体无法直接度量,因此一般是通过选择那些在活体易于度量而又与瘦肉率有较高遗传相关的性状(如活体背膘)来进行间接选择,或者是根据同胞等亲属的成绩来进行选择。 1.1.3 脂肪:猪的脂肪包括皮下脂肪、腹内脂肪、肌间脂肪和肌内脂肪,不同部位的脂肪,其脂肪酸的类型有所不同。对脂肪的选择目标是,降低皮下脂肪和腹内脂肪,保持适量的肌间和肌内脂肪以保持良好的肉质。 1.1.4 肉质与风味:猪的肉质包括pH值、肉色、系水力、嫩度、大理石纹、

高中生物 几种育种方法的比较教案 新人教版必修2

育种的方法和应用 生物育种是一门很复杂的技术,针对不同的生物应采用不同的育种方式,要对各种育种方式进行比较,选择简易、可操作的方式。同一种育种方式应用于不同的生物也会有不尽相同的育种过程,所以我们无论在生产实践中还是有关习题训练中都应灵活应用。 一、几种育种的方法的比较 在高中阶段所介绍的育种方法主要有:诱变育种、杂交育种、多倍体育种、单倍体育种、细胞工程育种(组织培养育种)、基因工程育种(转基因育种)、植物激素育种等。 1、杂交育种 (1)原理:基因重组。 (2)方法:连续自交,不断选种。(不同个体间杂交产生后代,然后连续自交,筛选所需纯合子) (3)发生时期:有性生殖的减数分裂第一次分裂后期或四分体时期, (4)优点:使同种生物的不同优良性状集中于同一个个体,具有预见性。’ (5)缺点:育种年限长,需连续自交才能选育出需要的优良性状。 (6)举例:矮茎抗锈病小麦等。 2、诱变育种 (1)原理:基因突变。 (2)方法:用物理因素(如x射线、1射线等)、化学因素(如亚硝酸、秋水仙素等各种化学药剂)、生物因素或空间诱变育种(用宇宙强辐射、微重力等条件)来处理生物。 (3)发生时期:有丝分裂间期或减数分裂第一次分裂间期(DNA分子复制的时候)。 (4)优点:能提高变异频率,加速育种进程,可大幅度改良某些性状,创造人类需要的变异类型,从中选择培育出优良的生物品种;变异范围广。 (5)缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制;改良数量性状效果较差,具有盲目性。 (6)举例:青霉素高产菌株、太空椒、高产小麦、“彩色小麦”等。 3、多倍体育种 (1)原理:染色体变异。 (2)方法:秋水仙素处理萌发的种子或幼苗(秋水仙素能抑制细胞有丝分裂过程中纺锤体的形成)。 (3)优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。 (4)缺点:结实率低,发育延迟。 (5)举例:三倍体无子西瓜、八倍体小黑麦。 4、单倍体育种 (1)原理:染色体变异。 (2)方法:花药离体培养获得单倍体植株,再用秋水仙素等诱导剂人工诱导染色体数目加倍。 (3)优点:自交后代不发生性状分离,能明显缩短育种年限,加速育种进程。 (4)缺点:技术相当复杂,需与杂交育种结合,其中的花药离体培养过程需要组织培养技术手段的支持,多限于植物。 (5)举例:“京花一号”小麦。 5、细胞工程育种 (1)方式:植物组织培养植物体细胞杂交细胞核移植 (2)原理:植物细胞的全能性植物细胞膜的流动性动物细胞核的全能性

猪遗传育种现状及现代种猪场发展

我国是一个养猪大国,在世界养猪生产中占有重要地位,但我们不是养猪强国。我国的现代化遗传育种工作比较落后,迄今还没有一个完全国际化的现代化商品瘦肉型种猪,核心种猪来源长期依赖进口,且长期处于“引种→维持→退化→再引种”的不良循环,导致整个繁育体系受制于其他养猪先进国家,在引种过程中不仅耗费大量的人力财力,还会导致一些疾病的引入(圆环、蓝耳),给我国带来严重的经济损失。要改变现在这种状况,必需转变我们的思想,对我们引进的种猪进行不断的选择育种,使其保持优秀的生产性能,并按照人们的需要进行选育,提高其产品性能。 猪育种就是从遗传上来改良种猪和商品猪,形成新的品种(系),主要包括纯种(系)的选育提高,新品种(系)的育成,杂种优势的利用等,从而提高养猪业的产量和质量。在过去的30多年来,猪育种的主要目标是降低背膘厚,提高胴体瘦肉率,提高生长速度。现在降低背膘厚这一目标已基本实现,二元杂交商品瘦肉型猪胴体瘦肉率为60%左右。遗传育种的方向正在发生变化,除要求提高瘦肉生长率、饲料报酬外,更强调提高繁殖率和肌肉品质。随着遗传学理论的发展,猪的选种由表型选择发展到育种值选择,再到基因型选择(即标记辅助选择和基因诊断盒),计算机及网络技术的飞速发展和应用,使得性能测定的形式也发生着巨大的变化。猪育种技术的进步直接导致了选种准确性和育种效率的提高。可以说,现代猪的育种已经不再是某一单项技术的应用,而是遗传学理论、计算机技术、系统工程和育种学家实践经验的一个集合。目前众猪场大都已经采用计算机管理种猪数据,但基本上停留在记录日常数据的水平上,没有利用已有的数据作进一步的统计分析,也没有与选种选配的实际应用相结合,育种工作主要停留在制种、用种上面,还没有真正的育种。因此在现代化的种猪场开展有计划的育种工作显得十分的必要和迫切。 关键词:猪育种;性能测定;基因诊断盒;生物技术;分子遗传育种 1 猪育种技术的发展 动物育种有关的遗传学理论大致经历了孟德尔遗传学→群体遗传学→数量遗传学→分子数量遗传学的发展历程,即四代遗传学。伴随着遗传学理论的发展,猪的育种技术的发展也经历了表型值选择→育种值选择→基因型选择的过程。 1. 1表型值选择顾名思义,表型值选择就是依据性状表型值的高低进行选择,这是畜禽育种早期的选种方法。虽然依据表型值进行选种也能获得一定的进展,但其进展的速度是缓慢的,效果也是不稳定的。 1. 2 育种值选择随着数量遗传学理论的发展,育种学家们可以借助一定的统计学方法将性状的表型值进行剖分,并从中估计出可以真实遗传的部分,即育种值,使畜禽育种由表型值选择发展为育种值选择,从而提高了选种的准确性和效率。尤其是动物模型BLUP方法的应用,使得有种值的估计可以充分利用不同亲属的信息,在对场、年度及其他环境效应进行估计的同时,预测出个体的育种值,从而指导科学、准确地选种。

分子育种题库

分子育种题库 一、名词解释: 分子育种:根据育种目标,通过在DNA分子水平上的操作,对植物基因组进行改良(如:引入外源基因和改良内源基因),创造符合人类需求的新性状(如:抗虫、抗病、抗除草剂等),具有新性状的植物,或通过适当的选择和繁殖直接形成一个新品种,或用它作为种质通过杂交育种途径育成一个新品种。 植物育种:根据育种目标,用育种技术,诱导、创造和重组遗传变异,选育出符合育种目标(高产、优质、抗逆)的在遗传上稳定一致的优良新品种(基因型),并繁殖出足够量的种子或种苗供生产应用。分子标记辅助育种:利用分子生物学技术,对一个目标性状(如抗病、抗虫)进行分子标记(如RFLP、SSR、RAPD),当分子标记与性状有连锁时,根据分子标记表型从DNA水平上直接选择目标性状。这种高效和精确地选取目标性状的技术称为分子标记辅助育种。 转基因育种:根据育种目标,从供体生物中分离目的基因,经DNA重组与遗传转化或直接运载进入受体作物,经过筛选获得稳定表达的遗传工程体,并经过田间试验与大田选择育成转基因新品种或种质资源。 基因组:单倍体生物中所含的遗传物质(DNA 或RNA)总和。 基因组学: 启动子:DNA分子上被RNA聚合酶、转录调节因子等,识别并结合,形成转录起始复合物的区域。终止子: 内含子:DNA与成熟RNA 间的非对应区域。 外显子:DNA与成熟RNA 间的对应区域。 DNA的变性和复性: 转化体: 转化受体:是指将接受外源目的基因的植物细胞、组织、器官乃至植株。 载体:用于运载外源目的基因的DNA分子 共整合载体系统:是指一个含T-DNA和Vir相容性Ti质粒构成的单质粒系统 双元载体系统:也称反式载体,是指由两个分别含T-DNA和Vir相容性Ti质粒构成的双质粒系统。Southern杂交: Northern杂交: Ti质粒:农杆菌中有一种致瘤质,.简称为Ti 质粒报告基因:常是一些可起酶学反应的可容易被测定的基因 标记基因:常是抗性基因,如抗菌素基因 T-DNA:在Ti质粒中,有一段DNA序列,它能从农杆菌细胞转移到植物细胞中,并插入在植物染色体中而稳定遗传下去。这一段DNA叫转移DNA,简称T-DNA。 转基因植物安全性: 遗传标记:可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。 同工酶:是指一个以上基因座位编码的酶的不同形式 分子标记:指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA 间的差异。 RFLP: RAPD: SSR: AFLP: AP-PCR: SCAR: ISSR: STS: CAPS: VNTR: RGA: 遗传图谱:通过遗传重组所得到的基因在具体染色体上线性排列图,又称为遗传连锁图。 物理图谱:指利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱。 比较基因组学:是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科 同线性:是指一个物种某染色体或染色体片段上的两个或多个标记被定位于另一个物种的同源染色体上, 但这些标记间的相对顺序有时有变化。 共线性:则指同源染色体或染色体片段不仅其标记, 而且其标记间排列顺序都是保守的。 基因定位:将具有某一表现型性状的基因(主效/微效)或与该基因相关的标记定位在遗传连锁图或相应的染色体上,称为基因定位 RIL: NIL: DH: QTL: 近等基因系: 连锁累赘: 基因聚合(基因垒集): MAS: BSA分析法: RACE: PFGE: 二、简答题: 1.转基因育种包括哪些基本过程?与杂交育种

未来种猪育种策略.

未来种猪育种策略我国种猪育种的总体策略(更多养猪知识,请单击右侧更多养猪技术)是充分利用已有的优良种猪资源,在种猪生产和研究的优势地区建立区域性联合育种体系,积极开展分子育种与遗传评估有机结合的现代猪育种技术的应用研究,推动公司化育种体系的建立,实现种猪质量的快速、可持续遗传改良。总体战略是:建立能够长期进行瘦肉型种猪持续改良的繁育体系,实现“以种猪选育为基础,核(更多养猪知识,请单击右侧更多养猪技术)心群种猪自给、有计划地少量引种、保持国际同期种猪水平”的总体目标。围绕这一目标,以消化、吸收、创新和推广为主体,新种质资源引进为辅,积极创建具有自我发展潜力的国家种猪遗传评估系统和瘦肉型猪育种体系,同时重点开展了以下5个方面的研究。建立区(更多养猪知识,请单击右侧更多养猪技术)域性和国家级联合育种体系采用区域性联合育种的方式,在几个主要种猪生产地区,如北京、华南、华中、西南等地,选择有条件的技术依托单位,组织有关养猪企业共同建立联合育种体系,加快以区域性中心公猪站为纽(更多养猪知识,请单击右侧更多养猪技术)带的种猪遗传联系网的建立,选育我国自己的优质瘦肉型种猪专门化品系,利用地方资源选育高繁殖力和肉质优良的新品系。在此基础上,逐步形成国家级的联合育种体系。建立优质瘦肉型种猪遗传评估体系利用现代信息技术建立标准化的种猪信息库,开发基于“浏览器/Web服务器/数据库系统”3层网络体系结构的网上种猪遗传评估系统,推动大、中、小型种猪场遗传联系的建立,建立跨场间遗传联系,提高场内和跨场间遗传评估的准确性,开展区域性跨场间遗传评估、遗传参数评估、经济加权系数的研究。育中国瘦肉型猪新品系和配套系在建立国家级区域性联合育种体系基础上,开展跨场间新品系的培育与配套系选育,达到资源合理利用、优势互补的目的。实现大规模跨场间种猪配合力测定,筛选适合规模饲养、适应不同生产条件的高效杂交组合、区域性优化组合的配套系。建立优质瘦肉型种猪可持续的高效繁育体系建立以“引进种猪资源核心群→育种核心群→种猪扩繁群→种猪生产→商品肉猪生产”的种猪繁育生产体系,探索在现有种猪生产体系中,以大型养猪企业为依托的公司化育种体系,通过“技术中心+育种公司+种猪公司+种猪专业户+养猪户”的新模式,协调不同功能群生产者的利益,开展长期的种猪

分子标记辅助育种技术

分子标记辅助育种技术 第一节 分子标记的类型和作用原理 遗传标记是指可以明确反映遗传多态性的生物特征。 在经典遗传学中,遗传多态性是指等位基因的变异。 在现代遗传学中,遗传多态性是指基因组中任何座位上的相对差异。 在遗传学研究中,遗传标记主要应用于连锁分析、基因定位、遗传作图及基因转移等。 在作物育种中,通常将与育种目标性状紧密连锁的遗传标记用来对目标性状进行追踪选择。 在现代分子育种研究中,遗传标记主要用来进行基因定位和辅助选择。 1、形态标记 形态标记是指那些能够明确显示遗传多态性的外观性状。如、株高、穗型、粒色等的相对差异。 形态标记数量少,可鉴别标记基因有限,难以建立饱和的遗传图谱。 有些形态标记受环境的影响,使之在育种的应用中受到限制。 2、细胞学标记 细胞学标记是指能够明确显示遗传多态性的细胞学特征。如染色体的结构特征和数量特征。 核型:染色体的长度、着丝粒位置、随体有无。 可以反映染色体的缺失、重复、倒位、易位。 染色体结构特征 带型:染色体经特殊染色显带后,带的颜色深浅、宽窄 和位置顺序,可以反映染色体上常染色质和异染 色质的分布差异。 染色体数量特征—是指细胞中染色体数目的多少。染色体数量上的

遗传多态性包括整倍体和非整倍体变异。 细胞学标记 优点:克服了形态标记易受环境影响的缺点。 缺点: (1)培养这种标记材料需花费大量的人力物力; (2)有些物种对对染色体结构和数目变异的耐受性差,难以获得相应的标记材料; (3)这种标记常常伴有对生物有害的表型效应; (4)观察鉴定比较困难。 3、蛋白质标记 用作遗传标记的蛋白质分为酶蛋白质和非酶蛋白质两种。 非酶蛋白质:用种子储藏蛋白质经一维或二维聚丙烯酰胺凝胶电泳,根据显示的蛋白质谱带或点,确定其分子结构和组成的差异。 酶蛋白质:利用非变性淀粉凝胶或聚丙烯酰胺凝胶电泳及特异性染色检测,根据电泳谱带的不同来显示酶蛋白在遗传上的多态性。 蛋白质标记的不足之处: (1)每一种同工酶标记都需特殊的显色方法和技术; (2)某些酶的活性具有发育和组织特异性; (3)标记的数量有限。 4 、 DNA标记 DNA分子标记是DNA水平上遗传多态性的直接反映。 DNA水平的遗传多态性表现为核苷酸系列的任何差异,包括单个核苷酸的变异。 二、分子标记的类型及作用原理

(整理)全国种猪遗传评估方案

全国种猪遗传评估方案 (试行) (2000 年 3 月) 一、目的和意义 改革开放以来,由于政策得当和科技投入不断提高,使我国养猪业得到了高速发展,成为世界猪肉第一生产大国。猪肉是我国人民动物蛋白的主要来源,在肉食品消费中占68%左右。猪肉生产直接影响到我国人民的生活水平。随着社会与经济的发展,我国养猪业发展面临着严峻的形势和巨大的挑战,在相当长的时期内主要表现为“三个不可逆转”,即人口增长的不可逆转;耕地减少的不可逆转;人民生活水平提高,对畜产品的需求日益增多的不可逆转。国家农业发展纲要提出到2010年,肉类产量达到7000万吨(其中猪肉占70%)。要在我国人均粮食产量不可能有明显增加,即精饲料资源不充足的条件下,完成这一目标是十分艰巨的。出路只有一条,即大幅度提高畜牧生产的科技水平,向科技要效率,向科技要产量。 在影响养猪业生产效率的诸多因素中,猪种的遗传素质是起主导作用的,只有充分地利用现有的猪种资源,培育出具有优良生产性能的品种、品系或种群,才能在同样饲养条件和投入下,获得养猪生产最大的产出和效益。因此,猪品种的遗传改良显得格外重要。新中国成立以来,特别是改革开放以来,我国猪的育种技术水平有了长足的进步,并为养猪业发展做出了重要贡献。但从总体上看,我国猪的育种水平仍落后于发达国家,集中表现在:育种技术水平低、良种繁育体系不完善、种猪质量不高和良种率低等。目前的育种工作基本处在传统和常规的技术水平,这样的技术水平历史上曾对我国猪的遗传改良起了重要作用,但若再以这种传统的育种技术去实现21世纪初养猪业的飞跃,将是十分困难的。为了增加我国养猪业可持续发展的能力,有必要大力开展关于猪育种新技术的研究与推广工作。

相关文档
最新文档