胎架立杆承载力计算分析_姚刚

胎架立杆承载力计算分析_姚刚
胎架立杆承载力计算分析_姚刚

 2006年9月重庆大学学报(自然科学版)Sep.2006第29卷第9期Journa l o fC hongqing Universit y(N at u r a l Science Edition)Vo.l29 No.9

文章编号:1000-582X(2006)09-0134-04

胎架立杆承载力计算分析*

姚 刚1,刘伟亮1,周忠明2

(1.重庆大学土木工程学院,重庆 400030;2.广厦重庆第一建筑(集团)有限公司,重庆 400051)

摘 要:胎架是指主要起承重受力作用的脚手架,在模板工程、钢结构安装工程、桥梁工程中应用广泛.为了保证结构施工中胎架的安全,快速准确地对胎架进行设计计算具有重要的工程意义.与常用的单双排脚手架计算不同,胎架承载力的计算需要通过设计确定.通过分析影响承载力的各种因素及胎架破坏形式,运用参考规范的概率极限状态设计法和ANSYS程序分析的方法,得出了给定胎架参数下的承载力数值表格,对胎架立杆的搭设具有指导作用.

关键词:胎架;承载力;脚手架

中图分类号TU712文献标识码:A

胎架是指主要起承重受力作用的脚手架,在模板工程、钢结构安装工程、桥梁工程中应用广泛.与常用单双排脚手架不同,由于其支撑的结构形式、重量差别很大,胎架的设计差异较大.作为施工时的临时结构,计算方法应简便可靠的确定其承载能力同时保证经济合理.

1 胎架承载力计算分析

1.1 胎架破坏形式分析

大量工程实践表明,胎架的破坏主要是立杆失稳导致脚手架坍塌,包括整体失稳和局部失稳.整体失稳破坏时,立柱与水平杆组成的空间框架结构顺惯性矩较小的弱轴平面内呈大波鼓曲现象,各排立柱的鼓曲方向一致,失稳曲线的半波长度大于步距.局部失稳破坏时,立柱在步距之间发生小波鼓曲,鼓曲方向可能在立柱与水平杆组成的2个方向的竖向平面内,也可能沿任意方向,失稳曲线的半波长度接近等于步距[1-2].

从胎架构造形式分析[3],当以相等的步距、柱距、排距搭设时,立柱的局部承载力高于整体承载力,但胎架的长宽比较为接近,平面接近于正方形而不是长条形时,二者承载力值应相差不多.当胎架搭设时步距、柱距有变化,局部的脚手架较稀疏时,立柱受荷不均则容易发生局部失稳破坏.

从受力状态分析,胎架主要承受钢桁架等结构的自重,结构往往通过千斤顶、枕木等传力给胎架,此时胎架的受力面积较小,荷载传递集中在局部,而其他作为施工操作面的地方荷载相对较小,胎架整体受力不均匀,易发生局部失稳破坏的情况,因此施工中应尽量加大荷载传递至胎架的接触面积.

无论哪种破坏,胎架的承载能力主要由立杆决定,立杆的承载能力由其整体或局部失稳时的临界荷载决定.

1.2 胎架计算的特殊性

胎架是由水平杆、立杆组成的多层多跨框架结构,立杆稳定计算问题,实际上是一个节点为半刚性的空间框架稳定计算问题,但和一般的框架相比其特殊点是:

1)构架的不严格性.胎架的构造型式、尺寸参数和杆件设置常随应用对象和施工要求的不同而变化,有时需要局部改变杆件设置:它的搭设也不像工程结构那样严格地按照设计图纸施工,在搭设中又常常由于各种原因,例如施工人员认识不足、要求不严,架设材料供应不足,操作工人的经验和主观意见等而改变构架参数,例如整架或局部地改变构件尺寸、随意减少杆件等.而基础和立杆支垫不好和立杆偏斜过大的情况较为普遍地存在.这些情况的存在,都将导致脚手架的设计计算依据与施工的实际情况不符,甚至差别显著.

2)节点性能的差异性.连接杆件的扣件节点,在荷载作用下具有相当的抗转动能力,是一种半刚性节点.其刚

*收稿日期:2006-03-05

作者简介:姚刚(1963-),男,四川营山人,重庆大学副教授,博士,主要从事建筑施工技术教学与研究的研究.

性与扣件的质量和拧紧程度密切相关,也直接影响到胎架的结构刚度.在一定扭力矩范围内(<50N m),扭力矩愈大则脚手架节点刚性愈强,承载能力也可相应得到提高,试验证明,扣件螺栓拧紧扭力矩达40~50N m时,脚手架节点才具有必要的和稳定的抗转动刚度.

3)结构和材料缺陷的难控性.脚手材料是周转使用工具,在反复搭设、使用、拆除、运输和存放的过程中,会使其杆配件产生程度不同的损伤,如锈蚀、弯曲变形、连接件裂纹、螺栓滑扣等,难以严格控制和消除上述这些初始缺陷和使用过程中出现的变化.

4)荷载的变异性.胎架的结构静载和施工活荷载分布情况的变化较大,局部荷载集中和受力偏心较大的情况较为普遍,不容易严格掌握和控制.

上述特殊性,均对胎架的使用安全不利,同时也给脚手胎架的设计计算造成许多难以控制的影响因素.尽管胎架这种结构物并不比建筑工程结构更为复杂和多变化,但它是作为施工设施,而不是作为一种工程结构物来考虑的,长期以来没有组织力量为其设计计算进行必要的和全面的研究,对有关构架型式和参数、荷载情况和使用效果,以及事故的频率和原因等方面缺少系统积累和统计资料,因此,尚不完全具备对上述变异性较大的诸多影响因素进行全面概率分析的条件,这就使得建立科学的设计计算方法有较大的难度.对于应该严格按照构造要求实施的因素,应在施工中给与保证,设计计算中均不予考虑.

2 立杆稳定计算

2.1 参考规范的概率极限状态设计法

2.1.1 计算方法及公式

参考单双排脚手架立柱的计算方法,采用按概率极限状态设计法[3-6]的要求,立杆的稳定性应按下列公式计算:

不组合风荷载时:N

φA

≤f;

组合风荷载时:N

φA +Mw

W

≤f.

式中N为计算立杆段的轴向力设计值;f为钢材抗压强度设计值;φ为轴心受压构件的稳定系数,应根据长细比λ查表取值;λ为长细比,λ=l0/i,l0为计算长度,l0=kμh为计算长度附加系数,其值取1.55,μ为考虑脚手架整体稳定因素的单杆计算长度系数,取值在1.5~2.0之间,h为立杆步距,I为截面回转半径;A为立杆的截面面积;Mw为计算立杆段由风荷载设计值产生的弯矩.

2.1.2 计算方法及公式分析

规范中的计算方法实际是一种简化实用的计算方法,力求简单、正确、可靠.

1)把脚手架的整体稳定计算简化为对单根立柱稳定的计算.具体做法是将立柱步距乘以大于1.0的系数作为立柱稳定的计算长度,称这个系数为立柱计算长度系数μ,μ是反映脚手架各杆件对立杆的约束作用,单、双排脚手架根据步距、排距、连墙件竖向间距查表确定,对于胎架来说,由于水平杆一般间距较小,对立杆的约束作用较强,胎架整体刚度较强,可以取μ为1.5的最小值.μ值综合了影响脚手架整体失稳的各种因素,也包含了立杆偏心受荷(初偏心=53mm)的实际工况.

2)关于施工荷载的偏心作用.施工荷载一般是偏心地作用于脚手架上,作业层下面各排立杆所分担的施工荷载并不相同,工作面上水平杆的加密、支撑作用增强有利于施工荷载的均匀传递.由于在一般情况下, N值计算可以忽略施工荷载的偏心作用,立杆可按施工荷载平均分配计算.

3)脚手架立杆计算长度附加系数k的确定.由容许应力法转化为概率极限状态设计法时,根据使新旧规范安全度水平相同的原则,并假设新旧规范采用的荷载和材料强度标准值相同,结构抗力调整系数按承载能力极限状态推导并转化为立杆长度计算附加系数k予以考虑.

2.1.3 计算结果及分析

取立杆柱距l1、排距l2分别为0.5m、0.8m、1.0m、1.2m、1.5m、1.8m,水平杆步距h分别为0.8m、1.0m、1.2m、1.5m、1.8m、2.0m,代入公式计算单位面积的极限承载力结果如表1.

取立杆柱距l1为0.5m时的计算数据用图1、图2形式分析如下:

图1 承载力与立柱间距l

2

关系

从图1、图2中可以看出,在不考虑结构自重的情况下,减小立杆柱距、排距、水平杆步距对增大胎架的承载力有显著的作用,但是随着步距、间距的增大,承

135

第29卷第9期 姚 刚,等:胎架立杆承载力计算分析

载力的下降变缓,柱距、步距对承载力的影响是同时的,仅仅减小某一参数的数值,承载力的提高不明显.如在步距为1.5m的情况下,立杆排距从1.5m减小到0. 8m,承载力从35kN/m2增加到66kN/m2,若同时将步距减小到1.2m,承载力从35kN/m2增加到97kN/m2,效果比减小一个参数明显.由于公式是将整体稳定转化为单根立柱稳定的计算,所以上述计算结果没有完全考虑到胎架整体的尺寸.

表1 脚手架单位面积的极限承载力kN/m2

l 1/m l

2

/m

h/m

0.81.01.21.51.82.0

0.5270.0208.0156.0105.074.061.0

0.8169.0130.097.066.046.038.0

1.0135.0104.078.05

2.037.030.0

0.51.2113.086.065.044.031.025.0

1.590.069.05

2.035.025.020.0

1.875.058.043.029.021.017.0

0.8106.081.061.041.029.024.0

1.085.065.049.033.023.019.0

0.81.270.054.041.027.019.016.0

1.556.043.03

2.022.015.01

3.0

1.847.036.027.018.013.011.0

1.068.05

2.039.026.019.015.0

1.256.043.03

2.022.015.01

3.0 1.01.545.035.026.017.012.010.0

1.838.029.02

2.015.010.08.0 1.21.247.036.027.018.01

3.011.0

1.538.029.02

2.015.010.08.0

1.831.024.018.01

2.09.07.0 1.51.530.02

3.017.012.08.07.0

1.825.019.014.010.07.06.0

1.81.821.016.01

2.08.06.04.

5

图2 承载力与步距h关系

2.2 运用ANSYS程序进行结构分析

2.2.1 计算模型假定

取如图3所示的空间钢管框架结构单元为计算模

型,为使诸多计算模型简化,取柱距、排距相等,与不同的步距组合计算,扣件连接简化为全刚性节点,胎架整体按照弹性分析计算,在单位面积荷载下计算钢管立柱应力,反推立柱极限承载力.荷载根据脚手板简支在一个方向的水平横杆上按照面积平均分配.

图3 计算模型

2.2.2 计算结果及分析

柱距、排距、步距的数据采用同前,结果如表2.

136重庆大学学报(自然科学版) 2006年

表2 单位面积极限承载力

KN /m 2

l /m h /m

0.81.01.21.51.80.598.297.396.596.195.80.823.223.123.022.922.81.011.911.811.811.711.71.26.96.96.96.86.81.5

3.6

3.6

3.5

3.5

3.5 从表2数据中可以看出,水平杆的间距及步距的变化对承载力影响不明显,这是基于计算模型为线弹性分析,所以计算得出的承载力变化很小.但是表中数

据很明显的说明了立杆间距的变化对承载力有显著影响.

3 计算结果的比较及结论

1)在步距很小时(h <1.5m )可以发现,程序计算的结果反而小于规范计算的结果.这是因为在用ANSYS 进行结构计算时,提取的最大应力为某一点的应力,相当于把胎架破坏的准则标定为边缘屈服,而实际上,钢管截面应力有一个塑性发展的过程,材料的塑性使结构仍然能抵抗荷载作用,规范公式则考虑了塑性发展过程,所以计算结果比程序计算所得的值要大;

2)胎架的整体尺寸越大,稳定性越好,但当立柱间距较大时,胎架的破坏向局部稳定破坏发展,应验算局部稳定;3)水平杆间距对胎架立杆稳定承载力影响不显著,尤其是在考虑自重情况下,因此增大胎架承载力不

应采用减小步距的方法.但水平杆起到约束作用,保证立杆整体、局部稳定的条件,因此也不宜较大,应满足要求使立柱的长细比l <250;

4)由于胎架的搭设形式本身具有比单、双排脚手

架较好的整体刚度,在此种情况下剪刀撑、横向支撑起到的作用大小有待进一步分析,但它加强了钢管框架结构的刚性,保证计算模型中的假定与实际情况较为接近,对于胎架来说是必不可少的构造措施;

5)胎架搭设时承载力取上述计算结果的较小值比较合理.即步距h ≤1.5m 时,采用程序计算结果,当h >1.5m 时,采用规范计算结果.

同时应注意胎架主要承受所支撑结构的自重,通过千斤顶、枕木等传递给胎架,因此荷载应根据结构自重的实际传力面积计算,而不是整个胎架的面积.对此,胎架可采用局部加强的方式,以不同的立杆间距、步距混合搭设,更能保证结构施工阶段的安全.参考文献:

[1] 杜荣军.建筑施工脚手架实用手册[M ].北京:中国建筑

工业出版社,1994.

[2] 余宗明.新型脚手架的结构原理及安全应用[M ].北京:

中国铁道出版社,2001.

[3] 陈惠发.钢框架稳定设计[M ].周绥平译.上海:上海世

界图书出版公司,2001.

[4] J G Jl 30-2001.建筑施工扣件式钢管脚手架安全技术规

范[S ].

[5] 江正荣.建筑施工计算手册[M ].北京:中国建筑工业出

版社,2001.

[6] G B50017-2003.钢结构设计规范[S ].

Load -carryi ng Capacity Calcul ate and Anal ysis of St agi ng Stake

YAO Gang 1

,LI U W ei -li a ng 1

,ZHOU Zhong -m i n g

2

(1.Co llege of C iv il Engineeri n g ,Chongqing University ,Chongqing 400030,China ;

2.Guangsha Chongq i n g FirstConstr uction (group )Co .td ,Chongqing 400051,Ch i n a )

Abst ract :Fa lse w ork is a k ind of scaff o ldwo r k using l o ad bea ring.It has w ide l y use in scaffoldwo r k and bridge w ork and

stee l constr uction .Fo r assuring fa lse w ork safe t y on str uct u r e construc tion ,it is very i m po rtant t o qu ick l y and accu r a tely calcu l a te false w ork .Load -ca rr y ing capacit y of stag i n g of should be calcu late by specia l design ,wh ich is fro m co mm on used sing le r ow or doub le r ow s false w or k .The au t h ors analyze all kinds of fac t o r and fa il u re m ode r e lated to carr y i n g ca -pacit y and find the resu lt of num erica l list by ANSYS prog r a m and code w hen t h e para m ete r of stag i n g is deter m ina ted .It has i m po rtant ga i d ance role in erection o f fa lse wo r k po le .K ey w ords :stag i n g ;carr y i n g capacity ;scaffo l d w ork

(编辑 姚 飞)

137

第29卷第9期 姚 刚,等:胎架立杆承载力计算分析

满堂支撑架结构计算书

扣件式满堂支撑架安全计算书 一、计算依据 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑施工临时支撑结构技术规范》JGJ300-2013 6、《建筑施工高处作业安全技术规范》JGJ80-1991

二、计算参数

(图1)平面图 (图2)纵向剖面图1 (图3)纵向剖面图2

三、次楞验算 恒荷载为: g1=1.2[g kc+g1k e]=1.2×(0.022+0.35×250/1000)=0.131kN/m 活荷载为: q1=1.4(Q1+Q2)e=1.4×(2+2)×250/1000=1.4kN/m 次楞按三跨连续梁计算符合工况。计算简图如下: (图4)可变荷载控制的受力简图 1、强度验算 (图5)次楞弯矩图(kN·m) M max=0.124kN·m σ=M max/W=0.124×106/(1×85.333×103)=1.454N/mm2≤[f]=15N/mm2 满足要求 2、抗剪验算

(图6)次楞剪力图(kN) V max=0.827kN τmax= V max S0/(Ib) =0.827×103×40.5×103/(341.333×104×4×10)=0.245N/mm2≤[τ]=125N/mm2 满足要求 3、挠度验算 挠度验算荷载统计: q k=g kc+g1k e+(Q1+Q2)e =0.022+0.3×250/1000+(2+2)×250/1000=1.097kN/m (图7)挠度计算受力简图 (图8)次楞变形图 (mm) νmax=0.145mm≤[ν]=max(1000×0.9/150,10)=10mm 满足要求 4、支座反力计算 承载能力极限状态下支座反力为:R=1.516kN 正常使用极限状态下支座反力为:R k=1.086kN 五、主楞验算 按三跨连续梁计算符合工况,偏于安全,计算简图如下:

满堂脚手架设计计算法(最新)

满堂脚手架设计计算方法 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为4米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数砼板厚按均布250mm计算 2400X0.25X1=6.0KN/mm2 施工均布荷载为6.0kN/m2,脚手板自重标准值0.30kN/m2, 脚手架用途:支撑混凝土自重及上部荷载。 满堂脚手架平面示意图

二、横向杆的计算: 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算:

立杆稳定性及模板支架整体侧向力计算

立杆稳定性及模板支架整体侧向力计算 所处城市为湛江市,基本风压为W0=0.45kN/m2;风荷载高度变化系数为μz =1.0,风荷载体型系数为μs=0.355。 一、不组合风荷载时,立杆的稳定性计算 1、立杆荷载 根据《规程》,支架立杆的轴向力设计值N ut指每根立杆受到荷载单元传递来的最不利的荷载值。其中包括上部模板传递下来的荷载及支架自重,显然,最底部立杆所受的轴压力最大。上部模板所传竖向荷载包括以下部分:通过支撑梁的顶部扣件的滑移力(或可调托座传力)。根据前面的计算,此值为F1 =11.13 kN ; 除此之外,根据《规程》条文说明4.2.1条,支架自重可以按模板支架高度乘以0.15kN/m取值。故支架自重部分荷载可取为 F2=1.35×0.15×15.90=3.22kN; 通过相邻的承受板的荷载的扣件传递的荷载,此值包括模板自重和钢筋混凝土自重: F3=1.35×(0.60/2+(1.00-0.80)/2)×0.50×(0.30+24.00×0.25)=1.701 kN; 立杆受压荷载总设计值为:N =11.13+3.22+1.701=16.05 kN; 2、立杆稳定性验算 φ-- 轴心受压立杆的稳定系数; A -- 立杆的截面面积,按《规程》附录B采用;立杆净截面面积(cm2):A = 4.24; K H--高度调整系数,建筑物层高超过4m时,按《规程》5.3.4采用; 计算长度l0按下式计算的结果取大值: l0 = h+2a=1.20+2×0.30=1.800m; l0 = kμh=1.185×1.272×1.200=1.809m;

式中:h-支架立杆的步距,取1.2m; a --模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度,取 0.3m; μ -- 模板支架等效计算长度系数,参照《扣件式规程》附表D-1,μ =1.272; k -- 计算长度附加系数,取值为:1.185 ; 故l0取1.809m; λ = l0/i = 1808.784 / 15.9 = 114 ; 查《规程》附录C得φ= 0.489; K H=1/[1+0.005×(15.90-4)] = 0.944; σ =1.05×N/(φAK H)=1.05×16.050×103/( 0.489×424.000×0.944)= 86.120 N/mm2; 立杆的受压强度计算值σ = 86.120 N/mm2小于立杆的抗压强度设计值 f=205.000 N/mm2,满足要求。 二、组合风荷载时,立杆稳定性计算 1、立杆荷载 根据《规程》,支架立杆的轴向力设计值N ut取不组合风荷载时立杆受压荷载总设计值计算。由前面的计算可知: N ut=16.050kN; 风荷载标准值按照以下公式计算 经计算得到,风荷载标准值 w k =0.7μzμs Wo= 0.7 *0.45*1*0.067 =0.0211 kN/m2; 其中w0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用:w0 = 0.45 kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》 (GB50009-2001)的规定采用:μz= 1 ; μs -- 风荷载体型系数:按圆形衍架取值为0.6*0.112=0.067; 风荷载设计值产生的立杆段弯矩M W为 M w = 0.85 ×1.4w k l a h2/10 =0.850 ×1.4×0.021×0.6×1.52/10 = 0.007 kN·m;

立杆稳定性计算

立杆的稳定性计算: 1.不考虑风荷载时,立杆的稳定性计算 其中N ——立杆的轴心压力设计值,N=14.35kN; ——轴心受压立杆的稳定系数,由长细比l0/i 的结果查表得到0.26; i ——计算立杆的截面回转半径,i=1.58cm; l0 ——计算长度(m),由公式l0 = kuh 确定,l0=2.60m; k ——计算长度附加系数,取1.155; 1)对受弯构件: 不组合风荷载 上列式中S Gk、S Qk——永久荷载与可变荷载的标准值分别产生的力和。对受弯构件力为弯矩、剪力,对轴心受压构件为轴力; S Wk——风荷载标准值产生的力; f——钢材强度设计值; f k——钢材强度的标准值; W——杆件的截面模量;

φ——轴心压杆的稳定系数; A——杆件的截面面积; 0.9,1.2,1.4,0.85——分别为结构重要性系数,恒荷载分项系数,活荷载分项系数,荷载效应组合系数; u ——计算长度系数,由脚手架的高度确定,u=1.50; 表5.3.3 脚手架立杆的计算长度系数μ

A ——立杆净截面面积,A=4.89cm2; W ——立杆净截面模量(抵抗矩),W=5.08cm3; ——钢管立杆受压强度计算值(N/mm2);经计算得到= 111.83 [f] ——钢管立杆抗压强度设计值,[f] = 205.00N/mm2; 不考虑风荷载时,立杆的稳定性计算< [f],满足要求! 2.考虑风荷载时,立杆的稳定性计算 其中N ——立杆的轴心压力设计值,N=13.56kN; ——轴心受压立杆的稳定系数,由长细比λ=l0/i 的结果查表得到0.26;λ值根据规表进行查表得出,如下图:

胎架立杆承载力计算分析_姚刚

2006年9月重庆大学学报(自然科学版)Sep.2006第29卷第9期Journa l o fC hongqing Universit y(N at u r a l Science Edition)Vo.l29 No.9 文章编号:1000-582X(2006)09-0134-04 胎架立杆承载力计算分析* 姚 刚1,刘伟亮1,周忠明2 (1.重庆大学土木工程学院,重庆 400030;2.广厦重庆第一建筑(集团)有限公司,重庆 400051) 摘 要:胎架是指主要起承重受力作用的脚手架,在模板工程、钢结构安装工程、桥梁工程中应用广泛.为了保证结构施工中胎架的安全,快速准确地对胎架进行设计计算具有重要的工程意义.与常用的单双排脚手架计算不同,胎架承载力的计算需要通过设计确定.通过分析影响承载力的各种因素及胎架破坏形式,运用参考规范的概率极限状态设计法和ANSYS程序分析的方法,得出了给定胎架参数下的承载力数值表格,对胎架立杆的搭设具有指导作用. 关键词:胎架;承载力;脚手架 中图分类号TU712文献标识码:A 胎架是指主要起承重受力作用的脚手架,在模板工程、钢结构安装工程、桥梁工程中应用广泛.与常用单双排脚手架不同,由于其支撑的结构形式、重量差别很大,胎架的设计差异较大.作为施工时的临时结构,计算方法应简便可靠的确定其承载能力同时保证经济合理. 1 胎架承载力计算分析 1.1 胎架破坏形式分析 大量工程实践表明,胎架的破坏主要是立杆失稳导致脚手架坍塌,包括整体失稳和局部失稳.整体失稳破坏时,立柱与水平杆组成的空间框架结构顺惯性矩较小的弱轴平面内呈大波鼓曲现象,各排立柱的鼓曲方向一致,失稳曲线的半波长度大于步距.局部失稳破坏时,立柱在步距之间发生小波鼓曲,鼓曲方向可能在立柱与水平杆组成的2个方向的竖向平面内,也可能沿任意方向,失稳曲线的半波长度接近等于步距[1-2]. 从胎架构造形式分析[3],当以相等的步距、柱距、排距搭设时,立柱的局部承载力高于整体承载力,但胎架的长宽比较为接近,平面接近于正方形而不是长条形时,二者承载力值应相差不多.当胎架搭设时步距、柱距有变化,局部的脚手架较稀疏时,立柱受荷不均则容易发生局部失稳破坏. 从受力状态分析,胎架主要承受钢桁架等结构的自重,结构往往通过千斤顶、枕木等传力给胎架,此时胎架的受力面积较小,荷载传递集中在局部,而其他作为施工操作面的地方荷载相对较小,胎架整体受力不均匀,易发生局部失稳破坏的情况,因此施工中应尽量加大荷载传递至胎架的接触面积. 无论哪种破坏,胎架的承载能力主要由立杆决定,立杆的承载能力由其整体或局部失稳时的临界荷载决定. 1.2 胎架计算的特殊性 胎架是由水平杆、立杆组成的多层多跨框架结构,立杆稳定计算问题,实际上是一个节点为半刚性的空间框架稳定计算问题,但和一般的框架相比其特殊点是: 1)构架的不严格性.胎架的构造型式、尺寸参数和杆件设置常随应用对象和施工要求的不同而变化,有时需要局部改变杆件设置:它的搭设也不像工程结构那样严格地按照设计图纸施工,在搭设中又常常由于各种原因,例如施工人员认识不足、要求不严,架设材料供应不足,操作工人的经验和主观意见等而改变构架参数,例如整架或局部地改变构件尺寸、随意减少杆件等.而基础和立杆支垫不好和立杆偏斜过大的情况较为普遍地存在.这些情况的存在,都将导致脚手架的设计计算依据与施工的实际情况不符,甚至差别显著. 2)节点性能的差异性.连接杆件的扣件节点,在荷载作用下具有相当的抗转动能力,是一种半刚性节点.其刚 *收稿日期:2006-03-05 作者简介:姚刚(1963-),男,四川营山人,重庆大学副教授,博士,主要从事建筑施工技术教学与研究的研究.

满堂式碗扣支架支架设计计算知识讲解

满堂式碗扣支架支架设计计算 杭州湾跨海大桥XI合同段中G70~G76墩的上部结构为预应力混凝土连续箱梁,该区段连续箱梁结构设计有两种形式,一为等高段,一为变高段,G70~G70为变高段连续箱梁。为此,依据设计图纸、杭州湾跨海大桥专用施工技术规范、水文、地质情况,并充分结合现场的实际施工状况,为便于该区段连续箱梁的施工,保证箱梁施工的质量、进度、安全,我部采用满堂式碗扣支架组织该区段连续箱梁预应力混凝土逐段现浇施工。 一、满堂式碗扣件支架方案介绍 满堂式碗扣支架体系由支架基础(厚50cm宕渣、10cm级配碎石面层)、Φ48×3mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm底垫木、10cm×15cm或10cm×10cm木方做横向分配梁、10cm×10cm木方纵向分配梁;模板系统由侧模、底模、芯模、端模等组成。10cm×15cm木方分配梁沿横桥向布置,直接铺设在支架顶部的可调节顶托上,箱梁底模板采用定型大块竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm、10cm×10cm 木方分配梁上进行连接固定;侧模、翼缘板模板为整体定型钢模板。(主线桥30m跨等高连续梁一孔满堂支架结构示意图见附图XL-1、2、3所示)。 根据箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过计算确定,每孔支架立杆布置:纵桥向为:3*60cm+30*90cm +2*60cm,共计36排。横桥向立杆间距为:120cm+3*90cm+3*60cm +6*90cm +3*60cm +3*90 cm+120cm,即腹板区为60cm,两侧翼缘板(外侧)为120cm,其余为90cm,共21排;支架立杆步距为120cm,在横梁和腹板部位的支架立杆步距加密为60cm,支架在桥纵向每360cm间距设置剪刀撑;支架两端的纵、横杆系通过垫木牢固支撑在桥墩上;立杆顶部安装可调节顶托,立杆底部支立在底托上,底托安置在支架基础上的10cm×15cm木垫板上。以确保地基均衡受力。 二、支架计算与基础验算 (一)资料 (1)WJ碗扣为Φ48×3.5 mm钢管; (2)立杆、横杆承载性能: 立杆横杆 步距(m)允许载荷(KN)横杆长度(m)允许集中荷载 (KN)) 允许均布荷载 (KN) 0.6 40 0.9 4.5 12

满堂支撑架计算书

满堂支撑架计算书计算依据: 1、《建筑施工脚手架安全技术统一标准》GB51210-2016 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 3、《建筑施工高处作业安全技术规范》JGJ80-2016 4、《建筑地基基础设计规范》GB50007-2011 5、《建筑结构荷载规范》GB50009-2012 6、《钢结构设计标准》GB50017-2017 一、架体参数 二、荷载参数

风荷载参数: 三、设计简图 搭设示意图:

平面图 四、板底纵向支撑次梁验算

G1k=N c=0.033kN/m; G2k= g2k×l b/(n4+1)= 0.35×0.5/(2+1)=0.058kN/m; G3k= g5k×l b/(n4+1)= 1×0.5/(2+1)=0.167kN/m; Q1k= q k×l b/(n4+1)= 3×0.5/(2+1)=0.5kN/m; 1、强度验算 板底支撑钢管按均布荷载作用下的三等跨连续梁计算。 满堂支撑架平台上无集中力 q=γ0×max[1.2(G1k+G2k+ G3k)+1.4×Q1k,1.35(G1k+G2k+ G3k)+1.4×0.7×Q1k]=1×max[1.2×(0.033+0.058+0.167)+ 1.4×0.5,1.35×(0.033+0.058+0.167)+1.4×0.7×0.5]=1.01kN/m q1=γ0×1.2×(G1k+G2k+ G3k)= 1×1.2×(0.033+0.058+0.167)=0.31kN/m q2=γ0×1.4×Q1k= 1×1.4×0.5=0.7 kN/m 计算简图 M max=0.100q l l2+0.117q2l2=0.100×0.31×0.52+0.117×0.7×0.52=0.028kN·m R max=1.100q1l+1.200q2l=1.100×0.31×0.5+1.200×0.7×0.5=0.59kN V max=0.6q1la +0.617q2la =0.6×0.31×0.5+0.617×0.7×0.5=0.309kN

脚手架稳定性计算学习资料

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照 以下公式计算 Wk=0.7 卩 z 卩 s 3 0 其中3 0 --基本风压(kN/m2),按照《建筑结构荷载规范》 (GB50009-2001) 的规定采用: 3 0=0.37kN/m2 ; 卩Z--风荷载高度变化系数,按照《建筑结构荷载规范》 (GB50009-2001) 的规定采用:卩z= 0.74 , 0.74 ; 卩s--风荷载体型系数:取值为 1.132 ; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为 : Wk 仁0.7 X 0.37 X 0.74 X 1.132=0.217kN/m2 ; Wk2=0.7 X 0.37 X 0.74 X 1.132=0.217kN/m2 ; 风荷载设计值产生的立杆段弯矩 MW 分别为: Mw1=0.85 X 1.4Wk1Lah2/10=0.85 X 1.4 X0.217 X 1.5 X 1.82/10=0.12 5kN?m ; b =N/( ? A) + MW/W < [f] 立杆的轴心压力设计值 :N=Nd=8.487kN ; 不考虑风荷载时,立杆的稳定性计算公式 b =N/( ? A) < [f] 立杆的轴心压力设计值 :N=N'd= 8.991kN ; 计算立杆的截面回转半径 :i=1.59 cm ; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》 k=1.155 : 计算长度系数参照《建筑施工扣件式钢管脚手架安全技 术规 范》 计算长度,由公式IO=kuh 确定:10=3.118 m ; Mw2=0.85 X 1.4Wk2Lah2/10=0.85 1. 主立杆变截面上部单立杆稳定性计算。 X 1.4 X 0.217 X 1.5 X 1.82/10=0.125kN?m (JGJ130-2001)表 5.3.3 得 (JGJ130-2001)表 5.3.3 得:卩=1.5

满堂支架设计计算

满堂支架计算书 一、设计依据 1.《小乌高速公路BK2+12 2.6互通桥工程施工图》 2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 3.《公路桥涵施工技术规范》JTJ041-2004 4.《扣件式钢管脚手架安全技术规范》JGJ130-2001 5.《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》 二、地基容许承载力 本桥实际施工已新建土模为基础,在原地面清表后采用砾类土分层填筑,分层填筑层厚不大于30cm。要求碾压后压实度不小于95%,经检测合格后再进行下一层的填筑,填筑至砾类土顶面,然后填筑厚30cm的砾石土,以提高地基承载力。 为了增加土模表面的强度,保证地基承载力不小于12t/㎡。浇注一层10cm 厚C30垫层。钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。 三、箱梁砼自重荷载分布 根据BK2+122.6互通立交桥设计图纸,上部结构为25+35×2+25m一联现浇预应力连续箱梁。箱梁采用碗扣式支架现场浇筑施工,箱梁下部宽8.50 m,顶宽13.00 m,梁高2.0m。箱梁采用C50混凝土现浇,箱梁混凝土数量为1186.6m3。25m边跨梁单重为704.67t(247.21×2.6+61.92);35m中跨梁

单重为986.52t(346.09×2.6+86.68)。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段箱梁,箱梁顶板厚0.25m,底板厚0.22m,翼缘板前端厚0.20m,根部0.45m,翼板宽2.0m,腹板厚0.5m,根据荷载集度分部情况的分析,腹板处荷载集度最大为最不利位置,故取腹板下杆件进行检算。 四、模板、支架、枕木等自重及施工荷载 本桥箱梁底模、外模均采用δ=12mm厚竹胶板,芯模采用δ=10mm竹胶板。底模通过纵横向带木支撑在钢管支架顶托上,支架采用Φ48mm×3.5mm钢管,通过顶托调整高度。在立杆下方纵桥向布设15cm宽方木;采用方木垫块时,方木应沿纵桥向连续布设,以保证立杆荷载均匀传至地基。 受力计算以25米跨径的箱梁数据为例进行验算: 1、底模面积共:8.50×25=212.5m2 共重:212.5×0.012×0.85=2.17t 2、外模面积共:3.71×2×25=185.5m2 共重:185.5×0.012×0.85=1.89t 3、内膜面积共:6.15×25×2 =307.5 m2 共重:307.5×0.01×0.85=2.61t 4、模板底层横向带木采用100mm×100mm方木(间距按0.2m布置) 共重:(25÷0.2)×(9.5+1.6×2+2.3×2+0.2×2)×0.1×0.1× 0.65=14.38t 5、模板底层纵向带木采用150mm×150mm方木 共重:25×16×0.15×0.15×0.65=5.85t

脚手架立杆稳定性计算

屋面搭设满堂红脚手架立杆稳定性计算 1、钢管脚手架主要验算立杆的稳定性,可简化为按两端铰接的受压杆件计算。 2、荷载统计 钢管支架自重力 钢管:0.8*4*5*3.84*9.8=602n/m 2 扣件:4*5*13.2=264n/m 2 木板:0.8*0.8*0.35=224n/m 2 小计:602+264+224=1090n/m 2 吊篮后支座及配重 (1000+50)*9.8=10290n/m 2 合计:1090+10290=11380n/m 2 3、立杆纵距、横距均800mm ,每区格面积0.8*0.8=0.64m 2。 每根立杆承受的荷载为0.64*11380=7283.2n 。 4、设用ф48*3mm 钢管,A=424mm 2 钢管回转半径 15.9mm 442484d d i 2 221 2=+=+= 按强度计算,立杆的受压力为 2mm 17.17424 2.7283a n ===? 按稳定性计算立杆的受压力为 长细比47.759 .151200i l ===λ 查表得750.0=? 22mm n 215f mm n 90.22424 *750.02.7283a n =?===?? 考虑组合风荷载,计算公式 f w ≤+W M A N ?。 10 h 4.1*85.04.1*85.02 a wk w L W M M K == O W U U W s z k 7.0=,经查表得知,U z =1.27,U s =0.115,W O =0.65,

W K =0.7*1.27*0.115*0.65=0.066 立杆纵距L a =0.8 立杆步距h=1.2 009.010 2.1*8.0*066.0*4.1*85.0Mw 2 == 经计算 223mm n 215f mm n 67.2477.19.2210 *08.5009.090.22=?=+=+- 满堂红脚手架进过计算,立杆稳定性满足要求。

木方__立杆_承载力的计算

木方按照均布荷载下连续梁计算。 1.荷载的计算 (1)钢筋混凝土板自重(kN/m): q11 = 25.000×0.120×0.300=0.900kN/m (2)模板的自重线荷载(kN/m): q12 = 0.300×0.300=0.090kN/m (3)活荷载为施工荷载标准值与振捣混凝土时产生的荷载(kN/m): 经计算得到,活荷载标准值 q2 = (1.000+2.000)×0.300=0.900kN/m 静荷载 q1 = 1.20×0.900+1.20×0.090=1.188kN/m 活荷载 q2 = 1.4×0.900=1.260kN/m 2.木方的计算 按照三跨连续梁计算,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: 均布荷载 q = 2.203/0.900=2.448kN/m 最大弯矩 M = 0.1ql2=0.1×2.45×0.90×0.90=0.198kN.m 最大剪力 Q=0.6×0.900×2.448=1.322kN 最大支座力 N=1.1×0.900×2.448=2.424kN 木方的截面力学参数为 本算例中,截面惯性矩I和截面抵抗矩W分别为: W = 4.00×7.00×7.00/6 = 32.67cm3; I = 4.00×7.00×7.00×7.00/12 = 114.33cm4; (1)木方抗弯强度计算 抗弯计算强度 f=0.198×106/32666.7=6.07N/mm2 木方的抗弯计算强度小于13.0N/mm2,满足要求! (2)木方抗剪计算 [可以不计算] (3)木方挠度计算 最大变形 v =0.677×0.990×900.04/(100×9500.00× 1143333.4)=0.405mm

满堂架脚手架搭施工方案及承载力计算

满堂架脚手架搭施工方案及承载力计算 本工程共地上三层。考虑到装饰装修需要,我单位拟在外墙装饰装修期间搭设落地式、全高半封闭的扣件式满堂钢管脚手架,满足施工需求。 脚手架的结构楼板,基础上、底座下设置垫板,厚度为6cm,布设必须平稳,不得悬空。 脚手架满堂单立杆,立杆接头采用对接扣件连接,立杆和大横杆采用直角扣件连接。接头交错布置,两个相邻立柱接头避免出现在同步同跨内,并在高度方向错开的距离不小于50cm。 大横杆置于小横杆之下,在立柱的内侧,用直角扣件与立柱扣紧;其长度大于3跨,不小于6米,同一步大横杆四周要交圈。大横杆采用对接扣件连接,其接头交错布置,不在同步、同跨内。相邻接头水平距离不小于50cm,各接头距立柱的距离不大于50cm。每一立杆与大横杆相交处,都必须设置一根小横杆,并采用直角扣件扣紧在大横杆上,该杆轴线偏离主接点的距离不大于15cm。小横杆间距应与立杆柱距相同,且根据作业层脚手板搭设的需要,可在两立柱之间设置1~2根小横杆,间距不大于75cm。小横杆伸出不小于10cm,且上、下层小横杆应在立杆处错开布置。 纵向扫地杆采用直角扣件固定在距底座下皮20cm处的立柱上,横向扫地杆则用直角扣件固定在紧靠在纵向扫地杆的立柱上。 本脚手架采用剪刀撑与横向斜撑相结合的方式,随立柱、纵横向水平杆同步搭设,剪

刀撑沿架高连续布置。 剪刀撑每六步四跨设置一道,斜杆与地面的夹角在45O。斜杆相交点处于同一条直线上,并沿架高连续布置。剪刀撑的一根斜杆扣在立柱上,另一根斜杆扣在小横杆伸出的端头上,两端分别用旋转扣件固定,在其中间增加2至4个扣结点。所有固定点距主节点距离不大于15㎝。最下部的斜杆与立杆的连接点与地面平行。 剪刀撑的杆件连接采用搭接,其搭接长度>100㎝,并用不少于三个旋转扣件固定,端部扣件盖板的边缘至杆端的距离>10㎝。 脚手板采用松木、厚6㎝、宽20~35㎝的硬木板。在作业层下部架设一道水平兜网,同时作业不超过两层。首层满铺一层脚手板,并设置安全网及防护栏杆。脚手板设置在三根横向水平杆上,并在两端8㎝处用直径1.2㎜的镀锌铁丝箍绕2-3圈固定,以防倾翻。 脚手板应平铺、满铺、铺稳,接缝中设两根小横杆,各杆距接缝的距离不大于15㎝。靠墙一侧的脚手板离墙的距离不应大于15㎝。拐角处两个方向的脚手板应重叠放置,避免出现探头及空挡现象。 脚手架要满挂全封闭式的密目安全网。密目网的规格为1.5×6m,用网绳帮扎在大横杆外立杆里侧。并在作业层下一步架处设一道水平兜网。在架内高度3.2m处设首层平网,往上每隔五步架设置隔层平网,施工层应设随层网。作业层脚手架立杆于0.6m及1.2m处设有两道防护栏杆,底步内侧设18cm高的挡脚板。 该出入口设在楼梯口,本安全通道路面为水泥路面,立柱下方垫通长木板,木板厚度

满堂脚手架设计详细计算方法(最新)

满堂脚手架设计计算方法(新) 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为18.0米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数 施工均布荷载为3.0kN/m2,脚手板自重标准值0.30kN/m2, 同时施工1层,脚手板共铺设2层。 脚手架用途:混凝土、砌筑结构脚手架。

满堂脚手架平面示意图 二、横向杆的计算: 横向杆钢管截面力学参数为

截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算: 纵向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 纵向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用;当风荷载仅与永久荷载组合时采用。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

支模架稳定性和立杆基础计算

支模架稳定性和立杆基础计算 按《混凝土结构工程施工质量验收规范》GB50204–2002和《建筑施工扣件式钢管脚手架安全技术规程》JGJ130–2001的规定,根据本工程的实际情况,对乍浦东方建材装饰城钢管支模架进行复验计算。 A:立杆承载力计算 根据公式N≤φAf ?48×3.5钢管截面积:查JGJ130–2001附录B表B得 A=489mm2 钢材的强度设计值:查表5.1.6得 f=205N/mm2 由于l0=kuh=1.155×1800=2079 i=15.8mm λ=l0/i=2079/15.8=132 查表C得:φ=0.386 则每根立杆的承载力为:N≤φAf=0.386×489×205=38695N B:立杆间距计算 先进行荷载计算:以每平方米为单位 模板及钢管支模架子 1.1KN 钢筋砼 25×0.13=3.25KN 以上恒载小计 4.25KN 施工人员及设备 2.00KN 倾倒砼 2.00KN 砼振捣 1.00KN 以上活载小计5,00KN Σ荷载=1.2×4.25+1.4×5=12.72KN=12720N 立杆间距C C×C≤38695/12720=3.042m2 则C≤1.74m 备注:考虑到楼板的设计承载力不大,而回填土难以在短期内沉实,支模架的实际搭设与设计要求的差异,故施工单位提供的底层支模架立杆的间距控制在1.0m内符合规范要求。 C、立杆基础计算 按规范5.5章公式(5.5.1)p≤fg 而 N=1.2×1.2×12.72=18.3168KN 地基承载力按96KN/M2,回填土调整系数取kc=0.4 则立杆基础面积为A=N/p=18.3168÷96×0.4=0.477m2 本工程立杆基础采用C15素混泥土20厚为垫板。立杆间除用纵横水平杆外应再辅以剪刀撑直接支撑在砼基础上,形成稳定的模板支撑体系。

满堂脚手架荷载计算

扣件钢管楼板模板支架计算书 计算参数: 模板支架搭设高度为5.7m, 立杆的纵距 b=0.80m,立杆的横距 l=0.80m,立杆的步距 h=1.50m。 面板厚度18mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000.0N/mm2。 木方50×100mm,间距100mm,剪切强度1.3N/mm2,抗弯强度13.0N/mm2,弹性模量9000.0N/mm2。 模板自重0.50kN/m2,混凝土钢筋自重24.00kN/m3,施工活荷载2.50kN/m2。 扣件计算折减系数取1.00。 图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 采用的钢管类型为48×3.5。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算。 静荷载标准值 q1 = 24.000×0.180×0.800+0.500×0.800=3.856kN/m

活荷载标准值 q2 = (0.000+2.500)×0.800=2.000kN/m 面板的截面惯性矩I 和截面抵抗矩W 分别为: 本算例中,截面惯性矩I 和截面抵抗矩W 分别为: W = 80.00×1.80×1.80/6 = 43.20cm 3; I = 80.00×1.80×1.80×1.80/12 = 38.88cm 4; (1)抗弯强度计算 f = M / W < [f] 其中 f —— 面板的抗弯强度计算值(N/mm 2); M —— 面板的最大弯距(N.mm); W —— 面板的净截面抵抗矩; [f] —— 面板的抗弯强度设计值,取15.00N/mm 2; M = 0.100ql 2 其中 q —— 荷载设计值(kN/m); 经计算得到 M = 0.100×(1.20×3.856+1.40×2.000)×0.100×0.100=0.007kN.m 经计算得到面板抗弯强度计算值 f = 0.007×1000×1000/43200=0.172N/mm 2 面板的抗弯强度验算 f < [f],满足要求! (2)抗剪计算 T = 3Q/2bh < [T] 其中最大剪力 Q=0.600×(1.20×3.856+1.4×2.000)×0.100=0.446kN 截面抗剪强度计算值 T=3×446.0/(2×800.000×18.000)=0.046N/mm 2 截面抗剪强度设计值 [T]=1.40N/mm 2 抗剪强度验算 T < [T],满足要求! (3)挠度计算 v = 0.677ql 4 / 100EI < [v] = l / 250 面板最大挠度计算值 v = 0.677×3.856×1004/(100×6000×388800)=0.001mm 面板的最大挠度小于100.0/250,满足要求! 二、板底支撑钢管计算 横向支撑钢管计算 横向支撑钢管按照集中荷载作用下的连续梁计算。 集中荷载P 取木方支撑传递力。 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 支撑钢管计算简图

满堂脚手架受力计算、满堂脚手架计算书、安全计算、施工安全、华表世纪

满堂脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 华表世纪科技有限公司https://www.360docs.net/doc/0415749130.html, 一、参数信息: 1.脚手架参数华表世纪建设施工设施安全计算北京专版 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为18.0米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数华表世纪安全计算 施工均布荷载为3.0kN/m2,脚手板自重标准值0.30kN/m2, 同时施工1层,脚手板共铺设2层。 脚手架用途:混凝土、砌筑结构脚手架。

满堂脚手架平面示意图

二、横向杆的计算: 华表世纪满堂脚手架受力计算 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图

脚手架稳定性计算

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性。 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照以下公式计算 Wk=0.7μz μs ω0 其中ω0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用: ω0=0.37kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:μz= 0.74,0.74; μs -- 风荷载体型系数:取值为1.132; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为: Wk1=0.7 ×0.37×0.74×1.132=0.217kN/m2; Wk2=0.7 ×0.37×0.74×1.132=0.217kN/m2; 风荷载设计值产生的立杆段弯矩MW 分别为: Mw1=0.85 ×1.4Wk1Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; Mw2=0.85 ×1.4Wk2Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; 1. 主立杆变截面上部单立杆稳定性计算。 考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA) + MW/W ≤ [f] 立杆的轴心压力设计值:N=Nd=8.487kN; 不考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA)≤ [f] 立杆的轴心压力设计值:N=N'd= 8.991kN; 计算立杆的截面回转半径:i=1.59 cm; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得: k=1.155 ; 计算长度系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得:μ=1.5 ;

相关文档
最新文档